%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("cYjzsML0K5Y")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("YM6SMXrOgZQ")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(readxl)
DATOS2023 <- read_excel("datos/DATOS2023.xlsx")
DATOS2023
SEXO | Frecuencia absoluta (f) | Frecuencia relativa porcentual (\(f_r({\%})\) |
---|---|---|
Femenino (F) | 62 | \(\frac{62}{121}*100=51%\) |
Masculino (M) | 59 | \(\frac{59}{121}*100=49%\) |
Total | 121 | 100% |
table_sexo<-table(DATOS2023$SEXO)
table_sexo
##
## F M
## 62 59
e=“color:blue”>Gráfico de torta para SEXO
pie_1<-pie(table_sexo, col=c("lightblue","pink"),
main="Estudio de Pastel.\n Distribución por sexos.", labels = table_sexo)
barp<-barplot(table_sexo, col = rainbow(5), border = "darkred",main = "Gráfico de Barras",sub = "UTB",xlab = "SEXO", ylab = "Conteo")
text(barp, table_sexo-30, labels = table_sexo)
table_sexo2<-round(table(DATOS2023$SEXO)/121*100)
table_sexo2
##
## F M
## 51 49
barp2<-barplot(table_sexo2, col = rainbow(5), border = "darkred",main = "Gráfico de Barras",sub = "UTB",xlab = "SEXO", ylab = "Porcentaje")
text(barp2, table_sexo2-30, labels = table_sexo2)
pie_1<-pie(table_sexo2, col=c("lightblue","pink"),
main="Estudio de Pastel.\n Distribución por sexos.", labels = table_sexo2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
table_3<-table(DATOS2023$SEXO, DATOS2023$CURSO)
table_3
##
## ESTADISTICA I PROBABILIDAD
## F 49 13
## M 37 22
barp3<-barplot(table_3,
main = "Gráfico de barras CURSO vs SEXO",
xlab = "CURSO", ylab = "Frecuencia",
col = c("pink", "blue"),
legend.text = rownames(table_3),
beside = TRUE) # Barras agrupadas
text(barp3, table_3-5, labels = table_3)
table_4<-round(table(DATOS2023$SEXO, DATOS2023$CURSO)/121*100)
table_4
##
## ESTADISTICA I PROBABILIDAD
## F 40 11
## M 31 18
barp4<-barplot(table_4,
main = "Gráfico de barras CURSO vs SEXO en porcentajes",
xlab = "CURSO", ylab = "Frecuencia",
col = c("pink", "blue"),
legend.text = rownames(table_4),
beside = TRUE) # Barras agrupadas
text(barp4, table_4-5, labels = table_4)
table_5<-table(DATOS2023$ESTRATO, DATOS2023$CURSO)
table_5
##
## ESTADISTICA I PROBABILIDAD
## I 19 7
## II 28 16
## III 21 9
## IV 12 1
## V 3 1
## VI 3 0
## VII 0 1
barp3<-barplot(table_5,
main = "Gráfico de barras CURSO vs ESTRATO",
xlab = "CURSO", ylab = "Frecuencia",
col = rainbow(5),
legend.text = rownames(table_5),
beside = TRUE) # Barras agrupadas
text(barp3, table_5-1, labels = table_3)
table_6<-table(DATOS2023$ESTRATO, DATOS2023$SEXO)
table_6
##
## F M
## I 13 13
## II 24 20
## III 13 17
## IV 8 5
## V 3 1
## VI 1 2
## VII 0 1
barp3<-barplot(table_6,
main = "Gráfico de barras CURSO vs ESTRATO",
xlab = "CURSO", ylab = "Frecuencia",
col = rainbow(5),
legend.text = rownames(table_6),
beside = TRUE) # Barras agrupadas
text(barp3, table_6-1, labels = table_6)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("ImN2wNTOKIg")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Clase | \(x_i =\) Valor | \(f_i\) | \(f_ir\) | \(f_ir({\%})\) | \(F_i\) | \(F_ir\) | \(F_ir({\%})\) |
---|---|---|---|---|---|---|---|
1 | 16 | 1 | 0,0083 | 0,83 | 1 | 0,0083 | 0,83 |
2 | 17 | 27 | 0,2231 | 22,31 | 28 | 0,2314 | 23,14 |
3 | 18 | 47 | 0,3884 | 38,84 | 75 | 0,6198 | 61,98 |
4 | 19 | 23 | 0,1901 | 19,01 | 98 | 0,8099 | 80,99 |
5 | 20 | 13 | 0,1074 | 10,74 | 111 | 0,9174 | 91,74 |
6 | 21 | 4 | 0,0331 | 3,31 | 115 | 0,9504 | 95,04 |
7 | 22 | 2 | 0,0165 | 1,65 | 117 | 0,9669 | 96,69 |
8 | 23 | 1 | 0,0083 | 0,83 | 118 | 0,9752 | 97,52 |
9 | 24 | 1 | 0,0083 | 0,83 | 119 | 0,9835 | 98,35 |
10 | 25 | 1 | 0,0083 | 0,83 | 120 | 0,9917 | 99,17 |
11 | 27 | 1 | 0,0083 | 0,83 | 121 | 1,0000 | 100 |
x<-table(DATOS2023$EDAD)
x
##
## 16 17 18 19 20 21 22 23 24 25 27
## 1 27 47 23 13 4 2 1 1 1 1
library(summarytools)
