Libraries
library('knitr')
library('markdown')
library('tidyr')
library('RCurl')
library('plyr')
library('dplyr')
library('ggplot2')
2016-05-03
Import CSV
x503 <- getURL("https://raw.githubusercontent.com/spsstudent15/Data607FinalProject/master/Tweets%20for%2005.03.2016.csv") #import twitter CSV
tweets503<- data.frame(read.csv(text=x503, header=T)) #create data frame
kable(head(tweets503,3)) #show head
| 1 |
@iTIGERSHROFF. Just saw Baaghi movie..Its unique good action movie. Not like other bollywood movie hide and seek behind tree. |
Boston |
Baaghi |
05.03.2016 |
0.9355539 |
| 2 |
BOLLYWOOD: Movie Review: Tigers mean moves apart, Baaghi is a dud https://t.co/LNEnYFtXto |
Boston |
Baaghi |
05.03.2016 |
0.0168295 |
| 3 |
Review: Baaghi, a Bollywood Rebel Tale in Search of a Cause: Fists and feet fly in this movie with… https://t.co/Gv5t0tcbZr NY Times |
New York City |
Baaghi |
05.03.2016 |
0.6880249 |
dim(tweets503)
## [1] 2440 6
Movie Score
moviesum503<- ddply(tweets503, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
kable(moviesum503)
| A Beautiful Planet |
0.6871244 |
83 |
| Baaghi |
0.5751260 |
25 |
| Dough |
0.5094406 |
20 |
| Eva Hesse |
0.7894652 |
3 |
| Green Room |
0.6758744 |
161 |
| Hockney |
0.5284491 |
3 |
| Keanu |
0.6652038 |
1077 |
| LAttesa (The Wait) |
0.7607310 |
3 |
| Men & Chicken |
0.6032591 |
8 |
| Mothers Day |
0.6506948 |
362 |
| Older Than Ireland |
0.4218353 |
3 |
| Pali Road |
0.4949967 |
2 |
| Papa: Hemingway in Cuba |
0.6049819 |
29 |
| Ratchet & Clank |
0.6295204 |
482 |
| Sacrifice |
0.7101497 |
21 |
| The American Side |
0.7633015 |
2 |
| The Family Fang |
0.7413473 |
33 |
| The Man Who Knew Infinity |
0.8379256 |
31 |
| The Meddler |
0.6316935 |
51 |
| Transfixed |
0.8723244 |
1 |
| Viktoria |
0.5664273 |
3 |
| Viva |
0.6682436 |
37 |
Movie and City Score
moviecitysum503<- ddply(tweets503, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum503)
City Score
citysum503<- ddply(tweets503, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum503)
| Boston |
0.6418038 |
102 |
| Chicago |
0.6047630 |
242 |
| Denver |
0.6624649 |
87 |
| Houston |
0.6742386 |
96 |
| Lincoln |
0.8345247 |
3 |
| los Angeles |
0.6403698 |
797 |
| New Orleans |
0.6383094 |
86 |
| New York City |
0.6789346 |
855 |
| Seattle |
0.6545303 |
104 |
| St. Louis |
0.7729804 |
68 |
Unique Movies
allmovies503<-unique(tweets503[c("movie")]) # get unique movies
allmovies503$num<-seq.int(nrow(allmovies503)) # add counter row
kable(allmovies503) #show unique values for movie name
| 1 |
Baaghi |
1 |
| 26 |
Keanu |
2 |
| 1103 |
The American Side |
3 |
| 1105 |
Pali Road |
4 |
| 1107 |
Papa: Hemingway in Cuba |
5 |
| 1136 |
Dough |
6 |
| 1156 |
The Family Fang |
7 |
| 1189 |
The Man Who Knew Infinity |
8 |
| 1220 |
Viva |
9 |
| 1257 |
Mothers Day |
10 |
| 1619 |
LAttesa (The Wait) |
11 |
| 1622 |
Older Than Ireland |
12 |
| 1625 |
A Beautiful Planet |
13 |
| 1708 |
Ratchet & Clank |
14 |
| 2190 |
Viktoria |
