This is the milestone report for week 2 of the Johns Hopkins University on Coursera Data Science Capstone project. The overall goal of the Capstone project is to build a predictive text model using Natural Language Processing (NLM) along with a predictive text application that will determine the most likely next word when a user inputs a word or a phrase.
The purpose of this milestone report is to demonstrate how the data was downloaded, imported into R, and cleaned. This report also contains an exploratory analysis of the data including summary statistics about the three separate data sets (blogs, news and tweets), graphics that illustrate features of the data, interesting findings discovered along the way, and an outline of the next steps that will be taken toward building the predictive application.
library(tm)
## Loading required package: NLP
library(RWeka)
library(stringi)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(pryr)
##
## Attaching package: 'pryr'
## The following object is masked from 'package:tm':
##
## inspect
library(RColorBrewer)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:NLP':
##
## annotate
library(wordcloud)
library(RCurl)
https://d396qusza40orc.cloudfront.net/dsscapstone/dataset/Coursera-SwiftKey.zip
data <- "http://d396qusza40orc.cloudfront.net/dsscapstone/dataset/Coursera-SwiftKey.zip"
unzip("Coursera-Swiftkey.zip")
blogs <- readLines("./final/en_US/en_US.blogs.txt", warn = FALSE, encoding = "UTF-8", skipNul = TRUE)
news <- readLines("./final/en_US/en_US.news.txt", warn = FALSE, encoding = "UTF-8", skipNul = TRUE)
twitter <- readLines("./final/en_US/en_US.twitter.txt", warn = FALSE, encoding = "UTF-8", skipNul = TRUE)
stats_sum <- data.frame(
FileName=c("blogs", "news", "twitter"),
FileSize=sapply(list(blogs, news, twitter), function(x){format(object.size(x), "MB")}),
# FileSizeMB=c(file.info("./en_US.blogs.txt")$size/1024^2,
#file.info("./en_US.news.txt")$size/1024^2,
#file.info("./en_US.twitter.txt")$size/1024^2),
t(rbind(sapply(list(blogs, news, twitter), stri_stats_general),#[c("Lines", "Chars"),],
Words = sapply(list(blogs, news, twitter), stri_stats_latex)[4,])
)
)
stats_sum
## FileName FileSize Lines LinesNEmpty Chars CharsNWhite Words
## 1 blogs 255.4 Mb 899288 899288 206824382 170389539 37570839
## 2 news 19.8 Mb 77259 77259 15639408 13072698 2651432
## 3 twitter 319 Mb 2360148 2360148 162096241 134082806 30451170
From the summary, we can see the sizes of the data files are quite large (the smallest file in the set is nearly 160MB). So, we are going to subset the data into three new data files containing a 1% sample of each of the original data files. We are going to start with a 1% sample and check the size of the VCorpus (Virtual Corpus) object that will be loaded into memory.
We will set a seed so the sampling will be reproducible. Before building the corpus, we will create a combined sample file and once again check the summary statistics to make sure the file sizes are not too large.
set.seed(1001)
sampleSize <- 0.01
blogsSubset <- sample(blogs, length(blogs) * sampleSize)
newsSubset <- sample(news, length(news) * sampleSize)
twitterSubset <- sample(twitter, length(twitter) * sampleSize)
sampleData <- c(sample(blogs, length(blogs) * sampleSize),
sample(news, length(news) * sampleSize),
sample(twitter, length(twitter) * sampleSize))
sampleStats <- data.frame(
FileName=c("blogsSubset", "newsSubset", "twitterSubset", "sampleData"),
FileSize=sapply(list(blogsSubset, newsSubset, twitterSubset, sampleData), function(x){format(object.size(x), "MB")}),
t(rbind(sapply(list(blogsSubset, newsSubset, twitterSubset, sampleData), stri_stats_general),#[c("Lines", "Chars"),],
Words = sapply(list(blogsSubset, newsSubset, twitterSubset, sampleData), stri_stats_latex)[4,])
)
)
sampleStats
## FileName FileSize Lines LinesNEmpty Chars CharsNWhite Words
## 1 blogsSubset 2.6 Mb 8992 8992 2083795 1717050 377945
## 2 newsSubset 0.2 Mb 772 772 154332 128930 26336
## 3 twitterSubset 3.2 Mb 23601 23601 1621004 1340228 304838
## 4 sampleData 6 Mb 33365 33365 3835341 3167327 704226
corpus <- VCorpus(VectorSource(sampleData)) # Build the corpus
object_size(corpus) # Check the size of corpus
## 77.80 MB
The VCorpus object is quite large (77.8 MB), even when the sample size is only 1%. This may be an issue due to memory constraints when it comes time to build the predictive model. But, we will start here and see where this approach leads us.
We next need to clean the corpus Data using functions from the tm package. Common text mining cleaning tasks include:
Convert everything to lower case
Remove punctuation marks, numbers, extra whitespace, and stopwords (common words like “and”, “or”, “is”, “in”, etc.)
