Directions

During ANLY 512 we will be studying the theory and practice of data visualization. We will be using R and the packages within R to assemble data and construct many different types of visualizations. Before we begin studying data visualizations we need to develop some data wrangling skills. We will use these skills to wrangle our data into a form that we can use for visualizations.

The objective of this assignment is to introduce you to R Studio, Rmarkdown, the tidyverse and more specifically the dplyr package.

Each question is worth 5 points.

To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyper linked and that I can see the visualization and the code required to create it.

Question #1

Use the nycflights13 package and the flights data frame to answer the following questions: a.What month had the highest proportion of cancelled flights? #February proportion of cancelled flights = No of cancelled flights in that month/ Total flights in that month. cancelled flights: dep_time is NA, in other words, the plane never takes off.

b.What month had the lowest? #October

library(nycflights13)
flights[is.na(flights$dep_time),]
## # A tibble: 8,255 × 19
##     year month   day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##    <int> <int> <int>    <int>      <int>   <dbl>   <int>   <int>   <dbl> <chr>  
##  1  2013     1     1       NA       1630      NA      NA    1815      NA EV     
##  2  2013     1     1       NA       1935      NA      NA    2240      NA AA     
##  3  2013     1     1       NA       1500      NA      NA    1825      NA AA     
##  4  2013     1     1       NA        600      NA      NA     901      NA B6     
##  5  2013     1     2       NA       1540      NA      NA    1747      NA EV     
##  6  2013     1     2       NA       1620      NA      NA    1746      NA EV     
##  7  2013     1     2       NA       1355      NA      NA    1459      NA EV     
##  8  2013     1     2       NA       1420      NA      NA    1644      NA EV     
##  9  2013     1     2       NA       1321      NA      NA    1536      NA EV     
## 10  2013     1     2       NA       1545      NA      NA    1910      NA AA     
## # … with 8,245 more rows, 9 more variables: flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>, and abbreviated variable names
## #   ¹​sched_dep_time, ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay

Question #2

Consider the following pipeline:

# library(tidyverse)
# mtcars %>%
#   group_by(cyl) %>%
#   summarize(avg_mpg = mean(mpg)) %>%
#   filter(am == 1)

What is the problem with this pipeline? #After aggregating mtcars,“am” is not in the result. So you can’t filter on it. To fix it, you could filter on am first and then calculate avg mpg for each cyl.

#After Correction

library(tidyverse)
mtcars %>%
  filter(am == 1) %>%
  group_by(cyl) %>%
  summarize(avg_mpg = mean(mpg))
## # A tibble: 3 × 2
##     cyl avg_mpg
##   <dbl>   <dbl>
## 1     4    28.1
## 2     6    20.6
## 3     8    15.4

Question #3

Define two new variables in the Teams data frame in the pkg Lahman() package.

  1. batting average (BA). Batting average is the ratio of hits (H) to at-bats (AB)

  2. slugging percentage (SLG). Slugging percentage is total bases divided by at-bats (AB). To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
#install.packages(dplyr)
team <- Teams
team <- mutate(team, BA = H / AB)
team <- mutate(team, SLG = (H + 2 * X2B + 3 * X3B + 4 * HR) / AB)