15 |
| 2193 |
Transfixed |
16 |
| 2194 |
Sacrifice |
17 |
| 2215 |
Eva Hesse |
18 |
| 2218 |
Men & Chicken |
19 |
| 2226 |
Hockney |
20 |
| 2229 |
The Meddler |
21 |
| 2280 |
Green Room |
22 |
Graphs
ggplot(
moviesum503, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum503, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

2016-05-04
Import CSV
x504 <- getURL("https://raw.githubusercontent.com/spsstudent15/Data607FinalProject/master/Tweets%20for%2005.04.2016.csv") #import twitter CSV
tweets504<- data.frame(read.csv(text=x504, header=T)) #create data frame
kable(head(tweets504,3)) #show head
| 1 |
RT @PeteBlackburn: Somehow Keanu, a movie about fake gangsters trying to rescue a kitten, was stupider than I expected |
Boston |
Keanu |
05.04.2016 |
0.0813694 |
| 2 |
Somehow Keanu, a movie about fake gangsters trying to rescue a kitten, was stupider than I expected |
Boston |
Keanu |
05.04.2016 |
0.0937185 |
| 3 |
Keanu = Not Your Average Buddy Action Film: The AHH movie review of “Keanu” starring Keegan-Michael Key, Jo… https://t.co/SYtkk6Q98L |
New York City |
Keanu |
05.04.2016 |
0.7579466 |
#dim(tweets504)
Movie Score
moviesum504<- ddply(tweets504, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
kable(moviesum504)
| A Beautiful Planet |
0.9350566 |
1 |
| Green Room |
0.6911169 |
26 |
| Keanu |
0.7724452 |
69 |
| Men & Chicken |
0.8554496 |
1 |
| Mothers Day |
0.7642735 |
41 |
| Older Than Ireland |
0.3211677 |
1 |
| Papa: Hemingway in Cuba |
0.4434618 |
6 |
| Ratchet & Clank |
0.6825581 |
23 |
| Sacrifice |
0.6979232 |
2 |
| The Family Fang |
0.8095837 |
1 |
| The Man Who Knew Infinity |
0.9880090 |
1 |
| The Meddler |
0.6949428 |
6 |
| Viktoria |
0.3375587 |
1 |
| Viva |
0.5055177 |
5 |
Movie and City Score
moviecitysum504<- ddply(tweets504, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum504)
City Score
citysum504<- ddply(tweets504, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum504)
| Boston |
0.2904943 |
6 |
| Chicago |
0.6850258 |
13 |
| Denver |
0.7473017 |
11 |
| Houston |
0.7808763 |
7 |
| Los Angeles |
0.6956255 |
53 |
| New Orleans |
0.6497442 |
2 |
| New York City |
0.7706122 |
81 |
| Seattle |
0.3175780 |
2 |
| St. Louis |
0.8605957 |
9 |
Unique Movies
allmovies504<-unique(tweets504[c("movie")]) # get unique movies
allmovies504$num<-seq.int(nrow(allmovies504)) # add counter row
kable(allmovies504) #show unique values for movie name
| 1 |
Keanu |
1 |
| 70 |
Papa: Hemingway in Cuba |
2 |
| 76 |
The Family Fang |
3 |
| 77 |
The Man Who Knew Infinity |
4 |
| 78 |
Viva |
5 |
| 83 |
Mothers Day |
6 |
| 124 |
Older Than Ireland |
7 |
| 125 |
A Beautiful Planet |
8 |
| 126 |
Ratchet & Clank |
9 |
| 149 |
Viktoria |
10 |
| 150 |
Sacrifice |
11 |
| 152 |
Men & Chicken |
12 |
| 153 |
The Meddler |
13 |
| 159 |
Green Room |
14 |
Graphs
ggplot(
moviesum504, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum504, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

2016-05-05