Filtering out unwanted words
cleanCorpus <- tm_map(corpus, content_transformer(tolower)) # Convert all to lower case
cleanCorpus <- tm_map(cleanCorpus, removePunctuation) # Remove punctuation marks
cleanCorpus <- tm_map(cleanCorpus, removeNumbers) # Remove numbers
cleanCorpus <- tm_map(cleanCorpus, stripWhitespace) # Remove whitespace
cleanCorpus <- tm_map(cleanCorpus, PlainTextDocument) # Convert all to plain text document
We next need to tokenize the clean Corpus (i.e., break the text up into words and short phrases) and construct a set of N-grams. We will start with the following three N-Grams:
Unigram - A matrix containing individual words
Bigram - A matrix containing two-word patterns
Trigram - A matrix containing three-word patterns
We could also contrust a Quadgram matrix based on four words, but at this point in the project we have decided to start with the first three N-Grams and see how the predictive model works with these first.
uniTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 1, max = 1))
biTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
triTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 3, max = 3))
uniMatrix <- TermDocumentMatrix(cleanCorpus, control = list(tokenize = uniTokenizer))
biMatrix <- TermDocumentMatrix(cleanCorpus, control = list(tokenize = biTokenizer))
triMatrix <- TermDocumentMatrix(cleanCorpus, control = list(tokenize = triTokenizer))
uniCorpus <- findFreqTerms(uniMatrix, lowfreq = 20)
biCorpus <- findFreqTerms(biMatrix, lowfreq = 20)
triCorpus <- findFreqTerms(triMatrix, lowfreq = 20)
uniCorpusFreq <- rowSums(as.matrix(uniMatrix[uniCorpus,]))
uniCorpusFreq <- data.frame(word = names(uniCorpusFreq), frequency = uniCorpusFreq)
biCorpusFreq <- rowSums(as.matrix(biMatrix[biCorpus,]))
biCorpusFreq <- data.frame(word = names(biCorpusFreq), frequency = biCorpusFreq)
triCorpusFreq <- rowSums(as.matrix(triMatrix[triCorpus,]))
triCorpusFreq <- data.frame(word = names(triCorpusFreq), frequency = triCorpusFreq)
head(uniCorpusFreq)
## word frequency
## “the “the 60
## “we “we 29
## ability ability 36
## able able 190
## about about 2176
## above above 107
head(biCorpusFreq)
## word frequency
## – and – and 33
## – i – i 20
## – the – the 25
## a baby a baby 29
## a bad a bad 65
## a beautiful a beautiful 45
head(triCorpusFreq)
## word frequency
## a bit of a bit of 36
## a bunch of a bunch of 31
## a chance to a chance to 33
## a couple of a couple of 69
## a few days a few days 30
## a few weeks a few weeks 20
uniCorpusFreqDescend <- arrange(uniCorpusFreq, desc(frequency))
biCorpusFreqDescend <- arrange(biCorpusFreq, desc(frequency))
triCorpusFreqDescend <- arrange(triCorpusFreq, desc(frequency))
uniBar <- ggplot(data = uniCorpusFreqDescend[1:20,], aes(x = reorder(word, -frequency), y = frequency)) +
geom_bar(stat = "identity", fill = "magenta") +
xlab("Words") +
ylab("Frequency") +
ggtitle(paste("Top 20 Unigrams")) +
theme(plot.title = element_text(hjust = 0.5)) +
theme(axis.text.x = element_text(angle = 60, hjust = 1))
uniBar
biBar <- ggplot(data = biCorpusFreqDescend[1:20,], aes(x = reorder(word, -frequency), y = frequency)) +
geom_bar(stat = "identity", fill = "cyan") +
xlab("Words") +
ylab("Frequency") +
ggtitle(paste("Top 20 Bigrams")) +
theme(plot.title = element_text(hjust = 0.5)) +
theme(axis.text.x = element_text(angle = 60, hjust = 1))
biBar
triBar <- ggplot(data = triCorpusFreqDescend[1:20,], aes(x = reorder(word, -frequency), y = frequency)) +
geom_bar(stat = "identity", fill = "yellow") +
xlab("Words") +
ylab("Frequency") +
ggtitle(paste("Top 20 Trigrams")) +
theme(plot.title = element_text(hjust = 0.5)) +
theme(axis.text.x = element_text(angle = 60, hjust = 1))
triBar
One question I have is whether a 1% sample of the data is enough? I may find I need to increase the sample size, but doing so could affect the performance of the application.
The VCorpus object is quite large (77.8 MB), even with a sample size of only 1%. This may create issues due to memory constraints when it comes time to build the predictive model.
We may need to try different sample sizes to get a balance between enough data, memory consumption and acceptable performance.
We also need to determine whether stopwords need to be removed and create a filter if profane words are suggested when a word or phrase is entered by the user.