Packages

library(emmeans)

DATA

data=read.csv("D:/Armazenamento/DATA R/Herbivoros 2023/data.csv")
data
View(data)

ANOVA

1- pregrazing.height

boxplot(data$pregrazing.height)


mod1 = lm(pregrazing.height~treatments, data = data)

anova(mod1)
Analysis of Variance Table

Response: pregrazing.height
           Df Sum Sq Mean Sq F value Pr(>F)
treatments  1   0.26  0.2552  0.0245 0.8762
Residuals  46 478.66 10.4056               
medias1=emmeans(mod1,~treatments)
summary(medias1)
 treatments emmean    SE df lower.CL upper.CL
 exclusive    29.6 0.658 46     28.2     30.9
 SPS          29.4 0.658 46     28.1     30.7

Confidence level used: 0.95 

2- postgrazing.height

boxplot(data$postgrazing.height)


mod2 = lm(postgrazing.height~treatments, data = data)

anova(mod2)
Analysis of Variance Table

Response: postgrazing.height
           Df Sum Sq Mean Sq F value Pr(>F)
treatments  1   0.27    0.27  0.0231 0.8798
Residuals  46 537.27   11.68               
medias2=emmeans(mod2,~treatments)
summary(medias2)
 treatments emmean    SE df lower.CL upper.CL
 exclusive    13.0 0.698 46     11.6     14.4
 SPS          12.8 0.698 46     11.4     14.2

Confidence level used: 0.95 

3- bra.FM

boxplot(data$bra.FM)


mod3 = lm(bra.FM~treatments, data = data)

anova(mod3)
Analysis of Variance Table

Response: bra.FM
           Df   Sum Sq Mean Sq F value Pr(>F)
treatments  1   178499  178499  0.6512 0.4238
Residuals  46 12609192  274113               
medias3=emmeans(mod3,~treatments)
summary(medias3)
 treatments emmean  SE df lower.CL upper.CL
 exclusive    1428 107 46     1213     1643
 SPS          1550 107 46     1334     1765

Confidence level used: 0.95 

4- thi.FM

boxplot(data$thi.FM)

psych::describeBy(data[,8])
Warning: no grouping variable requested

5- total.FM

boxplot(data$total.FM)


mod5 = lm(total.FM~treatments, data = data)

anova(mod5)
Analysis of Variance Table

Response: total.FM
           Df   Sum Sq Mean Sq F value  Pr(>F)  
treatments  1  1807258 1807258  5.1539 0.02792 *
Residuals  46 16130228  350657                  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
medias5=emmeans(mod5,~treatments)
summary(medias5)
 treatments emmean  SE df lower.CL upper.CL
 exclusive    1428 121 46     1184     1671
 SPS          1816 121 46     1572     2059

Confidence level used: 0.95 

6- bra.accumulation.rate

boxplot(data$bra.FM.rate)


mod6 = lm(bra.FM.rate~treatments, data = data)

anova(mod6)
Analysis of Variance Table

Response: bra.FM.rate
           Df  Sum Sq Mean Sq F value Pr(>F)
treatments  1   169.2  169.16  0.3068 0.5823
Residuals  46 25364.6  551.40               
medias6=emmeans(mod6,~treatments)
summary(medias6)
 treatments emmean   SE df lower.CL upper.CL
 exclusive    51.3 4.79 46     41.6     60.9
 SPS          55.0 4.79 46     45.4     64.7

Confidence level used: 0.95 

7- bra.leaves

boxplot(data$bra.leaves)


mod7 = lm(bra.leaves~treatments, data = data)

anova(mod7)
Analysis of Variance Table

Response: bra.leaves
           Df  Sum Sq Mean Sq F value Pr(>F)
treatments  1   64592   64592  1.4994  0.227
Residuals  46 1981596   43078               
medias7=emmeans(mod7,~treatments)
summary(medias7)
 treatments emmean   SE df lower.CL upper.CL
 exclusive     644 42.4 46      559      729
 SPS           571 42.4 46      485      656

Confidence level used: 0.95 

8- bra.stems

boxplot(data$bra.stems)


mod8 = lm(bra.stems~treatments, data = data)

anova(mod8)
Analysis of Variance Table

Response: bra.stems
           Df Sum Sq Mean Sq F value Pr(>F)
treatments  1  15307 15306.7  2.1829 0.1464
Residuals  46 322555  7012.1               
medias8=emmeans(mod8,~treatments)
summary(medias8)
 treatments emmean   SE df lower.CL upper.CL
 exclusive     143 17.1 46      108      177
 SPS           179 17.1 46      144      213

Confidence level used: 0.95 

9- bra.deadmaterial

boxplot(data$bra.deadmaterial)


mod9 = lm(bra.deadmaterial~treatments, data = data)

anova(mod9)
Analysis of Variance Table

Response: bra.deadmaterial
           Df  Sum Sq Mean Sq F value Pr(>F)
treatments  1   17598   17599   0.762 0.3872
Residuals  46 1062314   23094               
medias9=emmeans(mod9,~treatments)
summary(medias9)
 treatments emmean SE df lower.CL upper.CL
 exclusive     188 31 46      126      251
 SPS           226 31 46      164      289