Import CSV
x505 <- getURL("https://raw.githubusercontent.com/spsstudent15/Data607FinalProject/master/Tweets%20for%2005.05.2016.csv") #import twitter CSV
tweets505<- data.frame(read.csv(text=x505, header=T)) #create data frame
kable(head(tweets505,3)) #show head
| 1 |
Movie Review: Keanu https://t.co/0GCZyi7rdy https://t.co/O6HjwlBaA5 |
Boston |
Keanu |
05.05.2016 |
0.9367028 |
| 2 |
RT @PeteBlackburn: Somehow Keanu, a movie about fake gangsters trying to rescue a kitten, was stupider than I expected |
Boston |
Keanu |
05.05.2016 |
0.0813694 |
| 3 |
RT @Tribeca: Key and Peele’s subversive intelligence powers the comedy duo’s gleefully-absurd #KEANU. https://t.co/EKnyjGUklc https://t.co/ |
New York City |
Keanu |
05.05.2016 |
0.3208861 |
#dim(tweets505)
Movie Score
moviesum505<- ddply(tweets505, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
kable(moviesum505)
| A Beautiful Planet |
0.9702582 |
6 |
| Dough |
0.6558193 |
1 |
| Eva Hesse |
0.9344939 |
1 |
| Green Room |
0.6873747 |
20 |
| Keanu |
0.5245778 |
33 |
| Men & Chicken |
0.8554496 |
1 |
| Mothers Day |
0.7285004 |
30 |
| Ratchet & Clank |
0.6738906 |
14 |
| Sacrifice |
0.7061121 |
2 |
| The Family Fang |
0.8059055 |
7 |
| The Man Who Knew Infinity |
0.9051434 |
2 |
| The Meddler |
0.8200938 |
4 |
| Viva |
0.7874603 |
3 |
Movie and City Score
moviecitysum505<- ddply(tweets505, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum505)
City Score
citysum505<- ddply(tweets505, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum505)
| Boston |
0.5593184 |
7 |
| Chicago |
0.7237302 |
14 |
| Denver |
0.8007684 |
1 |
| Houston |
0.8031522 |
10 |
| Los Angeles |
0.6393636 |
41 |
| New Orleans |
0.3105057 |
1 |
| New York City |
0.6979320 |
42 |
| Seattle |
0.8005825 |
8 |
Unique Movies
allmovies505<-unique(tweets505[c("movie")]) # get unique movies
allmovies505$num<-seq.int(nrow(allmovies505)) # add counter row
kable(allmovies505) #show unique values for movie name
| 1 |
Keanu |
1 |
| 34 |
Dough |
2 |
| 35 |
The Family Fang |
3 |
| 42 |
The Man Who Knew Infinity |
4 |
| 44 |
Viva |
5 |
| 47 |
Mothers Day |
6 |
| 77 |
A Beautiful Planet |
7 |
| 83 |
Ratchet & Clank |
8 |
| 97 |
Sacrifice |
9 |
| 99 |
Eva Hesse |
10 |
| 100 |
Men & Chicken |
11 |
| 101 |
The Meddler |
12 |
| 105 |
Green Room |
13 |
Graphs
ggplot(
moviesum505, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum505, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

2016-05-06
Import CSV
x506 <- getURL("https://raw.githubusercontent.com/spsstudent15/Data607FinalProject/master/Tweets%20for%2005.06.2016.csv") #import twitter CSV
tweets506<- data.frame(read.csv(text=x506, header=T)) #create data frame
kable(head(tweets506,3)) #show head
| 1 |
I gotta write something on Tiger. When I came out of #Baaghi I knew movie would do well&his star power would grow. Why everyone surprised?? |
New York City |
Baaghi |
05.06.2016 |
0.5727997 |
| 2 |
WATCH BAAGHI 2016 MOVIE ONLINE FORFREE https://t.co/6xOPr0jH39 |
