ANOVA
1- pregrazing.height
boxplot(data$pregrazing.height)

mod1 = lm(pregrazing.height~treatments, data = data)
anova(mod1)
Analysis of Variance Table
Response: pregrazing.height
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 0.26 0.2552 0.0245 0.8762
Residuals 46 478.66 10.4056
medias1=emmeans(mod1,~treatments)
summary(medias1)
treatments emmean SE df lower.CL upper.CL
exclusive 29.6 0.658 46 28.2 30.9
SPS 29.4 0.658 46 28.1 30.7
Confidence level used: 0.95
2- postgrazing.height
boxplot(data$postgrazing.height)

mod2 = lm(postgrazing.height~treatments, data = data)
anova(mod2)
Analysis of Variance Table
Response: postgrazing.height
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 0.27 0.27 0.0231 0.8798
Residuals 46 537.27 11.68
medias2=emmeans(mod2,~treatments)
summary(medias2)
treatments emmean SE df lower.CL upper.CL
exclusive 13.0 0.698 46 11.6 14.4
SPS 12.8 0.698 46 11.4 14.2
Confidence level used: 0.95
3- bra.FM
boxplot(data$bra.FM)

mod3 = lm(bra.FM~treatments, data = data)
anova(mod3)
Analysis of Variance Table
Response: bra.FM
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 178499 178499 0.6512 0.4238
Residuals 46 12609192 274113
medias3=emmeans(mod3,~treatments)
summary(medias3)
treatments emmean SE df lower.CL upper.CL
exclusive 1428 107 46 1213 1643
SPS 1550 107 46 1334 1765
Confidence level used: 0.95
4- thi.FM
boxplot(data$thi.FM)

psych::describeBy(data[,8])
Warning: no grouping variable requested
5- total.FM
boxplot(data$total.FM)

mod5 = lm(total.FM~treatments, data = data)
anova(mod5)
Analysis of Variance Table
Response: total.FM
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 1807258 1807258 5.1539 0.02792 *
Residuals 46 16130228 350657
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias5=emmeans(mod5,~treatments)
summary(medias5)
treatments emmean SE df lower.CL upper.CL
exclusive 1428 121 46 1184 1671
SPS 1816 121 46 1572 2059
Confidence level used: 0.95
6- bra.accumulation.rate
boxplot(data$bra.FM.rate)

mod6 = lm(bra.FM.rate~treatments, data = data)
anova(mod6)
Analysis of Variance Table
Response: bra.FM.rate
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 169.2 169.16 0.3068 0.5823
Residuals 46 25364.6 551.40
medias6=emmeans(mod6,~treatments)
summary(medias6)
treatments emmean SE df lower.CL upper.CL
exclusive 51.3 4.79 46 41.6 60.9
SPS 55.0 4.79 46 45.4 64.7
Confidence level used: 0.95
7- bra.leaves
boxplot(data$bra.leaves)

mod7 = lm(bra.leaves~treatments, data = data)
anova(mod7)
Analysis of Variance Table
Response: bra.leaves
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 64592 64592 1.4994 0.227
Residuals 46 1981596 43078
medias7=emmeans(mod7,~treatments)
summary(medias7)
treatments emmean SE df lower.CL upper.CL
exclusive 644 42.4 46 559 729
SPS 571 42.4 46 485 656
Confidence level used: 0.95
8- bra.stems
boxplot(data$bra.stems)

mod8 = lm(bra.stems~treatments, data = data)
anova(mod8)
Analysis of Variance Table
Response: bra.stems
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 15307 15306.7 2.1829 0.1464
Residuals 46 322555 7012.1
medias8=emmeans(mod8,~treatments)
summary(medias8)
treatments emmean SE df lower.CL upper.CL
exclusive 143 17.1 46 108 177
SPS 179 17.1 46 144 213
Confidence level used: 0.95
9- bra.deadmaterial
boxplot(data$bra.deadmaterial)

mod9 = lm(bra.deadmaterial~treatments, data = data)
anova(mod9)
Analysis of Variance Table
Response: bra.deadmaterial
Df Sum Sq Mean Sq F value Pr(>F)
treatments 1 17598 17599 0.762 0.3872
Residuals 46 1062314 23094
medias9=emmeans(mod9,~treatments)
summary(medias9)
treatments emmean SE df lower.CL upper.CL
exclusive 188 31 46 126 251
SPS 226 31 46 164 289
Confidence level used: 0.95