Determinar si la serie de tiempo es estacionaria.

library(forecast)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(tseries)

x <- AirPassengers;x
##      Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
## 1949 112 118 132 129 121 135 148 148 136 119 104 118
## 1950 115 126 141 135 125 149 170 170 158 133 114 140
## 1951 145 150 178 163 172 178 199 199 184 162 146 166
## 1952 171 180 193 181 183 218 230 242 209 191 172 194
## 1953 196 196 236 235 229 243 264 272 237 211 180 201
## 1954 204 188 235 227 234 264 302 293 259 229 203 229
## 1955 242 233 267 269 270 315 364 347 312 274 237 278
## 1956 284 277 317 313 318 374 413 405 355 306 271 306
## 1957 315 301 356 348 355 422 465 467 404 347 305 336
## 1958 340 318 362 348 363 435 491 505 404 359 310 337
## 1959 360 342 406 396 420 472 548 559 463 407 362 405
## 1960 417 391 419 461 472 535 622 606 508 461 390 432

Gráfica

plot(x, main="Serie de tiempo", xlab="Años",ylab="Número de pasajeros")

Prueba Dickey-Fuller

tseries::adf.test(x)
## Warning in tseries::adf.test(x): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  x
## Dickey-Fuller = -7.3186, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary

Respuesta

Al realizar la prueba de Dickey-Fuller, se obtuvo que la serie de tiempo sí es estacionaria, debido a que el p-value es menor que 0.05, siendo este igual a 0.01