cargar paquetes

library(tidyverse) # manejad datos
library(mapview) # mapas facil
library(readxl) # leer datos
library(lubridate) # fix dates
library(sf) #make maps
library(camtrapR) # to get activity graph
library(raster) # to get some geographical data and use extent
library(tmap)
library(tmaptools) # to use the read_osm function 
library(OpenStreetMap) # get tiles 
library(GADMTools) # to get deptos
library(grid) # print options

source("D:/BoxFiles/Box Sync/CodigoR/tigrinus/R/organizadato.R")

cargar datos

Huila_data <-  read_delim("D:/BoxFiles/Box Sync/CodigoR/tigrinus/data/huila_merged.csv", 
 delim = ";", escape_double = FALSE, col_types = cols(camera_trap_start_date = col_character()), trim_ws = TRUE)

Crerar matrices para unmarked

### Fix tables to use the function f.matrix.creator2 

Huila_data$binomial <- Huila_data$"Genus Species" #str_c (Huila_data$Genus, "_", Huila_data$Species)

# fix Huila_data
# fix dates 
Huila_data$camera_trap_start_date <- ymd(Huila_data$camera_trap_start_date)
Huila_data$camera_trap_end_date <- ymd(Huila_data$camera_trap_end_date)

#fix cams
Huila_data$camera_trap <- Huila_data$"Depolyment Location ID"
# fix photo date
Huila_data$Photo_Date <- Huila_data$"Date_Time Captured" 

#### make sf object
datos.raw_sf <- st_as_sf(Huila_data, coords = c("Longitude Resolution", "Latitude Resolution"), crs = "EPSG:4326")

camaras <-  datos.raw_sf # st_transform (datos.raw_sf, "+proj=longlat +ellps=GRS80 +no_defs") 
# camaras_16 <- camaras %>% filter (Year =="2016" ) # & Year <="2017")
# camaras_17 <- camaras %>% filter (Year =="2017" ) # & Year <="2017")

# Add column to get activity graph using activityDensity from camtrapR
# Add column to get activity graph using activityDensity from camtrapR
camaras$fecha <- as.POSIXlt(datos.raw_sf$"Date_Time Captured", format="%Y/%m/%d %H:%M:%S")
# add species name column to us the function activityDensity


camaras$DateTimeOriginal <- as.character(as.POSIXlt(Huila_data$"Date_Time Captured", format="%d/%m/%Y %H:%M:%S")) # as.character(camaras$DateRecord)
# camaras_17$DateTimeOriginal <- as.character(camaras_17$DateRecord)
camaras$Species <- camaras$binomial


#funcion para crear todas las tablas de datos
all_data <-  f.matrix.creator2 (Huila_data)
(sp.names <- names(all_data)) # ver lass especies y en que lista esta cada una
##  [1] NA                            "Dasyprocta punctata"        
##  [3] "Dasypus novemcinctus"        "Cuniculus paca"             
##  [5] "Penelope unknown"            "Leopardus tigrinus"         
##  [7] "Tinamus unknown"             "Arremon brunneinucha"       
##  [9] "Tapirus pinchaque"           "Eira barbara"               
## [11] "Nasuella olivacea"           "Sciurus unknown"            
## [13] "Tinamus osgoodi"             "Geotrygon frenata"          
## [15] "Didelphis pernigra"          "Buteo swainsoni"            
## [17] "Turdus unknown"              "Penelope montagnii"         
## [19] "Puma concolor"               "Aulacorhynchus prasinus"    
## [21] "Mazama rufina"               "Nothocercus bonapartei"     
## [23] "Chamaepetes goudotii"        "Microsciurus unknown"       
## [25] "Conepatus semistriatus"      "Mustela frenata"            
## [27] "Leopardus wiedii"            "Leopardus unknown"          
## [29] "Momotus unknown"             "Odontophorus hyperythrus"   
## [31] "Pardirallus nigricans"       "Grallaria unknown"          
## [33] "Turdus fulviventris"         "Didelphis unknown"          
## [35] "Tremarctos ornatus"          "Campephilus pollens"        
## [37] "Odontophorus unknown"        "Grallaria ruficapilla"      
## [39] "Ochthoeca cinnamomeiventris" "Arremon unknown"            
## [41] "Grallaria gigantea"          "Grallaricula flavirostris"  
## [43] "Canis lupus familiaris"      "Leopardus pardalis"         
## [45] "Geotrygon unknown"           "Margarornis stellatus"      
## [47] "Momotus momota"              "Grallaricula nana"          
## [49] "Atlapetes leucopis"
# Tigrinus es lista 6