## Warning in fun(libname, pkgname): couldn't connect to display ":0"
## system might not have X11 capabilities; in case of errors when using dfSummary(), set st_options(use.x11 = FALSE)
tabla_8 <- freq(DATOS2023$EDAD)
tabla_8
## Frequencies
## DATOS2023$EDAD
## Type: Numeric
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## 16 1 0.83 0.83 0.83 0.83
## 17 27 22.31 23.14 22.31 23.14
## 18 47 38.84 61.98 38.84 61.98
## 19 23 19.01 80.99 19.01 80.99
## 20 13 10.74 91.74 10.74 91.74
## 21 4 3.31 95.04 3.31 95.04
## 22 2 1.65 96.69 1.65 96.69
## 23 1 0.83 97.52 0.83 97.52
## 24 1 0.83 98.35 0.83 98.35
## 25 1 0.83 99.17 0.83 99.17
## 27 1 0.83 100.00 0.83 100.00
## <NA> 0 0.00 100.00
## Total 121 100.00 100.00 100.00 100.00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("3NFFfge6Q8E")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(summarytools)
tabla_8 <- freq(DATOS2023$EDAD)
tabla_8
## Frequencies
## DATOS2023$EDAD
## Type: Numeric
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## 16 1 0.83 0.83 0.83 0.83
## 17 27 22.31 23.14 22.31 23.14
## 18 47 38.84 61.98 38.84 61.98
## 19 23 19.01 80.99 19.01 80.99
## 20 13 10.74 91.74 10.74 91.74
## 21 4 3.31 95.04 3.31 95.04
## 22 2 1.65 96.69 1.65 96.69
## 23 1 0.83 97.52 0.83 97.52
## 24 1 0.83 98.35 0.83 98.35
## 25 1 0.83 99.17 0.83 99.17
## 27 1 0.83 100.00 0.83 100.00
## <NA> 0 0.00 100.00
## Total 121 100.00 100.00 100.00 100.00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("GzSiWHxedog")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DATOS2023
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
summary(DATOS2023$EDAD)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 18.00 18.00 18.55 19.00 27.00
boxplot(DATOS2023$EDAD, horizontal = TRUE, col = rainbow(3))
x = DATOS2023$EDAD
boxplot(x, notch = TRUE, horizontal = TRUE, col = rainbow(3))
## Warning in (function (z, notch = FALSE, width = NULL, varwidth = FALSE, : some
## notches went outside hinges ('box'): maybe set notch=FALSE
x = DATOS2023$EDAD
y = DATOS2023$SEXO
boxplot(x~y, horizontal = TRUE, col = rainbow(3))
library(ggplot2)
x = DATOS2023$EDAD
z = DATOS2023$ESTRATO
boxplot(x~z, horizontal = TRUE, col = rainbow(3))
library(ggplot2)
ggplot(data= DATOS2023,mapping= aes(y=EDAD,x = ESTRATO, fill=SEXO))+geom_boxplot()+
scale_y_continuous(name = "EDAD") +
scale_x_discrete(labels = abbreviate, name = "ESTRATO")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
summary(DATOS2023$ESTATURA)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 100.0 163.0 169.0 167.9 175.0 192.0
boxplot(DATOS2023$ESTATURA, horizontal = TRUE, col = rainbow(3))
x = DATOS2023$ESTATURA
boxplot(x, notch = TRUE, horizontal = TRUE, col = rainbow(3))
x = DATOS2023$ESTATURA
y = DATOS2023$SEXO
boxplot(x~y, horizontal = TRUE, col = rainbow(3))
library(ggplot2)
x = DATOS2023$ESTATURA
z = DATOS2023$ESTRATO
boxplot(x~z, horizontal = TRUE, col = rainbow(3))
library(ggplot2)
ggplot(data= DATOS2023,mapping= aes(y=ESTATURA,x = ESTRATO, fill=SEXO))+geom_boxplot()+
scale_y_continuous(name = "ESTATURA") +
scale_x_discrete(labels = abbreviate, name = "ESTRATO")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("Xf79KM86qoQ")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("fRyCjuGJHtY")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tabla_9A <- c(38, 15, 10, 12, 62, 46, 25, 56, 27, 24, 23, 21, 20, 25, 38, 27, 48, 35, 50, 65, 59, 58, 47, 42, 37, 35, 32, 40, 28, 14, 12, 24, 66, 73, 72, 70, 68, 65, 54, 48, 34, 33, 21, 19, 61, 59, 47, 46, 30, 30)
library(summarytools)
tabla_9 <- freq(tabla_9A)
tabla_9
## Frequencies
## tabla_9A
## Type: Numeric
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## 10 1 2.00 2.00 2.00 2.00
