1. Problem set 1
  1. Show that \(A^TA\neq AA^T\) in general. (Proof and demonstration.)
# Create a basic 3 x 3 matrix called matrixA
matrixA <- matrix(c(6,1,4,3,2,7,8,8,1),nrow=3,ncol=3,byrow=TRUE)

# Transpose matrixA.
TmatrixA <- t(matrixA)

matrixA
##      [,1] [,2] [,3]
## [1,]    6    1    4
## [2,]    3    2    7
## [3,]    8    8    1
TmatrixA
##      [,1] [,2] [,3]
## [1,]    6    3    8
## [2,]    1    2    8
## [3,]    4    7    1
#calculate $A^TA\neq AA^T$
ATA <- TmatrixA %*% matrixA
ATA
##      [,1] [,2] [,3]
## [1,]  109   76   53
## [2,]   76   69   26
## [3,]   53   26   66
AAT <- matrixA %*% TmatrixA
AAT
##      [,1] [,2] [,3]
## [1,]   53   48   60
## [2,]   48   62   47
## [3,]   60   47  129
#Show that $A^TA\neq AA^T$ in general
AAT == ATA
##       [,1]  [,2]  [,3]
## [1,] FALSE FALSE FALSE
## [2,] FALSE FALSE FALSE
## [3,] FALSE FALSE FALSE
  1. For a special type of square matrix A, we get AT A = AAT . Under what conditions could this be true? (Hint: The Identity matrix I is an example of such a matrix). Please typeset your response using LaTeX mode in RStudio. If you do it in paper, please either scan or take a picture of the work and submit it. Please ensure that your image is legible and that your submissions are named using your first initial, last name, assignment and problem set within the assignment. E.g. LFulton_Assignment2_PS1.png
a <- AAT
a
##      [,1] [,2] [,3]
## [1,]   53   48   60
## [2,]   48   62   47
## [3,]   60   47  129
Transa <- t(a)
Transa
##      [,1] [,2] [,3]
## [1,]   53   48   60
## [2,]   48   62   47
## [3,]   60   47  129
## Matrix multiple a by the transpose!
aaT <- a %*% Transa
aaT
##       [,1]  [,2]  [,3]
## [1,]  8713  8340 13176
## [2,]  8340  8357 11857
## [3,] 13176 11857 22450
## Matrix multiply the transpose by a 

aTa <- Transa %*% a
aTa
##       [,1]  [,2]  [,3]
## [1,]  8713  8340 13176
## [2,]  8340  8357 11857
## [3,] 13176 11857 22450
## Verify that aaT == aTa
aaT == aTa
##      [,1] [,2] [,3]
## [1,] TRUE TRUE TRUE
## [2,] TRUE TRUE TRUE
## [3,] TRUE TRUE TRUE
  1. Problem set 2 Matrix factorization is a very important problem. There are supercomputers built just to do matrix factorizations. Every second you are on an airplane, matrices are being factorized. Radars that track flights use a technique called Kalman filtering. At the heart of Kalman Filtering is a Matrix Factorization operation. Kalman Filters are solving linear systems of equations when they track your flight using radars. Write an R function to factorize a square matrix A into LU or LDU, whichever you prefer. Please submit your response in an R Markdown document using our class naming convention, E.g. LFulton_Assignment2_PS2.png You don’t have to worry about permuting rows of A and you can assume that A is less than 5x5, if you need to hard-code any variables in your code. If you doing the entire assignment in R, then please submit only one markdown document for both the problems.
Factorize_A_LU <- function(matrixA) {
  
  U <- matrixA
  dimens <- dim(matrixA)[1]
  L <- diag(dimens)
  
  
  if (dimens==1) {
    return(list(L,U))
  }
  
  
  for(i in 2:dimens) {
    for(j in 1:(i-1)) {
      multiplier <- -U[i,j] / U[j,j]
      U[i, ] <- multiplier * U[j, ] + U[i, ]
      L[i,j] <- -multiplier
    }
  }
  return(list(L,U))
}


#using the matrixFactorization_LU
A <- matrix(c(2,3,8,12), nrow=2, byrow=TRUE)
LU <- Factorize_A_LU(A)
L<-LU[[1]]  
U<-LU[[2]]


print('Matrix A:')
## [1] "Matrix A:"
print(A)
##      [,1] [,2]
## [1,]    2    3
## [2,]    8   12
print('The L matrix is:')
## [1] "The L matrix is:"
print(L)
##      [,1] [,2]
## [1,]    1    0
## [2,]    4    1
print('The U matrix is:')
## [1] "The U matrix is:"
print(U)
##      [,1] [,2]
## [1,]    2    3
## [2,]    0    0