Name:
You may use your notes, R, or Wolfram Alpha for this quiz.
\[ MB = \frac{360}{x} \]
\[ MC = 10 + 6x \] \[ 0 = 10x + 6x^{2} - 360 \]
QUAD <- function(a,b,c) {
pos_sol <- (-b + sqrt(b^2-4*a*c))/(2*a)
neg_sol <- (-b - sqrt(b^2-4*a*c))/(2*a)
vertex <- -b/(2*a)
sol <- c(pos_sol,neg_sol,vertex)
}
QUAD(6,10,-360)
soln <- QUAD(6,10,-360)[1]
soln
## [1] 6.957331
\[ x = 6.9573306\]
\[ FV = PVe^{rt} \]
# Plot of FV Function
t <- seq(from=0,to=30,by=1)
FV <- 1000*exp(0.10*t)
plot(t,FV,type="l")
FV_20 <- FV[21]
7389.0560989
\[ t = \frac{70}{10} \approx 7 yrs\]
\[R(Q) = 25Q \] \[C(Q) = 0.5Q^{2} \]
\[ \pi = -0.5Q^{2} + 25Q\]
Q = 0 Q = 50
# Profit Plot
QUAD <- function(a,b,c) {
pos_sol <- (-b + sqrt(b^2-4*a*c))/(2*a)
neg_sol <- (-b - sqrt(b^2-4*a*c))/(2*a)
vertex <- -b/(2*a)
sol <- c(pos_sol,neg_sol,vertex)
print(sol)
}
QUAD(-0.5,25,0)
## [1] 0 50 25
pmax <- QUAD(-0.5,25,0)[3]
## [1] 0 50 25
Q <- seq(from=0,to=50,by=1)
profit <- -0.5*Q^2 + 25*Q
plot(Q,profit,type="l")
\[ Q = 25 \]