## 12 2 4.00 6.00 4.00 6.00
## 14 1 2.00 8.00 2.00 8.00
## 15 1 2.00 10.00 2.00 10.00
## 19 1 2.00 12.00 2.00 12.00
## 20 1 2.00 14.00 2.00 14.00
## 21 2 4.00 18.00 4.00 18.00
## 23 1 2.00 20.00 2.00 20.00
## 24 2 4.00 24.00 4.00 24.00
## 25 2 4.00 28.00 4.00 28.00
## 27 2 4.00 32.00 4.00 32.00
## 28 1 2.00 34.00 2.00 34.00
## 30 2 4.00 38.00 4.00 38.00
## 32 1 2.00 40.00 2.00 40.00
## 33 1 2.00 42.00 2.00 42.00
## 34 1 2.00 44.00 2.00 44.00
## 35 2 4.00 48.00 4.00 48.00
## 37 1 2.00 50.00 2.00 50.00
## 38 2 4.00 54.00 4.00 54.00
## 40 1 2.00 56.00 2.00 56.00
## 42 1 2.00 58.00 2.00 58.00
## 46 2 4.00 62.00 4.00 62.00
## 47 2 4.00 66.00 4.00 66.00
## 48 2 4.00 70.00 4.00 70.00
## 50 1 2.00 72.00 2.00 72.00
## 54 1 2.00 74.00 2.00 74.00
## 56 1 2.00 76.00 2.00 76.00
## 58 1 2.00 78.00 2.00 78.00
## 59 2 4.00 82.00 4.00 82.00
## 61 1 2.00 84.00 2.00 84.00
## 62 1 2.00 86.00 2.00 86.00
## 65 2 4.00 90.00 4.00 90.00
## 66 1 2.00 92.00 2.00 92.00
## 68 1 2.00 94.00 2.00 94.00
## 70 1 2.00 96.00 2.00 96.00
## 72 1 2.00 98.00 2.00 98.00
## 73 1 2.00 100.00 2.00 100.00
## <NA> 0 0.00 100.00
## Total 50 100.00 100.00 100.00 100.00
summary(tabla_9A)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.00 25.00 37.50 39.82 55.50 73.00
Calcular una distribución de frecuencias |
---|
Solución: Por la fórmula de Sturges la cantidad de clases de la distribución de frecuencias es: |
\(k=1+3.322logn=1+3.322log50=1+3.322(1.6889)=6.64≈7\) |
La observación más pequeña es \(x_{min}=10\) |
y la más grande es \(x_{max}=73\) |
el rango es \(R=73−10=63\) |
el ancho de cada cada clases está dado por: \(W=\frac{R}{k}=\frac{63}{7}≈9\) |
Edad | Marca de clase \(x_i\) | frecuencia \(f_i\) | frecuencia-relativa \(f_i(\%)\) | frecuencia acumulada \(F_i(\%)\). |
---|---|---|---|---|
[10 - 19) | 14.5 | 5 | 10% | 5 |
[19 - 28) | 23.5 | 11 | 22% | 16 |
[28 - 37) | 32.5 | 8 | 16% | 24 |
[37 - 46) | 41.5 | 5 | 10% | 29 |
[46 - 55) | 50.5 | 8 | 16% | 37 |
[55 - 64) | 59.5 | 6 | 12% | 43 |
[64 - 73] | 68.5 | 7 | 14% | 50 |
library(agricolae)
h<-graph.freq(tabla_9A, col=colors()[75]) #[86]
summary(h)
x=c(14.5, 23.5, 32.5, 41.5, 50.5, 59.5, 68.5)
y=c(5,11,8,5,8,6,7)
plot(x,y,type="p",pch=20,lty=1,xlab="Edad (Clases)",ylab="fra%",main="Edad total (en años) ",xaxt="n",yaxt="n", col = "blue", lwd=2)
axis(side=1,c(14.5, 23.5, 32.5, 41.5, 50.5, 59.5, 68.5),labels=TRUE)
axis(side=2,c(5,11,8,5,8,6,7),labels=TRUE,las=2)
lines(x,y)
plot(h, col=colors()[70], frequency = 1)
polygon.freq(h, col = "red", frequency = 1, lwd = 2)
plot(h, col=colors()[70], frequency = 2)
polygon.freq(h, col = "red", frequency = 2, lwd = 2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
names(h)
## [1] "breaks" "counts" "mids" "relative" "density"
summary(h)
x=c(14.5, 23.5, 32.5, 41.5, 50.5, 59.5, 68.5)
y=c(10,32,48,58,74,86,100)
plot(x,y,type="p",pch=20,lty=1,xlab="Edad (Clases)",ylab="fra%",main="Edad total (en años) ",xaxt="n",yaxt="n")
axis(side=1,c(14.5, 23.5, 28.5, 32.5, 41.5, 50.5, 59.5, 68.5),labels=TRUE)
axis(side=2,c(0,10,20,30,40,50,60,70,80,90,100),labels=TRUE,las=2)
lines(x,y)
segments(50.5,-14.5,50.5,74, lwd=1,lty=2, col = "red")
segments(0,74,50.5,74,lwd=1,lty=2, col = "red")
h<-graph.freq(tabla_9A, col=colors()[70]) #[86]
fr_por_clase<-h$counts
fr_por_clase
## [1] 5 11 8 5 8 6 7
total_n<-sum(h$counts)
total_n
## [1] 50
fr_relativos<-fr_por_clase/total_n
fr_porcentuales<-100*fr_relativos
fr_porcentuales
## [1] 10 22 16 10 16 12 14
cumsum(fr_por_clase)
## [1] 5 16 24 29 37 43 50
cumsum(fr_relativos)
## [1] 0.10 0.32 0.48 0.58 0.74 0.86 1.00
cumsum(fr_porcentuales)
## [1] 10 32 48 58 74 86 100
p1<-cumsum(fr_por_clase)
plot(p1, col = "red")
lines(p1, col = "red")
p2<-cumsum(fr_relativos)
plot(p2, col = "blue")
lines(p2, col = "blue")
p3<-cumsum(fr_porcentuales)
plot(p3, col = "green2")
lines(p3, col = "green2")
plot(ecdf(tabla_9A), col = "blue")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(readxl)
DATOS2023P1 <- read_excel("DATOS2023P1.xlsx")
DATOS2023P1
names(DATOS2023P1)
