Final Project Introduction
The final project for MBDA 730 requires students to explore an
ongoing series of projects published by the New
York Times Privacy Project.
Part 1.
The project is required to be a RMD file that compares and critiques
the ethics and fairness framework among three projects. Within the
submission students are required to provide a summary of each project,
identify unwanted or unexpected consequences of each project. Identify
the impacts from each of the consequences. Reference the source of harm
from the consequences. Finally, based on the recommendation systems in
AI provide recommendations for implementation into each project.
Part 2.
Part 2 of the final project asks students to reference current
efforts to address issues presented in Part 1 of the assignment. Current
projects can be found by exploring the Data Privacy Lab.
Based on the projects selected from Part 1 (facial recognition,
policy gaps, and genomic privacy) pick three reserach projects that are
attempting to address those data privacy concerns. This section of the
paper should describe how to New York Times Project and the Privacy
Project are related and explain how methods presented in the Privacy
Project will help solve Privacy issues presented in the New York Time
Project.
Homework Assignment 2
I would like to explore facial recognition, data privacy legislation,
and genomic privacy during my final project. The three topics, like
most, are intertwined with each other. I will address these issues
through a tiered approach of importance. First, I believe legislation
and regulations will enable government and private privacy protection
measures as seen through how hospitals protect patient information, how
government and businesses use facial recognition, and creating genomic
privacy. Only though legislation will it be reasonable to assume there
will be meaningful protections for how data is shared, de-identified,
and collected in the governmental and private domains.
Privacy Protection Laws and Regulations
To adress the issue of lagging privacy protection policy in the
United States, I have found the project The
Government Protects our Food and Cars. Why Not our Data? (Singer,
2019). Within the New York Times article there is no shortage of data
sources to justify the argument from the author that the United States
requires more robust data privacy legislation. The author references
famous data security breaches like what occured with Strava location
data, Apple facetime security, and Fitbit vulnerabilities. However, the
bulk of the authors argument circulates around the severe inquiry
between what the government regulates vs. how it regulates data. The
culmination of the authors argument is that a seperate independent
agency similar to the Food and Drug Administration (FDA) should be
created to address how the government oversees how data is protected
within the United States.
The data privacy lab project that adderesses the need for a HIPPA
privacy protection legistlation is Patient
Privacy Risks in U.S. Supreme Court Case Sorrell vs. IMS Health
(Sweeney, n.d.). Just like the New York Times Privacy Project article,
the court case found that there was a lack in regulations in how HIPPA
data is protected to prevent re-identification and how re-identification
could negatively impact society.
Facial Recognition
To address data privacy issues regarding facial recognition software,
I will explore the project You’re
In a Police Line Up Right Now (Garvie, 2019). The article presents
vignettes that show common pitfalls from the misuse, bias, and
protection of facial recognition in application. While the video
presents other data ethics concerns such as informed consent of how our
data is shared, and general anonymity concerns, the focus is how law
enforcement leverages facial recognition technology taken from photos
collected from when Americans apply for a drivers license.
The privacy lab project that outlines recommendations for
implementation of privacy protection with facial regocnition technology
is Preserving
Privacy by De-Identifying Facial Images (Newton, 2003). In the
project, algorithms are proposed that continue to allow the benefit of
facial recognition technology while continuing to prevent potential
harms that can occur from its use. The author’s present several methods
to de identify facial images without removing the value of facial
regocntion technoliogy by understanding that methods such as a
completely pixelated face would render a systems useless.
Genomic Privacy
To address genomic privacy I will explore the project Why
Are You Publicly Sharing Your Child’s DNA Information (Bala, 2019).
The focus of this section will address how genomic privacy is required
for anonymity and illustrate the pitfalls from release of genomic
information. In the New Yor Times Privacy Project article the author
presents dangers from employing services from companies like 23 and Me,
Map my Gene, and Org3n. The author explains how by utilizing the
services, consumers inadvertently share familal information and erode
the privacy of the consumer’s family.
The privacy lab project that presents solutions for the issue is Why
Pseudonyms Don’t Anonymize: A Computational Re-identification Analysis
of Genomic Data Privacy Protection Systems (Malin, 2003). While the
New York Times Project presents dangers in how family members can be
identified through genomic testing, the Privacy Project article aims to
present methods to protect genomic data from re-identification attacks.
The methods presented in this paper strenthen how genomic data is
protected without removing the value from analysis of genome data.
References
Bala, N. (2020). Why Are You Sharing Your Child’s DNA Information?
New York Times. Retieved January 28, 2023 from https://www.nytimes.com/2020/01/02/opinion/dna-test-privacy-children.html
Garvie, C. (2019). You’re In A Police Lineup Right Now. New York
Times. Retrieved January 27, 2023 from https://www.nytimes.com/2019/10/15/opinion/facial-recognition-police.html
Malin, B. (2003). Why Pseudonyms Don’t Anonymize: A Computational
Re-identification Analysis of Genomic Data Privacy Protection Systems.
