Continuous Compounding
\[ FV = PVe^{rt}\]
FV <- function(t) {
100*exp(0.05*t)
}
t <- seq(from=0,to=30,by=1)
plot(FV(t)~t,type="l")
# Value of Money at t = 20
FV(20)
## [1] 271.8282
FV_30 <- FV(t)
FV_30[21]
## [1] 271.8282
t <- seq(from=0,to=40,by=1)
PV <- 100
r <- 0.05
# Cont. Compounding
FV <- PV*exp(r*t)
RATIO <- FV/PV
lnRATIO <- log(RATIO)
dat <- data.frame(t,FV,RATIO,lnRATIO)
dat
## t FV RATIO lnRATIO
## 1 0 100.0000 1.000000 0.00
## 2 1 105.1271 1.051271 0.05
## 3 2 110.5171 1.105171 0.10
## 4 3 116.1834 1.161834 0.15
## 5 4 122.1403 1.221403 0.20
## 6 5 128.4025 1.284025 0.25
## 7 6 134.9859 1.349859 0.30
## 8 7 141.9068 1.419068 0.35
## 9 8 149.1825 1.491825 0.40
## 10 9 156.8312 1.568312 0.45
## 11 10 164.8721 1.648721 0.50
## 12 11 173.3253 1.733253 0.55
## 13 12 182.2119 1.822119 0.60
## 14 13 191.5541 1.915541 0.65
## 15 14 201.3753 2.013753 0.70
## 16 15 211.7000 2.117000 0.75
## 17 16 222.5541 2.225541 0.80
## 18 17 233.9647 2.339647 0.85
## 19 18 245.9603 2.459603 0.90
## 20 19 258.5710 2.585710 0.95
## 21 20 271.8282 2.718282 1.00
## 22 21 285.7651 2.857651 1.05
## 23 22 300.4166 3.004166 1.10
## 24 23 315.8193 3.158193 1.15
## 25 24 332.0117 3.320117 1.20
## 26 25 349.0343 3.490343 1.25
## 27 26 366.9297 3.669297 1.30
## 28 27 385.7426 3.857426 1.35
## 29 28 405.5200 4.055200 1.40
## 30 29 426.3115 4.263115 1.45
## 31 30 448.1689 4.481689 1.50
## 32 31 471.1470 4.711470 1.55
## 33 32 495.3032 4.953032 1.60
## 34 33 520.6980 5.206980 1.65
## 35 34 547.3947 5.473947 1.70
## 36 35 575.4603 5.754603 1.75
## 37 36 604.9647 6.049647 1.80
## 38 37 635.9820 6.359820 1.85
## 39 38 668.5894 6.685894 1.90
## 40 39 702.8688 7.028688 1.95
## 41 40 738.9056 7.389056 2.00