Compute the mean, variance and skewness of the Binomial distribution.
Example: Predicting Results of a Sample Survey
mu<-function(n,pi){n*pi} # function: binomial meansigma<-function(n,pi){sqrt(n*pi*1-pi)} # function: binomialstandard deviationPsd<-function(n,pi,k){pbinom(mu(n,pi)+k*sigma(n,pi),n, pi) -pbinom(mu(n,pi)-k*sigma(n,pi),n,pi)} # function:prob.within k std.dev.ofmeann=1500;pi=0.60Psd(n,pi,2) # probability within k=2 standard deviations of mean
[1] 0.998295
Psd(n,pi,3) # probability within k=3 standard deviations of mean
[1] 0.9999976
y=seq(0, 14, 1) # y values between 0 and 14 with increment of 1plot(y,dbinom(y,50000000,0.0000001),type="h")