R Markdown

#Memanggil Package
library(cluster)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0      ✔ purrr   1.0.1 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.4.1 
## ✔ readr   2.1.3      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library("readxl")

#Memanggil Data
data<-read_excel("C:/Users/ACER/Downloads/dataanreg.xlsx")

#Melihat Tabel
View(data)

#Melihat Data Frame
data1 <-data.frame(data)
data1
##        X1  X2      Y
## 1  0.9189 -10 3.1280
## 2  0.9189   0 2.4270
## 3  0.9189  10 1.9400
## 4  0.9189  20 1.5860
## 5  0.9189  30 1.3250
## 6  0.9189  40 1.1260
## 7  0.9189  50 0.9694
## 8  0.9189  60 0.8473
## 9  0.9189  70 0.7481
## 10 0.9189  80 0.6671
## 11 0.7547 -10 2.2700
## 12 0.7547   0 1.8190
## 13 0.7547  10 1.4890
## 14 0.7547  20 1.2460
## 15 0.7547  30 1.0620
## 16 0.7547  40 0.9160
## 17 0.7547  50 0.8005
## 18 0.7547  60 0.7091
## 19 0.7547  70 0.6345
## 20 0.7547  80 0.5715
## 21 0.5685 -10 1.5930
## 22 0.5685   0 1.3240
## 23 0.5685  10 1.1180
## 24 0.5685  20 0.9576
## 25 0.5685  30 0.8302
## 26 0.5685  40 0.7282
## 27 0.5685  50 0.6470
## 28 0.5685  60 0.5784
## 29 0.5685  70 0.5219
## 30 0.5685  80 0.4735
## 31 0.3610 -10 1.1610
## 32 0.3610   0 0.9925
## 33 0.3610  10 0.8601
## 34 0.3610  20 0.7523
## 35 0.3610  30 0.6663
## 36 0.3610  40 0.5940
## 37 0.3610  50 0.5338
## 38 0.3610  60 0.4804
## 39 0.3610  70 0.4361
## 40 0.3610  80 0.4016
n=40

#Melihat Summary()dari Data
summary(data1)
##        X1               X2            Y         
##  Min.   :0.3610   Min.   :-10   Min.   :0.4016  
##  1st Qu.:0.5166   1st Qu.: 10   1st Qu.:0.6439  
##  Median :0.6616   Median : 35   Median :0.8537  
##  Mean   :0.6508   Mean   : 35   Mean   :1.0483  
##  3rd Qu.:0.7957   3rd Qu.: 60   3rd Qu.:1.2655  
##  Max.   :0.9189   Max.   : 80   Max.   :3.1280
#Melihat data teratas
head(data1)
##       X1  X2     Y
## 1 0.9189 -10 3.128
## 2 0.9189   0 2.427
## 3 0.9189  10 1.940
## 4 0.9189  20 1.586
## 5 0.9189  30 1.325
## 6 0.9189  40 1.126
#Melihat data terendah
tail(data1)
##       X1 X2      Y
## 35 0.361 30 0.6663
## 36 0.361 40 0.5940
## 37 0.361 50 0.5338
## 38 0.361 60 0.4804
## 39 0.361 70 0.4361
## 40 0.361 80 0.4016
#Membuat Matriks dengan Fungsi Pairs
pairs(data1)

pairs(data1, lower.panel=NULL)

#Mencari Model Regresi Linear Berganda
model <- lm(data1$Y ~ data1$X1 + data1$X2, data = data1)
 model
## 
## Call:
## lm(formula = data1$Y ~ data1$X1 + data1$X2, data = data1)
## 
## Coefficients:
## (Intercept)     data1$X1     data1$X2  
##     0.67944      1.40733     -0.01563
#Mencari Summary dari Model Regresi Linear Berganda
summary(model)
## 
## Call:
## lm(formula = data1$Y ~ data1$X1 + data1$X2, data = data1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.22179 -0.18102 -0.08439  0.09111  0.99908 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.679439   0.143532   4.734 3.20e-05 ***
## data1$X1     1.407331   0.196925   7.147 1.81e-08 ***
## data1$X2    -0.015629   0.001428 -10.948 3.67e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2593 on 37 degrees of freedom
## Multiple R-squared:  0.822,  Adjusted R-squared:  0.8124 
## F-statistic: 85.46 on 2 and 37 DF,  p-value: 1.351e-14
#Mencari Selang Kepercayaan
confint(model)
##                   2.5 %      97.5 %
## (Intercept)  0.38861534  0.97026256
## data1$X1     1.00832229  1.80633944
## data1$X2    -0.01852144 -0.01273625
#Mencari anova
anova(model)
## Analysis of Variance Table
## 
## Response: data1$Y
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## data1$X1   1 3.4349  3.4349  51.073 1.810e-08 ***
## data1$X2   1 8.0606  8.0606 119.851 3.674e-13 ***
## Residuals 37 2.4885  0.0673                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Membuat vektor satuan untuk digabungkan dengan variabel x1 dan x2
a = c(rep(1,40))
U=cbind(a,data1$X1,data1$X2)
U
##       a           
##  [1,] 1 0.9189 -10
##  [2,] 1 0.9189   0
##  [3,] 1 0.9189  10
##  [4,] 1 0.9189  20
##  [5,] 1 0.9189  30
##  [6,] 1 0.9189  40
##  [7,] 1 0.9189  50
##  [8,] 1 0.9189  60
##  [9,] 1 0.9189  70
## [10,] 1 0.9189  80
## [11,] 1 0.7547 -10
## [12,] 1 0.7547   0
## [13,] 1 0.7547  10
## [14,] 1 0.7547  20
## [15,] 1 0.7547  30
## [16,] 1 0.7547  40
## [17,] 1 0.7547  50
## [18,] 1 0.7547  60
## [19,] 1 0.7547  70
## [20,] 1 0.7547  80
## [21,] 1 0.5685 -10
## [22,] 1 0.5685   0
## [23,] 1 0.5685  10
## [24,] 1 0.5685  20
## [25,] 1 0.5685  30
## [26,] 1 0.5685  40
## [27,] 1 0.5685  50
## [28,] 1 0.5685  60
## [29,] 1 0.5685  70
## [30,] 1 0.5685  80
## [31,] 1 0.3610 -10
## [32,] 1 0.3610   0
## [33,] 1 0.3610  10
## [34,] 1 0.3610  20
## [35,] 1 0.3610  30
## [36,] 1 0.3610  40
## [37,] 1 0.3610  50
## [38,] 1 0.3610  60
## [39,] 1 0.3610  70
## [40,] 1 0.3610  80
#Mencari b0, b1, dan b2 untuk persamaan regresi berganda
b = solve(t(U)%*%U)%*%t(U)%*%data1$Y
b
##          [,1]
## a  0.67943895
##    1.40733087
##   -0.01562885
#Memasukan nilai-nilai dari b ke peubah b0, b1, dan b2
b0 = b[1]
b0
## [1] 0.679439
b1 = b[2]
b1
## [1] 1.407331
b2= b[3]
b2
## [1] -0.01562885
#Korelasi AntarVariabel
#a. Korelasi Variabel Y dengan X1
cor(data1$Y, data$X1)
## [1] 0.4956134
#b. Korelasi variabel Y dengan X2
cor(data1$Y, data$X2)
## [1] -0.7592214