## [1] "NRC" "TOTAL DE PUNTOS (450/520)"
## [3] "50% - CORTE I2" "PARCIAL PUNTOS (55/60)"
## [5] "50% - CORTE I - 3" "100% - CORTE I 2"
## [7] "P1 - FILA" "PROGRAMA"
## [9] "CARRERA" "SEXO"
names (DATOS2023P1) = c("NRC", "A_INDEP", "A_INDEP_NOTAS", "PARCIAL1", "PARCIAL1_NOTAS", "DEF_C1", "FILAS", "PROGRAMA", "CARRERA", "SEXO")
names (DATOS2023P1)
## [1] "NRC" "A_INDEP" "A_INDEP_NOTAS" "PARCIAL1"
## [5] "PARCIAL1_NOTAS" "DEF_C1" "FILAS" "PROGRAMA"
## [9] "CARRERA" "SEXO"
DATOS2023P1
P1table_sexo<-table(DATOS2023P1$SEXO)
P1table_sexo
##
## FEMENINO MASCULINO
## 64 21
barp<-barplot(P1table_sexo, col = rainbow(5), border = "darkred",main = "Gráfico de Barras",sub = "UTB",xlab = "SEXO", ylab = "Conteo")
text(barp, P1table_sexo-10, labels = P1table_sexo)
P1table_3<-table(DATOS2023P1$SEXO, DATOS2023P1$PROGRAMA)
P1table_3
##
## CIEN_POL COM_SOCIAL PSICOLOGIA
## FEMENINO 13 22 29
## MASCULINO 7 7 7
barp3<-barplot(P1table_3,
main = "Gráfico de barras PROGRAMA vs SEXO",
xlab = "PROGRAMA", ylab = "Frecuencia",
col = c("pink", "blue"),
legend.text = rownames(P1table_3),
beside = TRUE) # Barras agrupadas
text(barp3, P1table_3-10, labels = P1table_3)
library(summarytools)
summary(DATOS2023P1$PARCIAL1_NOTAS)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.400 3.000 3.700 3.614 4.300 5.300
P1tabla_8 <- freq(DATOS2023P1$PARCIAL1_NOTAS)
P1tabla_8
## Frequencies
## DATOS2023P1$PARCIAL1_NOTAS
## Type: Numeric
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## 1.4 2 2.35 2.35 2.35 2.35
## 1.6 1 1.18 3.53 1.18 3.53
## 1.9 1 1.18 4.71 1.18 4.71
## 2.2 1 1.18 5.88 1.18 5.88
## 2.4 1 1.18 7.06 1.18 7.06
## 2.5 2 2.35 9.41 2.35 9.41
## 2.6 3 3.53 12.94 3.53 12.94
## 2.8 2 2.35 15.29 2.35 15.29
## 2.9 6 7.06 22.35 7.06 22.35
## 3 5 5.88 28.24 5.88 28.24
## 3.1 5 5.88 34.12 5.88 34.12
## 3.2 1 1.18 35.29 1.18 35.29
## 3.3 3 3.53 38.82 3.53 38.82
## 3.4 3 3.53 42.35 3.53 42.35
## 3.5 5 5.88 48.24 5.88 48.24
## 3.6 1 1.18 49.41 1.18 49.41
## 3.7 3 3.53 52.94 3.53 52.94
## 3.8 4 4.71 57.65 4.71 57.65
## 3.9 3 3.53 61.18 3.53 61.18
## 4 3 3.53 64.71 3.53 64.71
## 4.1 3 3.53 68.24 3.53 68.24
## 4.2 3 3.53 71.76 3.53 71.76
## 4.3 4 4.71 76.47 4.71 76.47
## 4.4 6 7.06 83.53 7.06 83.53
## 4.5 3 3.53 87.06 3.53 87.06
## 4.6 1 1.18 88.24 1.18 88.24
## 4.7 4 4.71 92.94 4.71 92.94
## 4.8 2 2.35 95.29 2.35 95.29
## 4.9 1 1.18 96.47 1.18 96.47
## 5.2 2 2.35 98.82 2.35 98.82
## 5.3 1 1.18 100.00 1.18 100.00
## <NA> 0 0.00 100.00
## Total 85 100.00 100.00 100.00 100.00
boxplot(DATOS2023P1$PARCIAL1_NOTAS, horizontal = TRUE, col = rainbow(3))
x = DATOS2023P1$PARCIAL1_NOTAS
y = DATOS2023P1$SEXO
boxplot(x~y, horizontal = TRUE, col = rainbow(3))
x = DATOS2023P1$PARCIAL1_NOTAS
y = DATOS2023P1$PROGRAMA
boxplot(x~y, horizontal = FALSE, col = rainbow(3))
library(ggplot2)
ggplot(data= DATOS2023P1,mapping= aes(y=PARCIAL1_NOTAS,x = PROGRAMA, fill=SEXO))+geom_boxplot()+
scale_y_continuous(name = "PARCIAL 1") +
scale_x_discrete(labels = abbreviate, name = "PROGRAMA")
library(ggplot2)
ggplot(data= DATOS2023P1,mapping= aes(y=PARCIAL1_NOTAS,x = PROGRAMA, fill=FILAS))+geom_boxplot()+
scale_y_continuous(name = "PARCIAL 1") +
scale_x_discrete(labels = abbreviate, name = "PROGRAMA")
library(ggplot2)
ggplot(data= DATOS2023P1,mapping= aes(y=PARCIAL1_NOTAS,x = SEXO, fill=FILAS))+geom_boxplot()+
scale_y_continuous(name = "PARCIAL 1") +
scale_x_discrete(labels = abbreviate, name = "SEXO")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(summarytools)
summary(DATOS2023P1$PARCIAL1_NOTAS)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.400 3.000 3.700 3.614 4.300 5.300
P1tabla_9 <- freq(DATOS2023P1$DEF_C1)
P1tabla_9
## Frequencies
## DATOS2023P1$DEF_C1
## Type: Numeric
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## 1.5 1 1.18 1.18 1.18 1.18
