library(ggplot2)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ tibble 3.1.8 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ✔ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
setwd("~/shiangchiet/VinMec/")
data <- read.csv("input.csv", row.names = 1, header = TRUE)
#Figure A
dataA <- subset(data, sample == "A")
data.melt <- reshape2::melt(dataA, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_A <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject A") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_A)
ggsave(filename= 'output/A.png', plot = fig_A, height=10, width= 16)
#Figure B
dataB <- subset(data, sample == "B")
data.melt <- reshape2::melt(dataB, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_B <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject B") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_B)
ggsave(filename= 'output/B.png', plot = fig_B, height=10, width= 16)
You can also embed plots, for example:
#Figure C
dataC <- subset(data, sample == "C")
data.melt <- reshape2::melt(dataC, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_C <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject C") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_C)
ggsave(filename= 'output/C.png', plot = fig_C, height=10, width= 16)
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.
#Figure D
dataD <- subset(data, sample == "D")
data.melt <- reshape2::melt(dataD, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_D <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject D") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_D)
ggsave(filename= 'output/D.png', plot = fig_D, height=10, width= 16)
#Figure E
dataE <- subset(data, sample == "E")
data.melt <- reshape2::melt(dataE, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_E <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject E") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_E)
ggsave(filename= 'output/E.png', plot = fig_E, height=10, width= 16)
#Figure F
dataF <- subset(data, sample == "F")
data.melt <- reshape2::melt(dataF, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_F <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject F") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_F)
ggsave(filename= 'output/F.png', plot = fig_F, height=10, width= 16)
#Figure G
dataG <- subset(data, sample == "G")
data.melt <- reshape2::melt(dataG, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_G <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject G") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_G)
ggsave(filename= 'output/G.png', plot = fig_G, height=10, width= 16)
#Figure H
dataH <- subset(data, sample == "H")
data.melt <- reshape2::melt(dataH, na.rm = TRUE)
## Using sample, Timepoint as id variables
colnames(data.melt)[4] = "score"
data.melt$Timepoint <- factor(data.melt$Timepoint, levels = c("Pre-probiotic","Post-probiotic"))
fig_H <- ggplot(data.melt, aes(Timepoint, score)) +
geom_bar(stat="identity", aes(fill = Timepoint)) +
ggtitle("Subject H") +
theme(axis.text.x = element_text(vjust=0.6, angle=45, size = 6)) +
theme_bw() +
facet_wrap(~variable, ncol=5)
plot(fig_H)
ggsave(filename= 'output/H.png', plot = fig_H, height=10, width= 16)