Confidence level used: 0.95 
LS0tDQp0aXRsZTogIjExdGggSW50ZXJuYXRpb25hbCBTeW1wb3NpdW0gb24gdGhlIE51dHJpdGlvbiBvZiBIZXJiaXZvcmVzIg0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOg0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiAzDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZGVwdGg6ICczJw0KICAgIGRmX3ByaW50OiBwYWdlZA0KLS0tDQoNCioqKg0KIyAqKlBhY2thZ2VzKioNCg0KDQpgYGB7cn0NCmxpYnJhcnkoZW1tZWFucykNCmBgYA0KDQojICoqREFUQSoqDQoNCmBgYHtyfQ0KZGF0YT1yZWFkLmNzdigiRDovQXJtYXplbmFtZW50by9EQVRBIFIvSGVyYml2b3JvcyAyMDIzL2RhdGEuY3N2IikNCmRhdGENClZpZXcoZGF0YSkNCmBgYA0KDQojIyBfKipBTk9WQSoqXw0KDQojIyMgXyoqMS0gcHJlZ3JhemluZy5oZWlnaHQqKl8NCg0KYGBge3J9DQpib3hwbG90KGRhdGEkcHJlZ3JhemluZy5oZWlnaHQpDQoNCm1vZDEgPSBsbShwcmVncmF6aW5nLmhlaWdodH50cmVhdG1lbnRzLCBkYXRhID0gZGF0YSkNCg0KYW5vdmEobW9kMSkNCm1lZGlhczE9ZW1tZWFucyhtb2QxLH50cmVhdG1lbnRzKQ0Kc3VtbWFyeShtZWRpYXMxKQ0KYGBgDQoNCiMjIyBfKioyLSBwb3N0Z3JhemluZy5oZWlnaHQqKl8NCg0KYGBge3J9DQpib3hwbG90KGRhdGEkcG9zdGdyYXppbmcuaGVpZ2h0KQ0KDQptb2QyID0gbG0ocG9zdGdyYXppbmcuaGVpZ2h0fnRyZWF0bWVudHMsIGRhdGEgPSBkYXRhKQ0KDQphbm92YShtb2QyKQ0KbWVkaWFzMj1lbW1lYW5zKG1vZDIsfnRyZWF0bWVudHMpDQpzdW1tYXJ5KG1lZGlhczIpDQpgYGANCg0KIyMjIF8qKjMtIGJyYS5GTSoqXw0KDQpgYGB7cn0NCmJveHBsb3QoZGF0YSRicmEuRk0pDQoNCm1vZDMgPSBsbShicmEuRk1+dHJlYXRtZW50cywgZGF0YSA9IGRhdGEpDQoNCmFub3ZhKG1vZDMpDQptZWRpYXMzPWVtbWVhbnMobW9kMyx+dHJlYXRtZW50cykNCnN1bW1hcnkobWVkaWFzMykNCmBgYA0KDQojIyMgXyoqNC0gdGhpLkZNKipfDQoNCmBgYHtyfQ0KYm94cGxvdChkYXRhJHRoaS5GTSkNCnBzeWNoOjpkZXNjcmliZUJ5KGRhdGFbLDhdKQ0KDQpgYGANCg0KIyMjIF8qKjUtIHRvdGFsLkZNKipfDQoNCmBgYHtyfQ0KYm94cGxvdChkYXRhJHRvdGFsLkZNKQ0KDQptb2Q1ID0gbG0odG90YWwuRk1+dHJlYXRtZW50cywgZGF0YSA9IGRhdGEpDQoNCmFub3ZhKG1vZDUpDQptZWRpYXM1PWVtbWVhbnMobW9kNSx+dHJlYXRtZW50cykNCnN1bW1hcnkobWVkaWFzNSkNCmBgYA0KDQojIyMgXyoqNi0gYnJhLmFjY3VtdWxhdGlvbi5yYXRlKipfDQoNCmBgYHtyfQ0KYm94cGxvdChkYXRhJGJyYS5GTS5yYXRlKQ0KDQptb2Q2ID0gbG0oYnJhLkZNLnJhdGV+dHJlYXRtZW50cywgZGF0YSA9IGRhdGEpDQoNCmFub3ZhKG1vZDYpDQptZWRpYXM2PWVtbWVhbnMobW9kNix+dHJlYXRtZW50cykNCnN1bW1hcnkobWVkaWFzNikNCmBgYA0KDQojIyMgXyoqNy0gYnJhLmxlYXZlcyoqXw0KDQpgYGB7cn0NCmJveHBsb3QoZGF0YSRicmEubGVhdmVzKQ0KDQptb2Q3ID0gbG0oYnJhLmxlYXZlc350cmVhdG1lbnRzLCBkYXRhID0gZGF0YSkNCg0KYW5vdmEobW9kNykNCm1lZGlhczc9ZW1tZWFucyhtb2Q3LH50cmVhdG1lbnRzKQ0Kc3VtbWFyeShtZWRpYXM3KQ0KYGBgDQoNCiMjIyBfKio4LSBicmEuc3RlbXMqKl8NCg0KYGBge3J9DQpib3hwbG90KGRhdGEkYnJhLnN0ZW1zKQ0KDQptb2Q4ID0gbG0oYnJhLnN0ZW1zfnRyZWF0bWVudHMsIGRhdGEgPSBkYXRhKQ0KDQphbm92YShtb2Q4KQ0KbWVkaWFzOD1lbW1lYW5zKG1vZDgsfnRyZWF0bWVudHMpDQpzdW1tYXJ5KG1lZGlhczgpDQpgYGANCg0KIyMjIF8qKjktIGJyYS5kZWFkbWF0ZXJpYWwqKl8NCg0KYGBge3J9DQpib3hwbG90KGRhdGEkYnJhLmRlYWRtYXRlcmlhbCkNCg0KbW9kOSA9IGxtKGJyYS5kZWFkbWF0ZXJpYWx+dHJlYXRtZW50cywgZGF0YSA9IGRhdGEpDQoNCmFub3ZhKG1vZDkpDQptZWRpYXM5PWVtbWVhbnMobW9kOSx+dHJlYXRtZW50cykNCnN1bW1hcnkobWVkaWFzOSkNCmBgYA0KDQoNCg0K