Seattle |
Baaghi |
05.06.2016 |
0.2353356 |
| 3 |
@WahooFX Been checking out Key and Peele after seeing their movie, Keanu. Very clever writing. Funny guys. |
New York City |
Keanu |
05.06.2016 |
0.8883232 |
#dim(tweets506)
Movie Score
moviesum506<- ddply(tweets506, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
kable(moviesum506)
| A Beautiful Planet |
0.9057405 |
2 |
| Baaghi |
0.4040677 |
2 |
| Dough |
0.5768954 |
1 |
| Green Room |
0.6289183 |
12 |
| Keanu |
0.7635731 |
43 |
| Men & Chicken |
0.8929113 |
1 |
| Mothers Day |
0.7848442 |
38 |
| Older Than Ireland |
0.2630552 |
1 |
| Ratchet & Clank |
0.6356453 |
14 |
| The Family Fang |
0.4418001 |
1 |
| The Man Who Knew Infinity |
0.9159938 |
1 |
| The Meddler |
0.3039157 |
7 |
| Viktoria |
0.4310602 |
1 |
| Viva |
0.4730699 |
1 |
Movie and City Score
moviecitysum506<- ddply(tweets506, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum506)
City Score
citysum506<- ddply(tweets506, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum506)
| Boston |
0.6107696 |
2 |
| Chicago |
0.7487589 |
9 |
| Denver |
0.7819757 |
4 |
| Houston |
0.6600502 |
8 |
| Lincoln |
0.0756081 |
1 |
| Los Angeles |
0.6522764 |
46 |
| New Orleans |
0.7454275 |
3 |
| New York City |
0.7753619 |
46 |
| Seattle |
0.5683229 |
5 |
| St. Louis |
0.6520504 |
1 |
Unique Movies
allmovies506<-unique(tweets506[c("movie")]) # get unique movies
allmovies506$num<-seq.int(nrow(allmovies506)) # add counter row
kable(allmovies506) #show unique values for movie name
| 1 |
Baaghi |
1 |
| 3 |
Keanu |
2 |
| 46 |
Dough |
3 |
| 47 |
The Family Fang |
4 |
| 48 |
The Man Who Knew Infinity |
5 |
| 49 |
Viva |
6 |
| 50 |
Mothers Day |
7 |
| 88 |
Older Than Ireland |
8 |
| 89 |
A Beautiful Planet |
9 |
| 91 |
Ratchet & Clank |
10 |
| 105 |
Viktoria |
11 |
| 106 |
Men & Chicken |
12 |
| 107 |
The Meddler |
13 |
| 114 |
Green Room |
14 |
Graphs
ggplot(
moviesum506, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum506, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

2016-05-07
Import CSV
x507 <- getURL("https://raw.githubusercontent.com/spsstudent15/Data607FinalProject/master/Tweets%20for%2005.07.2016.csv") #import twitter CSV
tweets507<- data.frame(read.csv(text=x507, header=T)) #create data frame
kable(head(tweets507,3)) #show head
| 1 |
RT @ScreenMediaFilm: Head to @FandangoNOW and rent or buy #MothersAndDaughters, a perfect #MothersDay gift - https://t.co/DP9dXEoqnq https: |
New York City |
Mothers and Daughters |
05.07.2016 |
0.6272798 |
| 2 |
RT @ScreenMediaFilm: Right now! You can see a star-studded cast in #MothersAndDaughters on @iTunesMovies and in theaters! https://t.co/ExHC |
New York City |
Mothers and Daughters |
05.07.2016 |
0.3594603 |
| 3 |
RT @ScreenMediaFilm: #MothersAndDaughters w/ @sharonstone @SusanSarandon@CourteneyCox @ChristinaRicci & more! https://t.co/ExHCyXv4CO http |
New York City |
Mothers and Daughters |
05.07.2016 |
0.6668710 |