head(team, 10)
##    yearID lgID teamID franchID divID Rank  G Ghome  W  L DivWin WCWin LgWin
## 1    1871   NA    BS1      BNA  <NA>    3 31    NA 20 10   <NA>  <NA>     N
## 2    1871   NA    CH1      CNA  <NA>    2 28    NA 19  9   <NA>  <NA>     N
## 3    1871   NA    CL1      CFC  <NA>    8 29    NA 10 19   <NA>  <NA>     N
## 4    1871   NA    FW1      KEK  <NA>    7 19    NA  7 12   <NA>  <NA>     N
## 5    1871   NA    NY2      NNA  <NA>    5 33    NA 16 17   <NA>  <NA>     N
## 6    1871   NA    PH1      PNA  <NA>    1 28    NA 21  7   <NA>  <NA>     Y
## 7    1871   NA    RC1      ROK  <NA>    9 25    NA  4 21   <NA>  <NA>     N
## 8    1871   NA    TRO      TRO  <NA>    6 29    NA 13 15   <NA>  <NA>     N
## 9    1871   NA    WS3      OLY  <NA>    4 32    NA 15 15   <NA>  <NA>     N
## 10   1872   NA    BL1      BLC  <NA>    2 58    NA 35 19   <NA>  <NA>     N
##    WSWin   R   AB   H X2B X3B HR BB SO SB CS HBP SF  RA  ER  ERA CG SHO SV
## 1   <NA> 401 1372 426  70  37  3 60 19 73 16  NA NA 303 109 3.55 22   1  3
## 2   <NA> 302 1196 323  52  21 10 60 22 69 21  NA NA 241  77 2.76 25   0  1
## 3   <NA> 249 1186 328  35  40  7 26 25 18  8  NA NA 341 116 4.11 23   0  0
## 4   <NA> 137  746 178  19   8  2 33  9 16  4  NA NA 243  97 5.17 19   1  0
## 5   <NA> 302 1404 403  43  21  1 33 15 46 15  NA NA 313 121 3.72 32   1  0
## 6   <NA> 376 1281 410  66  27  9 46 23 56 12  NA NA 266 137 4.95 27   0  0
## 7   <NA> 231 1036 274  44  25  3 38 30 53 10  NA NA 287 108 4.30 23   1  0
## 8   <NA> 351 1248 384  51  34  6 49 19 62 24  NA NA 362 153 5.51 28   0  0
## 9   <NA> 310 1353 375  54  26  6 48 13 48 13  NA NA 303 137 4.37 32   0  0
## 10  <NA> 617 2571 753 106  31 14 29 28 53 18  NA NA 434 166 2.90 48   1  1
##    IPouts  HA HRA BBA SOA   E DP    FP                    name
## 1     828 367   2  42  23 243 24 0.834    Boston Red Stockings
## 2     753 308   6  28  22 229 16 0.829 Chicago White Stockings
## 3     762 346  13  53  34 234 15 0.818  Cleveland Forest Citys
## 4     507 261   5  21  17 163  8 0.803    Fort Wayne Kekiongas
## 5     879 373   7  42  22 235 14 0.840        New York Mutuals
## 6     747 329   3  53  16 194 13 0.845  Philadelphia Athletics
## 7     678 315   3  34  16 220 14 0.821   Rockford Forest Citys
## 8     750 431   4  75  12 198 22 0.845          Troy Haymakers
## 9     846 371   4  45  13 218 20 0.850     Washington Olympics
## 10   1548 573   3  63  77 432 22 0.830      Baltimore Canaries
##                                 park attendance BPF PPF teamIDBR teamIDlahman45
## 1                South End Grounds I         NA 103  98      BOS            BS1
## 2            Union Base-Ball Grounds         NA 104 102      CHI            CH1
## 3       National Association Grounds         NA  96 100      CLE            CL1
## 4                     Hamilton Field         NA 101 107      KEK            FW1
## 5           Union Grounds (Brooklyn)         NA  90  88      NYU            NY2
## 6           Jefferson Street Grounds         NA 102  98      ATH            PH1
## 7  Agricultural Society Fair Grounds         NA  97  99      ROK            RC1
## 8                 Haymakers' Grounds         NA 101 100      TRO            TRO
## 9                   Olympics Grounds         NA  94  98      OLY            WS3
## 10                    Newington Park         NA 106 102      BAL            BL1
##    teamIDretro        BA       SLG
## 1          BS1 0.3104956 0.5021866
## 2          CH1 0.2700669 0.4431438
## 3          CL1 0.2765599 0.4603710
## 4          FW1 0.2386059 0.3324397
## 5          NY2 0.2870370 0.3960114
## 6          PH1 0.3200625 0.5144418
## 7          RC1 0.2644788 0.4333977
## 8          TRO 0.3076923 0.4903846
## 9          WS3 0.2771619 0.4323725
## 10         BL1 0.2928821 0.4332944

Question #4

Using the Teams data frame in the pkg Lahman() package. display the top-5 teams ranked in terms of slugging percentage (SLG) in Major League Baseball history. Repeat this using teams since 1969. Slugging percentage is total bases divided by at-bats.To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

team %>%
  select(yearID,teamID, SLG) %>%
  arrange(desc(SLG)) %>%
  head(5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320

Question #5

Use the Batting, Pitching, and People tables in the pkg Lahman() package to answer the following questions.

a.Name every player in baseball history who has accumulated at least 300 home runs (HR) and at least 300 stolen bases (SB). You can find the first and last name of the player in the Master data frame. Join this to your result along with the total home runs and total bases stolen for each of these elite players.

  1. Similarly, name every pitcher in baseball history who has accumulated at least 300 wins (W) and at least 3,000 strikeouts (SO).

  2. Identify the name and year of every player who has hit at least 50 home runs in a single season. Which player had the lowest batting average in that season?

library(Lahman)
# R Replace Master (old) with People

# a:
Batting %>%
  group_by(playerID) %>%
  summarize(home_runs = sum(HR), stolen_bases = sum (SB)) %>%
  filter(home_runs >= 300 & stolen_bases >= 300) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>%
  select(nameFirst, nameLast, nameGiven, home_runs, stolen_bases)
## # A tibble: 8 × 5
##   nameFirst nameLast  nameGiven          home_runs stolen_bases
##   <chr>     <chr>     <chr>                  <int>        <int>
## 1 Carlos    Beltran   Carlos Ivan              435          312
## 2 Barry     Bonds     Barry Lamar              762          514
## 3 Bobby     Bonds     Bobby Lee                332          461
## 4 Andre     Dawson    Andre Nolan              438          314
## 5 Steve     Finley    Steven Allen             304          320
## 6 Willie    Mays      Willie Howard            660          338
## 7 Alex      Rodriguez Alexander Enmanuel       696          329
## 8 Reggie    Sanders   Reginald Laverne         305          304