Actividad del tigrillo y perro

activityOverlap (recordTable = camaras,
                 speciesA    = "Leopardus tigrinus",
                 speciesB    = "Canis lupus familiaris",
                 writePNG    = FALSE,
                 plotR       = TRUE,
                 addLegend = FALSE,
                 legendPosition = "topleft",
                 createDir   = FALSE,
                 pngMaxPix   = 1000,
                 linecol     = c("red", "blue"),
                 linewidth   = c(1,1),
                 linetype    = c(1, 2),
                 olapcol     = "darkgrey",
                 add.rug     = TRUE,
                 extend      = "lightgrey",
                 ylim        = c(0, 0.25),
                 main        = paste("Activity overlap ", 
                                     "Leopardus tigrinus (red)" , "and", 
                                     "domestic dog (blue)") )
rect(0, 0, 6, 0.5, col= rgb(0.211,0.211,0.211, alpha=0.2), border = "transparent")
rect(18, 0, 24, 0.5, col= rgb(0.211,0.211,0.211, alpha=0.2), border = "transparent")

# save tigrinus only to hard disk.
## turn on graphics device 
png(file = "D:/BoxFiles/Box Sync/CodigoR/tigrinus/fig/tigrinus_activity2.png", width = 1200, height = 700, res = 150)
par(mar = c(5, 4, 3, 3) + 0.1)
activityDensity (recordTable = camaras,
                 species     = as.character(sp.names[sp_number=6]))
rect(0, 0, 6, 0.5, col= rgb(0.211,0.211,0.211, alpha=0.2), border = "transparent")
rect(18, 0, 24, 0.5, col= rgb(0.211,0.211,0.211, alpha=0.2), border = "transparent")
##turn off graphics device
dev.off( )
## png 
##   2

Mapa del tigrinus (rojo) y el perro (azul)

tigrinus <- filter(camaras, Species=="Leopardus tigrinus")
by_sp <- camaras %>%  group_by(Species) %>% tally()
by_sp_tigrinus <- tigrinus %>%  group_by("Depolyment Location ID") %>% tally()
names(by_sp_tigrinus) <-  c("Predio", "Fotos tigrinus", "geometry")

dog <- filter(camaras, Species=="Canis lupus familiaris")
by_sp <- camaras %>%  group_by(Species) %>% tally()
by_sp_dog <- dog %>%  group_by("Depolyment Location ID") %>% tally()
names(by_sp_dog) <-  c("Predio", "Fotos Dog", "geometry")



colombia <-  gadm_sf_loadCountries("COL", level=1, basefile="./")
collimit <- gadm_sf_loadCountries("COL", level=0, basefile="./")

deptos <- gadm_subset(colombia, regions=c("Huila", "Cauca"))

# get the extent of cameras
ventana <- bb(camaras, ext=2) # ext=2 increase window by 2

Huila_osm1 <- tmaptools::read_osm(ventana, type="stamen-terrain",  mergeTiles = TRUE)


########## figure 1
data_box <- ventana # st_as_sfc(st_bbox(cams_loc_QR_sf)) #bounding box

# pal = mapviewPalette("mapviewTopoColors")
# get fondo de osm
andes_osm1 <- read_osm(ventana, zoom = NULL, type="stamen-terrain", mergeTiles = TRUE) # type puede ser tambien bing, osm # type puede ser tambien bing, osm
colombia <-  gadm_sf_loadCountries("COL", level=1, basefile="./")
collimit <- gadm_sf_loadCountries("COL", level=0, basefile="./")

deptos <- gadm_subset(colombia, regions=c("Huila", "Cauca"))


depto_window <- qtm(andes_osm1)  + 
  tm_shape(camaras) + 
  tm_dots(col = "black", size = 0.25, 
          shape = 16, title = "Sampling point", legend.show = TRUE,
          legend.is.portrait = TRUE,
          legend.z = NA) + 
  tm_shape(by_sp_tigrinus) +  tm_symbols (col="red", size = 0.25) + 
  tm_shape(by_sp_dog) +  tm_symbols (col="blue", size = 0.15) + 
  tm_layout(scale = .9) +
  # legend.position = c(.78,.72), 
  # legend.outside.size = 0.1,
  # legend.title.size = 1.6,
  # legend.height = 0.9,
  # legend.width = 1.5,
  # legend.text.size = 1.2) + 
  # legend.hist.size = 0.5) + 
  tm_legend(position = c("left", "bottom"), frame = TRUE,
            bg.color="white") + 
  tm_layout(frame=F) + tm_scale_bar() + tm_compass(position = c(.75, .82), color.light = "grey90") 

dep_map <-  tm_shape(deptos$sf) + tm_polygons() +
  tm_shape(camaras) + tm_symbols(shape = 0, col = "red", size = 0.25)
col_map <- tm_shape(collimit$sf) + tm_polygons() + tm_shape(deptos$sf) + tm_polygons()

##### print all
depto_window
print(dep_map, vp = viewport(0.73, 0.40, width = 0.25, height = 0.25))
print(col_map, vp = viewport(0.73, 0.65, width = 0.25, height = 0.25))