#dim(tweets507)
Movie Score
moviesum507<- ddply(tweets507, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
kable(moviesum507)
| A Bigger Splash |
0.5600869 |
27 |
| A Hologram for the King |
0.5971608 |
2 |
| Baaghi |
0.8501134 |
2 |
| Being Charlie |
0.6279919 |
12 |
| Captain America: Civil War |
0.7918589 |
661 |
| Dark Horse |
0.6029846 |
15 |
| Dough |
0.5761869 |
2 |
| Elstree 1976 |
0.7597740 |
13 |
| Elvis & Nixon |
0.9997645 |
1 |
| Green Room |
0.5129880 |
6 |
| Keanu |
0.7290294 |
91 |
| Men & Chicken |
0.9700285 |
1 |
| Mother’s Day |
0.7051047 |
60 |
| Mothers Day |
0.7051047 |
60 |
| Mothers and Daughters |
0.7088384 |
17 |
| Nina |
0.6235115 |
9 |
| Papa: Hemingway in Cuba |
0.3656186 |
3 |
| Ratchet & Clank |
0.4689717 |
17 |
| Sin Alas |
0.2390684 |
1 |
| The Family Fang |
0.6779906 |
7 |
| The Man Who Knew Infinity |
0.9392011 |
4 |
| The Meddler |
0.4545197 |
6 |
| The Offering |
0.5217223 |
4 |
| Those People |
0.2774711 |
2 |
| Viva |
0.8058549 |
8 |
Movie and City Score
moviecitysum507<- ddply(tweets507, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum507)
City Score
citysum507<- ddply(tweets507, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum507)
| Boston |
0.7584916 |
39 |
| Chicago |
0.7521585 |
100 |
| Denver |
0.8490543 |
28 |
| Houston |
0.8431351 |
64 |
| Lincoln |
0.7778615 |
4 |
| Los Angeles |
0.7291199 |
304 |
| New Orleans |
0.9677572 |
2 |
| New York City |
0.7293779 |
419 |
| Seattle |
0.7912599 |
41 |
| St. Louis |
0.8351642 |
30 |
Unique Movies
allmovies507<-unique(tweets507[c("movie")]) # get unique movies
allmovies507$num<-seq.int(nrow(allmovies507)) # add counter row
kable(allmovies507) #show unique values for movie name
| 1 |
Mothers and Daughters |
1 |
| 18 |
Elstree 1976 |
2 |
| 31 |
Those People |
3 |
| 33 |
Being Charlie |
4 |
| 45 |
The Offering |
5 |
| 49 |
Dark Horse |
6 |
| 64 |
Captain America: Civil War |
7 |
| 725 |
A Bigger Splash |
8 |
| 752 |
Baaghi |
9 |
| 754 |
The Family Fang |
10 |
| 761 |
The Man Who Knew Infinity |
11 |
| 765 |
Dough |
12 |
| 767 |
Mothers Day |
13 |
| 827 |
Papa: Hemingway in Cuba |
14 |
| 830 |
Ratchet & Clank |
15 |
| 847 |
Viva |
16 |
| 855 |
Keanu |
17 |
| 946 |
Men & Chicken |
18 |
| 947 |
Nina |
19 |
| 956 |
Elvis & Nixon |
20 |
| 957 |
A Hologram for the King |
21 |
| 959 |
The Meddler |
22 |
| 965 |
Green Room |
23 |
| 971 |
Sin Alas |
24 |
| 972 |
Mother’s Day |
25 |
Graphs
ggplot(
moviesum507, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum507, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

2016-05-08
Import CSV
x508 <- getURL("https://raw.githubusercontent.com/spsstudent15/Data607FinalProject/master/Tweets%20for%2005.08.2016.csv") #import twitter CSV
tweets508<- data.frame(read.csv(text=x508, header=T)) #create data frame
kable(head(tweets508,3)) #show head
| 1 |
RT @ScreenMediaFilm: We’re about to crack the top #25 overall on @iTunesMovies - Help #MothersAndDaughters climb to #1 for Mother’s Day! ht |