## 2.3 1 1.18 2.35 1.18 2.35
## 2.4 2 2.35 4.71 2.35 4.71
## 2.6 1 1.18 5.88 1.18 5.88
## 2.8 2 2.35 8.24 2.35 8.24
## 2.9 1 1.18 9.41 1.18 9.41
## 3 1 1.18 10.59 1.18 10.59
## 3.1 2 2.35 12.94 2.35 12.94
## 3.2 1 1.18 14.12 1.18 14.12
## 3.3 7 8.24 22.35 8.24 22.35
## 3.4 3 3.53 25.88 3.53 25.88
## 3.5 2 2.35 28.24 2.35 28.24
## 3.6 5 5.88 34.12 5.88 34.12
## 3.7 10 11.76 45.88 11.76 45.88
## 3.8 5 5.88 51.76 5.88 51.76
## 3.9 7 8.24 60.00 8.24 60.00
## 4 1 1.18 61.18 1.18 61.18
## 4.1 5 5.88 67.06 5.88 67.06
## 4.2 3 3.53 70.59 3.53 70.59
## 4.3 3 3.53 74.12 3.53 74.12
## 4.4 4 4.71 78.82 4.71 78.82
## 4.5 5 5.88 84.71 5.88 84.71
## 4.6 4 4.71 89.41 4.71 89.41
## 4.8 4 4.71 94.12 4.71 94.12
## 4.9 3 3.53 97.65 3.53 97.65
## 5 2 2.35 100.00 2.35 100.00
## <NA> 0 0.00 100.00
## Total 85 100.00 100.00 100.00 100.00
boxplot(DATOS2023P1$DEF_C1, horizontal = TRUE, col = rainbow(3))
x = DATOS2023P1$DEF_C1
y = DATOS2023P1$SEXO
boxplot(x~y, horizontal = TRUE, col = rainbow(3))
x = DATOS2023P1$DEF_C1
y = DATOS2023P1$PROGRAMA
boxplot(x~y, horizontal = FALSE, col = rainbow(3))
library(ggplot2)
ggplot(data= DATOS2023P1,mapping= aes(y=DEF_C1,x = PROGRAMA, fill=SEXO))+geom_boxplot()+
scale_y_continuous(name = "DEF_C1") +
scale_x_discrete(labels = abbreviate, name = "PROGRAMA")
library(ggplot2)
ggplot(data= DATOS2023P1,mapping= aes(y=DEF_C1,x = PROGRAMA, fill=FILAS))+geom_boxplot()+
scale_y_continuous(name = "DEF_C1") +
scale_x_discrete(labels = abbreviate, name = "PROGRAMA")
library(ggplot2)
ggplot(data= DATOS2023P1,mapping= aes(y=DEF_C1,x = SEXO, fill=FILAS))+geom_boxplot()+
scale_y_continuous(name = "DEF_C1") +
scale_x_discrete(labels = abbreviate, name = "SEXO")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(summarytools)
tabla_8 <- freq(DATOS2023$EDAD)
tabla_8
## Frequencies
## DATOS2023$EDAD
## Type: Numeric
##
## Freq % Valid % Valid Cum. % Total % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
## 16 1 0.83 0.83 0.83 0.83
## 17 27 22.31 23.14 22.31 23.14
## 18 47 38.84 61.98 38.84 61.98
## 19 23 19.01 80.99 19.01 80.99
## 20 13 10.74 91.74 10.74 91.74
## 21 4 3.31 95.04 3.31 95.04
## 22 2 1.65 96.69 1.65 96.69
## 23 1 0.83 97.52 0.83 97.52
## 24 1 0.83 98.35 0.83 98.35
## 25 1 0.83 99.17 0.83 99.17
## 27 1 0.83 100.00 0.83 100.00
## <NA> 0 0.00 100.00
## Total 121 100.00 100.00 100.00 100.00
library(agricolae)
h2<-graph.freq(DATOS2023$EDAD, col=colors()[75]) #[86]
summary(h2)
plot(h2, col=colors()[70], frequency = 1)
polygon.freq(h2, col = "red", frequency = 1, lwd = 2)
plot(h2, col=colors()[70], frequency = 2)
polygon.freq(h2, col = "red", frequency = 2, lwd = 2)
fr_por_clase2<-h2$counts
fr_por_clase2
## [1] 28 47 36 4 2 2 1 1
total_n2<-sum(h2$counts)
total_n2
## [1] 121
fr_relativos2<-fr_por_clase2/total_n2
fr_porcentuales2<-100*fr_relativos2
fr_porcentuales2
## [1] 23.1404959 38.8429752 29.7520661 3.3057851 1.6528926 1.6528926 0.8264463
## [8] 0.8264463
cumsum(fr_por_clase2)
## [1] 28 75 111 115 117 119 120 121
cumsum(fr_relativos2)
## [1] 0.2314050 0.6198347 0.9173554 0.9504132 0.9669421 0.9834711 0.9917355
## [8] 1.0000000
cumsum(fr_porcentuales2)
## [1] 23.14050 61.98347 91.73554 95.04132 96.69421 98.34711 99.17355
## [8] 100.00000
p4<-cumsum(fr_porcentuales2)
plot(p4, col = "red")
lines(p4, col = "red")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("qz-p5xfx2rQ")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[Media = \bar{x} = \sum_{i} \frac{x_{i}*f_{i}}{n}\]
\[Mediana = \widetilde{x} = L_{i} + \left( \frac{0.5n-F_{i-1}}{f_{i}} \right)A_{i}\]
\[Moda = \widehat{x} = L_{i} + \left( \frac{D_1}{D_1+D_2} \right)A_{i}\]
\[Percentil = \widehat{P}_k = L_{i} + \left( \frac{0.kn-F_{i-1}}{f_{i}} \right)A_{i}\]
embed_youtube("d8EbV5bnpRw")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\[Varianza = S^2 = \sum_{i} \frac{(x_{i}-\bar{x})^2*f_{i}}{n-1}\]
\[Varianza = \sigma^2 = \sum_{i} \frac{(x_{i}-\mu)^2*f_{i}}{N}\]
