library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 1.0.1
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.3.0 ✔ stringr 1.5.0
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(openintro)
## Loading required package: airports
## Loading required package: cherryblossom
## Loading required package: usdata
The data The Bureau of Transportation Statistics (BTS) is a statistical agency that is a part of the Research and Innovative Technology Administration (RITA). As its name implies, BTS collects and makes transportation data available, such as the flights data we will be working with in this lab.
First, we’ll view the nycflights data frame. Type the following in your console to load the data:
data(nycflights)
names(nycflights)
## [1] "year" "month" "day" "dep_time" "dep_delay" "arr_time"
## [7] "arr_delay" "carrier" "tailnum" "flight" "origin" "dest"
## [13] "air_time" "distance" "hour" "minute"
glimpse(nycflights)
## Rows: 32,735
## Columns: 16
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month <int> 6, 5, 12, 5, 7, 1, 12, 8, 9, 4, 6, 11, 4, 3, 10, 1, 2, 8, 10…
## $ day <int> 30, 7, 8, 14, 21, 1, 9, 13, 26, 30, 17, 22, 26, 25, 21, 23, …
## $ dep_time <int> 940, 1657, 859, 1841, 1102, 1817, 1259, 1920, 725, 1323, 940…
## $ dep_delay <dbl> 15, -3, -1, -4, -3, -3, 14, 85, -10, 62, 5, 5, -2, 115, -4, …
## $ arr_time <int> 1216, 2104, 1238, 2122, 1230, 2008, 1617, 2032, 1027, 1549, …
## $ arr_delay <dbl> -4, 10, 11, -34, -8, 3, 22, 71, -8, 60, -4, -2, 22, 91, -6, …
## $ carrier <chr> "VX", "DL", "DL", "DL", "9E", "AA", "WN", "B6", "AA", "EV", …
## $ tailnum <chr> "N626VA", "N3760C", "N712TW", "N914DL", "N823AY", "N3AXAA", …
## $ flight <int> 407, 329, 422, 2391, 3652, 353, 1428, 1407, 2279, 4162, 20, …
## $ origin <chr> "JFK", "JFK", "JFK", "JFK", "LGA", "LGA", "EWR", "JFK", "LGA…
## $ dest <chr> "LAX", "SJU", "LAX", "TPA", "ORF", "ORD", "HOU", "IAD", "MIA…
## $ air_time <dbl> 313, 216, 376, 135, 50, 138, 240, 48, 148, 110, 50, 161, 87,…
## $ distance <dbl> 2475, 1598, 2475, 1005, 296, 733, 1411, 228, 1096, 820, 264,…
## $ hour <dbl> 9, 16, 8, 18, 11, 18, 12, 19, 7, 13, 9, 13, 8, 20, 12, 20, 6…
## $ minute <dbl> 40, 57, 59, 41, 2, 17, 59, 20, 25, 23, 40, 20, 9, 54, 17, 24…
Let’s start by examining the distribution of departure delays of all flights with a histogram.
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 15)
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 150)
Look carefully at these three histograms. How do they compare? Are features revealed in one that are obscured in another? More binwidth means thicker lines and less overall area covered. With the 150 bins there is more data visible at the very end of the tail than was visible with the other two histograms.
lax_flights <- nycflights %>%
filter(dest == "LAX")
ggplot(data = lax_flights, aes(x = dep_delay)) +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
lax_flights %>%
summarise(mean_dd = mean(dep_delay),
median_dd = median(dep_delay),
n = n())
## # A tibble: 1 × 3
## mean_dd median_dd n
## <dbl> <dbl> <int>
## 1 9.78 -1 1583
sfo_feb_flights <- nycflights %>%
filter(dest == "SFO", month == 2)
Create a new data frame that includes flights headed to SFO in February, and save this data frame as sfo_feb_flights. How many flights meet these criteria? 67 flights meet this criteria
sfo_feb_flights
## # A tibble: 68 × 16
## year month day dep_time dep_delay arr_time arr_de…¹ carrier tailnum flight
## <int> <int> <int> <int> <dbl> <int> <dbl> <chr> <chr> <int>
## 1 2013 2 18 1527 57 1903 48 DL N711ZX 1322
## 2 2013 2 3 613 14 1008 38 UA N502UA 691
## 3 2013 2 15 955 -5 1313 -28 DL N717TW 1765
## 4 2013 2 18 1928 15 2239 -6 UA N24212 1214
## 5 2013 2 24 1340 2 1644 -21 UA N76269 1111
## 6 2013 2 25 1415 -10 1737 -13 UA N532UA 394
## 7 2013 2 7 1032 1 1352 -10 B6 N627JB 641
## 8 2013 2 15 1805 20 2122 2 AA N335AA 177
## 9 2013 2 13 1056 -4 1412 -13 UA N532UA 642
## 10 2013 2 8 656 -4 1039 -6 DL N710TW 1865
## # … with 58 more rows, 6 more variables: origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, and abbreviated
## # variable name ¹arr_delay
sfo_feb_flights %>%
group_by(origin) %>%
summarise(median_dd = median(dep_delay), iqr_dd = IQR(dep_delay), n_flights = n())
## # A tibble: 2 × 4
## origin median_dd iqr_dd n_flights
## <chr> <dbl> <dbl> <int>
## 1 EWR 0.5 5.75 8
## 2 JFK -2.5 15.2 60
Calculate the median and interquartile range for arr_delays of flights in in the sfo_feb_flights data frame, grouped by carrier. Which carrier has the most variable arrival delays? *