New York City |
Mothers and Daughters |
05.08.2016 |
0.2088123 |
| 2 |
RT @ScreenMediaFilm: Want a movie that’s PERFECT for this weekend? Go see #MothersAndDaughters right now in theaters, or on demand https:// |
New York City |
Mothers and Daughters |
05.08.2016 |
0.9672440 |
| 3 |
RT @ashanti: Had a blast with these lovely ladies at the premier for our movie “Mothers and daughters” last https://t.co/O78xXq7CHY |
New York City |
Mothers and Daughters |
05.08.2016 |
0.9560200 |
#dim(tweets508)
Movie Score
moviesum508<- ddply(tweets508, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
kable(moviesum508)
| A Beautiful Planet |
0.9350566 |
1 |
| A Bigger Splash |
0.5229955 |
13 |
| Baaghi |
0.7681713 |
2 |
| Being Charlie |
0.6543891 |
4 |
| Captain America: Civil War |
0.7709729 |
506 |
| Dark Horse |
0.8021627 |
9 |
| Dough |
0.6988977 |
1 |
| Elstree 1976 |
0.7146252 |
1 |
| Elvis & Nixon |
0.4100779 |
2 |
| Green Room |
0.6480975 |
13 |
| Keanu |
0.6793276 |
31 |
| Mother’s Day |
0.7164618 |
55 |
| Mothers Day |
0.7164618 |
55 |
| Mothers and Daughters |
0.6826797 |
20 |
| Nina |
0.7713823 |
3 |
| Papa: Hemingway in Cuba |
0.9939506 |
1 |
| Ratchet & Clank |
0.4775937 |
18 |
| Sin Alas |
0.3109672 |
1 |
| The Family Fang |
0.3585073 |
1 |
| The Man Who Knew Infinity |
0.8913501 |
2 |
| The Meddler |
0.7348663 |
6 |
| The Offering |
0.3625898 |
2 |
| Those People |
0.2172879 |
2 |
| Viva |
0.0386368 |
1 |
Movie and City Score
moviecitysum508<- ddply(tweets508, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum508)
City Score
citysum508<- ddply(tweets508, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum508)
| Boston |
0.7890522 |
22 |
| Chicago |
0.8017514 |
81 |
| Denver |
0.7297705 |
13 |
| Houston |
0.7761848 |
51 |
| Lincoln |
0.7279522 |
4 |
| Los Angeles |
0.7365210 |
215 |
| New Orleans |
0.7919442 |
3 |
| New York City |
0.7113340 |
325 |
| Seattle |
0.7223629 |
24 |
| St. Louis |
0.8194414 |
12 |
Unique Movies
allmovies508<-unique(tweets508[c("movie")]) # get unique movies
allmovies508$num<-seq.int(nrow(allmovies508)) # add counter row
kable(allmovies508) #show unique values for movie name
| 1 |
Mothers and Daughters |
1 |
| 21 |
Elstree 1976 |
2 |
| 22 |
Those People |
3 |
| 24 |
Being Charlie |
4 |
| 28 |
The Offering |
5 |
| 30 |
Dark Horse |
6 |
| 39 |
Captain America: Civil War |
7 |
| 545 |
A Bigger Splash |
8 |
| 558 |
Baaghi |
9 |
| 560 |
The Family Fang |
10 |
| 561 |
The Man Who Knew Infinity |
11 |
| 563 |
A Beautiful Planet |
12 |
| 564 |
Dough |
13 |
| 565 |
Mothers Day |
14 |
| 620 |
Papa: Hemingway in Cuba |
15 |
| 621 |
Ratchet & Clank |
16 |
| 639 |
Viva |
17 |
| 640 |
Keanu |
18 |
| 671 |
Nina |
19 |
| 674 |
Elvis & Nixon |
20 |
| 676 |
The Meddler |
21 |
| 682 |
Green Room |
22 |
| 695 |
Sin Alas |
23 |
| 696 |
Mother’s Day |
24 |
Graphs
ggplot(
moviesum508, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum508, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