\[\sigma= \sqrt{Varianza} = \sqrt{\sigma^2} =\sqrt{\sum_{i} \frac{(x_{i}-\mu)^2*f_{i}}{N}}\]
\[S =\sqrt{Varianza} =\sqrt{ S^2} =\sqrt{ \sum_{i} \frac{(x_{i}-\bar{x})^2*f_{i}}{n-1}}\]
\[C.V_{Poblacional}= \frac{\sigma}{\mu}*100\]
\[C.V_{muestral} =\frac{S}{\bar{x}}*100\]
summary(h2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Valor | Frecuencia | Valor | Frecuencia | Valor | Frecuencia | Valor | Frecuencia | Valor | Frecuencia |
---|---|---|---|---|---|---|---|---|---|
204 | 1 | 273 | 3 | 305 | 1 | 333 | 4 | 364 | 1 |
210 | 1 | 275 | 1 | 310 | 2 | 338 | 1 | 365 | 2 |
214 | 1 | 278 | 2 | 311 | 1 | 340 | 1 | 368 | 1 |
230 | 2 | 280 | 3 | 313 | 2 | 341 | 2 | 369 | 2 |
240 | 1 | 283 | 1 | 315 | 1 | 342 | 1 | 370 | 1 |
242 | 1 | 285 | 1 | 316 | 1 | 345 | 1 | 380 | 1 |
250 | 1 | 288 | 1 | 318 | 2 | 350 | 1 | ||
253 | 1 | 289 | 3 | 319 | 1 | 352 | 2 | ||
255 | 2 | 290 | 1 | 322 | 1 | 353 | 2 | ||
257 | 1 | 292 | 2 | 323 | 1 | 354 | 2 | ||
260 | 1 | 294 | 1 | 325 | 1 | 355 | 1 | ||
263 | 1 | 297 | 2 | 327 | 1 | 356 | 3 | ||
265 | 1 | 298 | 5 | 328 | 2 | 357 | 1 | ||
269 | 1 | 300 | 4 | 329 | 1 | 358 | 1 | ||
270 | 2 | 302 | 1 | 330 | 1 | 361 | 1 |
Clase |
---|
[204 - 226) |
[226 - 248) |
[248 - 270) |
[270 - 292) |
[292 - 314) |
[314 - 336) |
[336 - 358) |
[358 - 380] |
Clase | \(x_j\) | \(f_j\) | \(F_j\) | \(f_{r({\%})}\) | \(F_{a({\%})}\) |
---|---|---|---|---|---|
[204 - 226) | |||||
[226 - 248) | |||||
[248 - 270) | |||||
[270 - 292) | |||||
[292 - 314) | |||||
[314 - 336) | |||||
[336 - 358) | |||||
[358 - 380] |
\[Media = \bar{x} = \sum_{i} \frac{x_{i}*f_{i}}{n}\]
\[Mediana = \widetilde{x} = L_{i} + \left( \frac{0.5n-F_{i-1}}{f_{i}} \right)A_{i}\]
\[Moda = \widehat{x} = L_{i} + \left( \frac{D_1}{D_1+D_2} \right)A_{i}\]
\[Percentil = \widehat{P}_{36} = L_{i} + \left( \frac{0.36n-F_{i-1}}{f_{i}} \right)A_{i}\]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("Q2y2vOvkfvk")
embed_youtube("w5NO_r9saCM")
library(ggplot2) # Util para hacer gráficos, se puede hacer cualquier tipo de gráficos
library(gridExtra)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:gridExtra':
##
## combine
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(readr)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mango<-1000 #1500, 2000, 2500
manzana<-2500 #3000, 3500, 4000
aguacate<-4500 # 5000, 6000, 7000
precio_total<-5*aguacate+15*manzana+10*mango
precio_total
## [1] 70000
print(paste("precio_total es=", precio_total))
## [1] "precio_total es= 70000"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Edad1<-19
Edad2<-c(19, 20)
class(c(Edad1, Edad2))
## [1] "numeric"
J<-"Julio"
# observa la clase del nombre
class(J)
## [1] "character"
# es 1 mayor que 2
x<-1>2
# cual es la clase de esto
class(x)
## [1] "logical"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3+5 # Suma
## [1] 8
3*5 #Multiplicacion
## [1] 15
3**5 # Potencia
## [1] 243
8/2 #división
## [1] 4
8-2 #resta
## [1] 6
x<-10 # asignación de variable
y<-20 #asignación de variable
3*x
## [1] 30
2*x+6*y
## [1] 140
x^2+y^2
## [1] 500
z<-1:10
print(paste("La suma de los primeros 10 numeros es=", sum(z)))
## [1] "La suma de los primeros 10 numeros es= 55"
print(paste("La suma de los cuadrados de losprimeros 10 numeros es=", sum(z^2)))
## [1] "La suma de los cuadrados de losprimeros 10 numeros es= 385"
sum(z)
## [1] 55
sum(z^2)
## [1] 385
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Edad <- c(17, 18, 19, 20, 21, 22, 23, 24, 25)
5 +Edad
## [1] 22 23 24 25 26 27 28 29 30
Peso <-c(50, 55, 60, 65, 70, 75, 80, 85, 90)
3*Peso
## [1] 150 165 180 195 210 225 240 255 270
Peso**2
## [1] 2500 3025 3600 4225 4900 5625 6400 7225 8100
Peso/5
## [1] 10 11 12 13 14 15 16 17 18
Edad2 <- c(15, 16, 17, 18, 19, 20, 21, 22, 23)
Peso2 <-c(48, 50, 52, 56, 60, 65, 70, 75, 80)
Edad+Edad2
## [1] 32 34 36 38 40 42 44 46 48
Edad-Edad2
## [1] 2 2 2 2 2 2 2 2 2
Edad*Edad2
