library(GLMsData); data(turbines)
turbines
##    Hours Turbines Fissures
## 1    400       39        0
## 2   1000       53        4
## 3   1400       33        2
## 4   1800       73        7
## 5   2200       30        5
## 6   2600       39        9
## 7   3000       42        9
## 8   3400       13        6
## 9   3800       34       22
## 10  4200       40       21
## 11  4600       36       21
tur.m1 <- glm( Fissures/Turbines ~ Hours, family=binomial,
                 weights=Turbines, data=turbines)
tur.m2 <- glm( cbind(Fissures, Turbines-Fissures) ~ Hours,
                 family=binomial, data=turbines)

####

Load<-c(2500,2700,2900,3100,3300,3500,3700,3900,4100,4300)
sample<-c(50,70,100,60,40,85,90,50,80,65)
failling<-c(10,17,30,21,18,43,54,33,60,51)

lista<-cbind(Load,sample,failling)
datos<-as.data.frame(lista)
datos
##    Load sample failling
## 1  2500     50       10
## 2  2700     70       17
## 3  2900    100       30
## 4  3100     60       21
## 5  3300     40       18
## 6  3500     85       43
## 7  3700     90       54
## 8  3900     50       33
## 9  4100     80       60
## 10 4300     65       51
attach(datos)
## The following objects are masked _by_ .GlobalEnv:
## 
##     failling, Load, sample
#pag 335
forma1 <- glm( failling/sample ~ Load, family=binomial(link = "logit"),
               weights=sample, data=datos)
summary(forma1)
## 
## Call:
## glm(formula = failling/sample ~ Load, family = binomial(link = "logit"), 
##     data = datos, weights = sample)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.29475  -0.11129   0.04162   0.08847   0.35016  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -5.3397115  0.5456932  -9.785   <2e-16 ***
## Load         0.0015484  0.0001575   9.829   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 112.83207  on 9  degrees of freedom
## Residual deviance:   0.37192  on 8  degrees of freedom
## AIC: 49.088
## 
## Number of Fisher Scoring iterations: 3
forma2 <- glm( failling/sample ~ Load, family=binomial(link = "cloglog"),
               weights=sample, data=datos)