2016-05-09
Import CSV
x509 <- getURL("https://raw.githubusercontent.com/spsstudent15/Data607FinalProject/master/Tweets%20for%2005.09.2016.csv") #import twitter CSV
tweets509<- data.frame(read.csv(text=x509, header=T)) #create data frame
kable(head(tweets509,3)) #show head
#dim(tweets509)
Movie Score
moviesum509<- ddply(tweets509, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
kable(moviesum509)
| A Bigger Splash |
0.4746252 |
11 |
| A Hologram for the King |
0.9617668 |
2 |
| Being Charlie |
0.6191784 |
1 |
| Captain America: Civil War |
0.7881106 |
341 |
| Dark Horse |
0.6027937 |
7 |
| Dough |
0.7110656 |
6 |
| Green Room |
0.6466214 |
7 |
| Keanu |
0.7147022 |
29 |
| Mother’s Day |
0.8105354 |
168 |
| Mothers Day |
0.8118599 |
171 |
| Mothers and Daughters |
0.6822596 |
17 |
| Nina |
0.6317530 |
2 |
| Papa: Hemingway in Cuba |
0.0426757 |
1 |
| Ratchet & Clank |
0.6268841 |
9 |
| The Family Fang |
0.6941836 |
2 |
| The Meddler |
0.8436882 |
9 |
| The Offering |
0.0311026 |
1 |
| Those People |
0.6523616 |
4 |
| Viva |
0.6154339 |
3 |
Movie and City Score
moviecitysum509<- ddply(tweets509, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum509)
City Score
citysum509<- ddply(tweets509, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum509)
| Boston |
0.6588172 |
29 |
| Chicago |
0.7317200 |
67 |
| Denver |
0.9195068 |
21 |
| Houston |
0.8627062 |
48 |
| Los Angeles |
0.7929957 |
268 |
| New Orleans |
0.7915382 |
2 |
| New York City |
0.7670166 |
308 |
| Seattle |
0.7480922 |
34 |
| St. Louis |
0.9020215 |
14 |
Unique Movies
allmovies509<-unique(tweets509[c("movie")]) # get unique movies
allmovies509$num<-seq.int(nrow(allmovies509)) # add counter row
kable(allmovies509) #show unique values for movie name
| 1 |
A Bigger Splash |
1 |
| 12 |
A Hologram for the King |
2 |
| 14 |
Being Charlie |
3 |
| 15 |
Captain America: Civil War |
4 |
| 356 |
Dark Horse |
5 |
| 363 |
Dough |
6 |
| 369 |
Green Room |
7 |
| 376 |
Keanu |
8 |
| 405 |
Mothers Day |
9 |
| 576 |
Mothers and Daughters |
10 |
| 593 |
Nina |
11 |
| 595 |
Papa: Hemingway in Cuba |
12 |
| 596 |
Ratchet & Clank |
13 |
| 605 |
The Offering |
14 |
| 606 |
The Family Fang |
15 |
| 608 |
The Meddler |
16 |
| 617 |
Those People |
17 |
| 621 |
Viva |
18 |
| 624 |
Mother’s Day |
19 |
Graphs
ggplot(
moviesum509, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum509, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

All Days Combined
tweets1<- rbind(tweets503,tweets504,tweets505,tweets506,tweets507,tweets508, tweets509)
write.csv(tweets1, file = "tweets503to509.csv")
#kable(head(tweets1))
#kable(tail(tweets1))
#dim(tweets1)
Movie Score
moviesum1<- ddply(tweets1, .(movie), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by movie
moviesum1$movie<-as.character(moviesum1$movie)
moviesum1<- arrange(moviesum1, movie)
moviesum1$num<-seq.int(nrow(moviesum1)) # add counter row
dim(moviesum1)
## [1] 35 4
str(moviesum1)
