1.- Considera un vector aleatorio \(\mathbf{X}\) con distribución \(N_5(\boldsymbol{\mu}, \boldsymbol{\Sigma})\) donde \[ \mu^{\prime}=(100,95,230,400,86) \text { y } \boldsymbol{\Sigma}=\left[\begin{array}{ccccc} 10 & -2 & 1 & 0 & 3 \\ -2 & 9 & -3 & 4 & 5 \\ 1 & -3 & 15 & 7 & -2 \\ 0 & 4 & 7 & 20 & 2 \\ 3 & 5 & -2 & 2 & 5 \end{array}\right] \text {. } \] a) Obtener \(P\left(90<X_2<100\right)\). b)Obtener \(P\left(3 X_1+4 X_3-5 X_5>800\right)\) c)Sea el vector aleatorio \(\mathbf{Y}=\left[\begin{array}{c}X_1+3 X_2-4 X_3+6 X_4+X_5 \\ 2 X_1+9 X_2-10 X_3+X_4-X_5 \\ X_2+X_4-X_5\end{array}\right]\), obtener la distribución de \(\mathbf{Y}\). d)Obtener la distancia estadistica de \(\mathbf{X}_1^{\prime}(110,97,230,396,85)\) a \(\mathbf{X}_2^{\prime}(96,93,237,408,90)\). e)Indicar que componentes de \(\mathbf{X}\) son independientes.
miu <- matrix(c(100,95,230,400,86),ncol = 1,byrow = TRUE)
sigma <- matrix(c(10,-2,1,0,3,-2,9,-3,4,5,1,-3,15,7,-2,0,4,7,20,2,3,5,-2,2,5),ncol = 5,byrow = TRUE)
miuA <- miu[2,1] #obteniendo media de x2
sigmaA <- sqrt(sigma[2,2]) # #obteniendo desviaci?n std de x2// Se sac? raiz dado que la matriz es de varianzas
A <- pnorm(100,miuA,sigmaA)-pnorm(90,miuA,sigmaA)
A## [1] 0.9044193
miuB <- 3*100+0*95+4*230+0*400-5*86 #media de la combinaci?n lineal
cmatrix <- matrix(c(3,0,4,0,-5),ncol = 5,byrow = TRUE) #matrix de coeficientes de combinaci?n lineal
tcmatrix <- t(cmatrix) #transpuesta matriz coeficientes
sigmaB <- sqrt(cmatrix %*% sigma %*% tcmatrix) # desviaci?n std de la combinaci?n lineal
B <- pnorm(800,miuB,sigmaB)
B## [1] 0.6778722
# Slide 18 - vectores y matrices aleatorias y la distribucion normal multivariada (primera parte)
cmatrixC <- matrix(c(1,3,-4,6,1,2,9,-10,1,-1,0,1,0,1,-5),ncol = 5,byrow = TRUE)
# Y = aX
# miuY = amiux
miuC <- cmatrixC %*% miu
# sigmay = c*sigma*CT
sigmaC <- cmatrixC %*% sigma %*% t(cmatrixC)
miuC## [,1]
## [1,] 1951
## [2,] -931
## [3,] 65
sigmaC## [,1] [,2] [,3]
## [1,] 992 943 -43
## [2,] 943 2508 -250
## [3,] -43 -250 92
x1 <- matrix(c(110,97,230,396,85),ncol = 5,byrow = TRUE)
x2 <- matrix(c(96,93,237,408,90),ncol = 5,byrow = TRUE)
invsigma <- solve(sigma)
d <- sqrt((x1-x2) %*% invsigma %*% t(x1-x2))
d## [,1]
## [1,] 22.40339
Covarianza 0 en una multivariada indica independencia. La variable 1 y 4 son independientes entre ellas
# El vector de medias muestral es el mimso que el vector de medias poblacional dado que esta es una estimacion insesgada
n <- 40
Sn <- ((n-1)/n) * sigma
S <- (n/(n-1)) * Sn #Esto me devuelve el valor de sigma original obviamente
miu2A <- miu[3,1] #obteniendo media de x2
sigma2A <- sqrt(S[3,3])
A2 <- pnorm(229,miu2A,sigma2A)
A2## [1] 0.3981267
miu2B <- 4*100+0*95+3*230-1*400+0*86 #media de la combinaci?n lineal
cmatrix2B <- matrix(c(4,0,3,-1,0),ncol = 5,byrow = TRUE) #matrix de coeficientes de combinaci?n lineal
tcmatrix2B<- t(cmatrix2B) #transpuesta matriz coeficientes
S2B <- sqrt(cmatrix2B %*% S %*% tcmatrix2B) # desviaci?n std de la combinaci?n lineal
B2 <- pnorm(687,miu2B,S2B)
B2## [1] 0.4309022
C2 <- matrix(c(99.5,96,231,400,86.2),ncol = 5,byrow = TRUE)
miu2 <- t(miu)
invS <- solve(S)
d2 <- sqrt((C2-miu2) %*% invS %*% t(C2-miu2))
d2## [,1]
## [1,] 0.6874447
# Slide 18 - vectores y matrices aleatorias y la distribucion normal multivariada (primera parte)
cmatrixD2 <- matrix(c(1,0,2,-4,0,0,1,0,0,1),ncol = 5,byrow = TRUE)
# Y = aX
# miuY = amiux
miu2D <- cmatrixD2 %*% miu
# sigmay = c*sigma*CT
sigma2D <- cmatrixD2 %*% S %*% t(cmatrixD2)
miu2D## [,1]
## [1,] -1040
## [2,] 181
sigma2D## [,1] [,2]
## [1,] 282 -33
## [2,] -33 24
#install.packages("MVN")
#library(MVN)
#mvn(A3,mvnTest = "mardia",univariateTest = "SW",univariatePlot="histogram",multivariatePlot = "qq")
# $multivariateNormality
# Test Statistic p value Result
# 1 Mardia Skewness 15.8891714021933 0.723475642004926 YES
# 2 Mardia Kurtosis 0.0286205780877024 0.97716719986555 YES
# 3 MVN <NA> <NA> YES
#
# $univariateNormality
# Test Variable Statistic p value Normality
# 1 Shapiro-Wilk X1 0.9626 0.1138 YES
# 2 Shapiro-Wilk X2 0.9771 0.4372 YES
# 3 Shapiro-Wilk X3 0.9657 0.1540 YES
# 4 Shapiro-Wilk X4 0.9756 0.3846 YES
#
# $Descriptives
# n Mean Std.Dev Median Min Max 25th 75th Skew Kurtosis
# X1 50 79.8770 3.229307 79.825 74.22 86.95 76.9200 82.8650 0.1543652 -1.00576687
# X2 50 40.2440 2.042492 39.955 35.80 45.17 39.0050 41.7700 0.2663509 -0.39414257
# X3 50 100.5982 2.477647 100.045 94.87 107.22 99.0475 101.6225 0.5391567 0.19347555
# X4 50 120.5870 3.623060 119.985 112.78 130.32 118.3100 123.3650 0.1389550 -0.03762874
# ```
#Se confirma una distribución normal multivariada