## [1] 255 288 323 360 399 440 483 528 575
2*Peso-3*Peso2
## [1] -44 -40 -36 -38 -40 -45 -50 -55 -60
length(Peso2)
## [1] 9
Peso2
## [1] 48 50 52 56 60 65 70 75 80
mean(Peso2)
## [1] 61.77778
Edad2
## [1] 15 16 17 18 19 20 21 22 23
mean(Edad2)
## [1] 19
sd(Edad2)
## [1] 2.738613
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("Z-1q5elVOcA")
library(readxl)
data2<-DATOS2023 <- read_excel("DATOS2023.xlsx")
data2
table_bv1<-table(DATOS2023$SEXO, DATOS2023$CURSO)
table_bv1
##
## ESTADISTICA I PROBABILIDAD
## F 49 13
## M 37 22
barp_bv1<-barplot(table_bv1,
main = "Gráfico de barras CURSO vs SEXO",
xlab = "CURSO", ylab = "Frecuencia",
col = c("pink", "blue"),
legend.text = rownames(table_bv1),
beside = TRUE) # Barras agrupadas
text(barp_bv1, table_bv1-5, labels = table_bv1)
table_bv2<-table(DATOS2023$ESTRATO, DATOS2023$CURSO)
table_bv2
##
## ESTADISTICA I PROBABILIDAD
## I 19 7
## II 27 16
## III 21 9
## IV 12 1
## V 3 1
## VI 3 0
## VII 0 1
barp_bv2<-barplot(table_bv2,
main = "Gráfico de barras CURSO vs ESTRATO",
xlab = "CURSO", ylab = "Frecuencia",
col = rainbow(5),
legend.text = rownames(table_bv2),
beside = TRUE) # Barras agrupadas
text(barp_bv2, table_bv2-1, labels = table_bv2)
x = DATOS2023$EDAD
y = DATOS2023$SEXO
boxplot(x~y, horizontal = TRUE, col = rainbow(3))
library(ggplot2)
x = DATOS2023$EDAD
z = DATOS2023$ESTRATO
boxplot(x~z, horizontal = TRUE, xlab = "EDAD", ylab = "ESTRATOS", col = rainbow(3))
library(ggplot2)
x = DATOS2023$ESTATURA
z = DATOS2023$SEXO
boxplot(x~z, horizontal = TRUE, xlab = "ESTATURA", ylab = "SEXO", col = rainbow(3))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
library(ggplot2)
x = DATOS2023$ESTATURA
y = DATOS2023$PESO
plot(x,y, xlab = "ESTATURA", ylab = "PESO", col = rainbow(3))
#dibujar una línea punteada vertical en el valor medio
mean(x)
## [1] 167.9339
mean(y)
## [1] 63.23967
abline (v = mean (x), lwd = 3, lty = 2)
#dibujar una línea punteada horizontal en el valor medio
abline (h = mean (y), lwd = 3, lty = 2)
mean(x)
## [1] 167.9339
mean(y)
## [1] 63.23967
\[Y = \beta_0 + \beta_1x +
\varepsilon\]
\[\widehat{Y} = a + bx\] #### Donde:
\[b = \frac{\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}}{\sum_{i=1}^{n}x_i^2-n\bar{x}^2}\]
\[a = \bar{y}-b\bar{x}\]
\[r = \frac{\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}}{\sqrt{\sum_{i=1}^{n}x_i^2-n\bar{x}^2}\sqrt{\sum_{i=1}^{n}y_i^2-n\bar{y}^2}}=\frac{S_{xy}}{S_{x}S_{y}}\] ## 1.52 Dos variables cuantitativas: Coeficiente de Correlación de Pearson usando RStudio
cor(x,y)
## [1] 0.4352732
regresion1 = lm(y~x, data=DATOS2023)
regresion1
##
## Call:
## lm(formula = y ~ x, data = DATOS2023)
##
## Coefficients:
## (Intercept) x
## -13.2018 0.4552
\[\widehat{Y} = a + bx = -13.2018+0.4552x\]
regresion2 = lm(x~y, data=DATOS2023)
regresion2
##
## Call:
## lm(formula = x ~ y, data = DATOS2023)
##
## Coefficients:
## (Intercept) y
## 141.6116 0.4162
\[\widehat{x} = c + dy = 141.6116+0.4162y\]
summary(regresion2)
##
## Call:
## lm(formula = x ~ y, data = DATOS2023)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.418 -3.585 0.420 5.577 20.988
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 141.61164 5.09334 27.803 < 2e-16 ***
## y 0.41623 0.07892 5.274 6.06e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.18 on 119 degrees of freedom
## Multiple R-squared: 0.1895, Adjusted R-squared: 0.1827
## F-statistic: 27.82 on 1 and 119 DF, p-value: 6.057e-07
library(ggplot2)
x = DATOS2023$ESTATURA
y = DATOS2023$PESO
plot(x,y, xlab = "ESTATURA", ylab = "PESO", col = rainbow(3), main = "y_ajus= a + bx = -13.2018+0.4552x, r= 0.4352732")
#dibujar una línea punteada vertical en el valor medio
abline (v = mean (x), lwd = 3, lty = 2)
#dibujar una línea punteada horizontal en el valor medio
abline (h = mean (y), lwd = 3, lty = 2)
#ajustar un modelo de regresión lineal a los datos