## 'data.frame': 35 obs. of 4 variables:
## $ movie : chr "A Beautiful Planet" "A Bigger Splash" "A Hologram for the King" "Baaghi" ...
## $ Sentiment_Score: num 0.715 0.532 0.779 0.594 0.634 ...
## $ Count_of_Tweets: int 93 51 4 31 17 1508 31 31 14 3 ...
## $ num : int 1 2 3 4 5 6 7 8 9 10 ...
kable(moviesum1)
| A Beautiful Planet |
0.7154244 |
93 |
1 |
| A Bigger Splash |
0.5321993 |
51 |
2 |
| A Hologram for the King |
0.7794638 |
4 |
3 |
| Baaghi |
0.5942856 |
31 |
4 |
| Being Charlie |
0.6336846 |
17 |
5 |
| Captain America: Civil War |
0.7840031 |
1508 |
6 |
| Dark Horse |
0.6607674 |
31 |
7 |
| Dough |
0.5657804 |
31 |
8 |
| Elstree 1976 |
0.7565491 |
14 |
9 |
| Elvis & Nixon |
0.6066401 |
3 |
10 |
| Eva Hesse |
0.8257224 |
4 |
11 |
| Green Room |
0.6698322 |
245 |
12 |
| Hockney |
0.5284491 |
3 |
13 |
| Keanu |
0.6758887 |
1373 |
14 |
| LAttesa (The Wait) |
0.7607310 |
3 |
15 |
| Men & Chicken |
0.6999926 |
12 |
16 |
| Mother’s Day |
0.7698998 |
283 |
17 |
| Mothers Day |
0.7121606 |
757 |
18 |
| Mothers and Daughters |
0.6907826 |
54 |
19 |
| Nina |
0.6563754 |
14 |
20 |
| Older Than Ireland |
0.3699457 |
5 |
21 |
| Pali Road |
0.4949967 |
2 |
22 |
| Papa: Hemingway in Cuba |
0.5584682 |
40 |
23 |
| Ratchet & Clank |
0.6233490 |
577 |
24 |
| Sacrifice |
0.7088486 |
25 |
25 |
| Sin Alas |
0.2750178 |
2 |
26 |
| The American Side |
0.7633015 |
2 |
27 |
| The Family Fang |
0.7278845 |
52 |
28 |
| The Man Who Knew Infinity |
0.8592558 |
41 |
29 |
| The Meddler |
0.6350935 |
89 |
30 |
| The Offering |
0.4061673 |
7 |
31 |
| Those People |
0.4498706 |
8 |
32 |
| Transfixed |
0.8723244 |
1 |
33 |
| Viktoria |
0.4935801 |
5 |
34 |
| Viva |
0.6624109 |
58 |
35 |
Movie and City Score
moviecitysum1<- ddply(tweets1, .(movie, city), summarize, Sentiment_Score=mean(Sentiment_Score)) #summarize by movie and city
kable(moviecitysum1)
City Score
citysum1<- ddply(tweets1, .(city), summarize, Sentiment_Score=mean(Sentiment_Score), Count_of_Tweets=length(tweet)) #summarize by city
kable(citysum1)
| Boston |
0.6685495 |
207 |
| Chicago |
0.6869049 |
526 |
| Denver |
0.7415370 |
165 |
| Houston |
0.7692286 |
284 |
| Lincoln |
0.7168697 |
12 |
| los Angeles |
0.6403698 |
797 |
| New Orleans |
0.6528819 |
99 |
| New York City |
0.7133538 |
2076 |
| Seattle |
0.7025967 |
218 |
| St. Louis |
0.8095269 |
134 |
| Los Angeles |
0.7396053 |
927 |
Graphs
ggplot(
moviesum1, aes(x = reorder(movie,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("Movie Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="Movies",y="Score")

ggplot(
citysum1, aes(x = reorder(city,Sentiment_Score), y = Sentiment_Score, fill=Sentiment_Score)) +
geom_bar(stat="identity") +
ggtitle("City Average Sentiment Score")+
theme(axis.text=element_text(angle=90))+
labs(x="City",y="Score")

Statistics
Totals
dim(tweets1)
## [1] 5445 6
dim(allmovies1)
## [1] 35 2
Movie Count Per Day
dim(allmovies503)
## [1] 22 2
dim(allmovies504)
## [1] 14 2
dim(allmovies505)
## [1] 13 2
dim(allmovies506)
## [1] 14 2
dim(allmovies507)
## [1] 25 2
dim(allmovies508)
## [1] 24 2
dim(allmovies509)
## [1] 19 2