forma3 <- glm( failling/sample ~ Load, family=binomial(link = "probit"),
               weights=sample, data=datos,control=list(trace=TRUE) )
## Deviance = 0.43738 Iterations - 1
## Deviance = 0.4373459 Iterations - 2
## Deviance = 0.4373459 Iterations - 3
forma5<- glm( cbind(failling, sample-failling) ~ Load,
                        family=binomial, data=datos,control=list(trace=TRUE) )
## Deviance = 0.3720094 Iterations - 1
## Deviance = 0.3719169 Iterations - 2
## Deviance = 0.3719169 Iterations - 3
coef(forma1)
##  (Intercept)         Load 
## -5.339711512  0.001548434
coef(forma5)
##  (Intercept)         Load 
## -5.339711512  0.001548434
coef(forma2)
##  (Intercept)         Load 
## -4.191745285  0.001094139
coef(forma3)
##   (Intercept)          Load 
## -3.2712087961  0.0009488532
##
summary(forma1)
## 
## Call:
## glm(formula = failling/sample ~ Load, family = binomial(link = "logit"), 
##     data = datos, weights = sample)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.29475  -0.11129   0.04162   0.08847   0.35016  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -5.3397115  0.5456932  -9.785   <2e-16 ***
## Load         0.0015484  0.0001575   9.829   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 112.83207  on 9  degrees of freedom
## Residual deviance:   0.37192  on 8  degrees of freedom
## AIC: 49.088
## 
## Number of Fisher Scoring iterations: 3
summary(forma5)
## 
## Call:
## glm(formula = cbind(failling, sample - failling) ~ Load, family = binomial, 
##     data = datos, control = list(trace = TRUE))
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.29475  -0.11129   0.04162   0.08847   0.35016  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -5.3397115  0.5456932  -9.785   <2e-16 ***
## Load         0.0015484  0.0001575   9.829   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 112.83207  on 9  degrees of freedom
## Residual deviance:   0.37192  on 8  degrees of freedom
## AIC: 49.088
## 
## Number of Fisher Scoring iterations: 3
coefficients(forma5)
##  (Intercept)         Load 
## -5.339711512  0.001548434
confint(forma5)
## Waiting for profiling to be done...
## Deviance = 0.6190478 Iterations - 1
## Deviance = 0.6190477 Iterations - 2
## Deviance = 0.6190477 Iterations - 3
## Deviance = 1.350781 Iterations - 1
## Deviance = 1.350781 Iterations - 2
## Deviance = 1.350781 Iterations - 3
## Deviance = 2.552616 Iterations - 1
## Deviance = 2.552616 Iterations - 2
## Deviance = 2.552616 Iterations - 3
## Deviance = 4.210077 Iterations - 1
## Deviance = 4.210077 Iterations - 2
## Deviance = 4.210077 Iterations - 3
## Deviance = 6.308761 Iterations - 1
## Deviance = 6.30876 Iterations - 2
## Deviance = 6.30876 Iterations - 3
## Deviance = 8.834382 Iterations - 1
## Deviance = 8.834382 Iterations - 2
## Deviance = 8.834382 Iterations - 3
## Deviance = 0.6238617 Iterations - 1
## Deviance = 0.6238616 Iterations - 2
## Deviance = 0.6238616 Iterations - 3
## Deviance = 1.389269 Iterations - 1
## Deviance = 1.389269 Iterations - 2
## Deviance = 1.389269 Iterations - 3
## Deviance = 2.682377 Iterations - 1
## Deviance = 2.682377 Iterations - 2
## Deviance = 2.682377 Iterations - 3
## Deviance = 4.517212 Iterations - 1
## Deviance = 4.517212 Iterations - 2
## Deviance = 4.517212 Iterations - 3
## Deviance = 6.907517 Iterations - 1
## Deviance = 6.907517 Iterations - 2
## Deviance = 0.6238197 Iterations - 1
## Deviance = 0.6238196 Iterations - 2
## Deviance = 0.6238196 Iterations - 3
## Deviance = 1.388933 Iterations - 1
## Deviance = 1.388933 Iterations - 2
## Deviance = 1.388933 Iterations - 3
## Deviance = 2.681244 Iterations - 1
## Deviance = 2.681244 Iterations - 2
## Deviance = 2.681244 Iterations - 3
## Deviance = 4.514532 Iterations - 1
## Deviance = 4.514531 Iterations - 2
## Deviance = 4.514531 Iterations - 3
## Deviance = 6.902297 Iterations - 1
## Deviance = 6.902296 Iterations - 2
## Deviance = 0.6190895 Iterations - 1
## Deviance = 0.6190895 Iterations - 2
## Deviance = 0.6190895 Iterations - 3
## Deviance = 1.351115 Iterations - 1
## Deviance = 1.351114 Iterations - 2
## Deviance = 1.351114 Iterations - 3
## Deviance = 2.553737 Iterations - 1
## Deviance = 2.553737 Iterations - 2
## Deviance = 2.553737 Iterations - 3
## Deviance = 4.212721 Iterations - 1
## Deviance = 4.212721 Iterations - 2
## Deviance = 4.212721 Iterations - 3
## Deviance = 6.313897 Iterations - 1
## Deviance = 6.313897 Iterations - 2
## Deviance = 8.843204 Iterations - 1
## Deviance = 8.843204 Iterations - 2
##                    2.5 %       97.5 %
## (Intercept) -6.430606344 -4.289373629
## Load         0.001245115  0.001863257
vcov(forma5)
##               (Intercept)          Load
## (Intercept)  2.977811e-01 -8.497023e-05
## Load        -8.497023e-05  2.481820e-08
#
library(ResourceSelection)
## ResourceSelection 0.3-5   2019-07-22
hoslem.test(forma5$y, forma5$fitted)
## 
##  Hosmer and Lemeshow goodness of fit (GOF) test
## 
## data:  forma5$y, forma5$fitted
## X-squared = 0.0055883, df = 8, p-value = 1
###3

forma1 <- glm( failling/sample ~ log(Load) + (log(Load))^2, family=binomial(link = "logit"),
               weights=sample, data=datos , control = list(trace=TRUE))
## Deviance = 1.363322 Iterations - 1
## Deviance = 1.361951 Iterations - 2
## Deviance = 1.361951 Iterations - 3
vcov(forma1)
##             (Intercept)  log(Load)
## (Intercept)   18.568840 -2.2832959
## log(Load)     -2.283296  0.2808665
summary(forma1)
## 
## Call:
## glm(formula = failling/sample ~ log(Load) + (log(Load))^2, family = binomial(link = "logit"), 
##     data = datos, weights = sample, control = list(trace = TRUE))
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.52946  -0.11592  -0.07591   0.28265   0.60107  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -42.111      4.309  -9.772   <2e-16 ***
## log(Load)      5.177      0.530   9.769   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 112.832  on 9  degrees of freedom
## Residual deviance:   1.362  on 8  degrees of freedom
## AIC: 50.078
## 
## Number of Fisher Scoring iterations: 3
coefficients(forma1)
## (Intercept)   log(Load) 
##  -42.110558    5.177246