regresion1 <- lm (y ~ x, data = DATOS2023)
#definir los valores de intersección y pendiente
a <- -13.20178 #Intercepto
b <- 0.4552 # pendiente
#agregue la línea de regresión ajustada al diagrama de dispersión
abline (a = a, b = b, col = "steelblue")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
taller_rl <- data.frame (x = c (88, 77, 68, 80, 68, 55, 89, 61, 72, 72, 79, 75, 68, 65, 70, 52, 78, 55, 96, 75, 44, 57, 60, 50, 93), y = c (175, 183, 158, 165, 175, 160, 160, 156, 174, 171, 160, 184, 163, 176, 167, 172, 168, 167, 181, 175, 153, 154, 169, 168, 187))
plot(taller_rl$x,taller_rl$y, xlab = "PESO", ylab = "ESTATURA", col = rainbow(3))
#dibujar una línea punteada vertical en el valor medio
mean(taller_rl$x)
## [1] 69.88
mean(taller_rl$y)
## [1] 168.84
abline (v = mean (taller_rl$x), lwd = 3, lty = 2)
#dibujar una línea punteada horizontal en el valor medio
abline (h = mean (taller_rl$y), lwd = 3, lty = 2)
cor(taller_rl$x,taller_rl$y)
## [1] 0.5133798
regresion3 = lm(taller_rl$y~taller_rl$x, data=taller_rl)
regresion3
##
## Call:
## lm(formula = taller_rl$y ~ taller_rl$x, data = taller_rl)
##
## Coefficients:
## (Intercept) taller_rl$x
## 143.9296 0.3565
\[\widehat{Y} = a + bx = 143.9296+0.3565x\]
summary(regresion3)
##
## Call:
## lm(formula = taller_rl$y ~ taller_rl$x, data = taller_rl)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.656 -6.614 1.404 6.247 13.335
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 143.9296 8.8404 16.281 4.06e-14 ***
## taller_rl$x 0.3565 0.1242 2.869 0.00867 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.315 on 23 degrees of freedom
## Multiple R-squared: 0.2636, Adjusted R-squared: 0.2315
## F-statistic: 8.231 on 1 and 23 DF, p-value: 0.008673
plot(taller_rl$x,taller_rl$y, xlab = "PESO", ylab = "ESTATURA", col = rainbow(3))
#dibujar una línea punteada vertical en el valor medio
mean(taller_rl$x)
## [1] 69.88
mean(taller_rl$y)
## [1] 168.84
abline (v = mean (taller_rl$x), lwd = 3, lty = 2)
#dibujar una línea punteada horizontal en el valor medio
abline (h = mean (taller_rl$y), lwd = 3, lty = 2)
#ajustar un modelo de regresión lineal a los datos
regresion3 = lm(taller_rl$y~taller_rl$x, data=taller_rl)
#definir los valores de intersección y pendiente
a <- 143.9296 #Intercepto
b <- 0.3565 # pendiente
#agregue la línea de regresión ajustada al diagrama de dispersión
abline (a = a, b = b, col = "steelblue")
Coeficiente de correlación | Interpretación |
---|---|
\(r=1\) o \(r=-1\) | Correlación Perfecta |
\(0.8<r<1\) o \(-1<r<-0.8\) | Correlación muy alta |
\(0.6<r<0.8\) o \(-0.8<r<-0.6\) | Correlación alta |
\(0.4<r<0.6\) o \(-0.6<r<-0.4\) | Correlación moderada |
\(0.2<r<0.4\) o \(-0.4<r<-0.2\) | Correlación Baja |
\(0.0<r<0.2\) o \(-0.2<r<0.0\) | Correlación muy baja |
\(r=0.0\) | Correlación Nula |
Coeficiente \(R^2\) | Interpretación |
---|---|
\(r^2=1\) | La variabilidad del Modelo \(b_0+b_1*x\) explica en un 100% la variabilidad observada en \(Y\) |
\(0.8<r^2<1\) | La variabilidad del Modelo \(b_0+b_1*x\) explica en un muy alto porcentaje la variabilidad observada en \(Y\) |
\(0.6<r^2<0.8\) | La variabilidad del Modelo \(b_0+b_1*x\) explica en un alto porcentaje la variabilidad observada en \(Y\) |
\(0.4<r^2<0.6\) | La variabilidad del Modelo \(b_0+b_1*x\) explica en moderado porcentaje la variabilidad observada en \(Y\) |
\(0.2<r^2<0.4\) | La variabilidad del Modelo \(b_0+b_1*x\) explica en un bajo porcentaje la variabilidad observada en \(Y\) |
\(0.0<r^2<0.2\) | La variabilidad del Modelo \(b_0+b_1*x\) explica en un muy bajo porcentaje la variabilidad observada en \(Y\) |
\(r^2=0.0\) | La variabilidad del Modelo \(b_0+b_1*x\) No explica la variabilidad observada en \(Y\) |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
embed_youtube("QRe33fZGiT0")
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%