Carnegie Melon University. Retrieved January 28, 2023 from https://dataprivacylab.org/dataprivacy/projects/linkage/lidap-wp19.pdf
Newton, E., Sweeney, L., Malin, B. (2003). Preserving Privacy by
De-Identifying Facial Images. Carnegie Melon University. Retrieved
January 27, 2023 from https://dataprivacylab.org/dataprivacy/projects/video/paper.pdf
Singer, N. (2019). The Government Protects out Food and Cars. Why Not
Our Data? New York Times. Retrieved January 26, 2023 from https://www.nytimes.com/2019/11/02/sunday-review/data-protection-privacy.html
Sweeney, L. (n.d.). Patient Privacy Risks in U.S. Supreme Court Case
Sorrell vs. IMS Health. Privacy Lab Project. Retrieved January 26, from
https://dataprivacylab.org/projects/identifiability/pharma2.pdf
LS0tCnRpdGxlOiAiTUJEQSA3MzAgV2VlayAzIEhvbWV3b3JrIgphdXRob3I6ICJEYXZpZCBDdXJ0aXMiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OiB0cnVlCiAgICBkZl9wcmludDogcGFnZWQKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKLS0tCgojIyBGaW5hbCBQcm9qZWN0IEludHJvZHVjdGlvbgoKVGhlIGZpbmFsIHByb2plY3QgZm9yIE1CREEgNzMwIHJlcXVpcmVzIHN0dWRlbnRzIHRvIGV4cGxvcmUgYW4gb25nb2luZyBzZXJpZXMgb2YgcHJvamVjdHMgcHVibGlzaGVkIGJ5IHRoZSBbTmV3IFlvcmsgVGltZXMgUHJpdmFjeSBQcm9qZWN0XShodHRwczovL3d3dy5ueXRpbWVzLmNvbS9zZXJpZXMvbmV3LXlvcmstdGltZXMtcHJpdmFjeS1wcm9qZWN0KS4gCgojIyMgUGFydCAxLgoKVGhlIHByb2plY3QgaXMgcmVxdWlyZWQgdG8gYmUgYSBSTUQgZmlsZSB0aGF0IGNvbXBhcmVzIGFuZCBjcml0aXF1ZXMgdGhlIGV0aGljcyBhbmQgZmFpcm5lc3MgZnJhbWV3b3JrIGFtb25nIHRocmVlIHByb2plY3RzLiAgV2l0aGluIHRoZSBzdWJtaXNzaW9uIHN0dWRlbnRzIGFyZSByZXF1aXJlZCB0byBwcm92aWRlIGEgc3VtbWFyeSBvZiBlYWNoIHByb2plY3QsIGlkZW50aWZ5IHVud2FudGVkIG9yIHVuZXhwZWN0ZWQgY29uc2VxdWVuY2VzIG9mIGVhY2ggcHJvamVjdC4gIElkZW50aWZ5IHRoZSBpbXBhY3RzIGZyb20gZWFjaCBvZiB0aGUgY29uc2VxdWVuY2VzLiBSZWZlcmVuY2UgdGhlIHNvdXJjZSBvZiBoYXJtIGZyb20gdGhlIGNvbnNlcXVlbmNlcy4gRmluYWxseSwgYmFzZWQgb24gdGhlIHJlY29tbWVuZGF0aW9uIHN5c3RlbXMgaW4gQUkgcHJvdmlkZSByZWNvbW1lbmRhdGlvbnMgZm9yIGltcGxlbWVudGF0aW9uIGludG8gZWFjaCBwcm9qZWN0LgoKIyMjIFBhcnQgMi4KClBhcnQgMiBvZiB0aGUgZmluYWwgcHJvamVjdCBhc2tzIHN0dWRlbnRzIHRvIHJlZmVyZW5jZSBjdXJyZW50IGVmZm9ydHMgdG8gYWRkcmVzcyBpc3N1ZXMgcHJlc2VudGVkIGluIFBhcnQgMSBvZiB0aGUgYXNzaWdubWVudC4gIEN1cnJlbnQgcHJvamVjdHMgY2FuIGJlIGZvdW5kIGJ5IGV4cGxvcmluZyB0aGUgW0RhdGEgUHJpdmFjeSBMYWJdKGh0dHBzOi8vZGF0YXByaXZhY3lsYWIub3JnL3Byb2plY3RzLykuCgpCYXNlZCBvbiB0aGUgcHJvamVjdHMgc2VsZWN0ZWQgZnJvbSBQYXJ0IDEgKGZhY2lhbCByZWNvZ25pdGlvbiwgcG9saWN5IGdhcHMsIGFuZCBnZW5vbWljIHByaXZhY3kpIHBpY2sgdGhyZWUgcmVzZXJhY2ggcHJvamVjdHMgdGhhdCBhcmUgYXR0ZW1wdGluZyB0byBhZGRyZXNzIHRob3NlIGRhdGEgcHJpdmFjeSBjb25jZXJucy4gIFRoaXMgc2VjdGlvbiBvZiB0aGUgcGFwZXIgc2hvdWxkIGRlc2NyaWJlIGhvdyB0byBOZXcgWW9yayBUaW1lcyBQcm9qZWN0IGFuZCB0aGUgUHJpdmFjeSBQcm9qZWN0IGFyZSByZWxhdGVkIGFuZCBleHBsYWluIGhvdyBtZXRob2RzIHByZXNlbnRlZCBpbiB0aGUgUHJpdmFjeSBQcm9qZWN0IHdpbGwgaGVscCBzb2x2ZSBQcml2YWN5IGlzc3VlcyBwcmVzZW50ZWQgaW4gdGhlIE5ldyBZb3JrIFRpbWUgUHJvamVjdC4KCiMjIEhvbWV3b3JrIEFzc2lnbm1lbnQgMgoKSSB3b3VsZCBsaWtlIHRvIGV4cGxvcmUgZmFjaWFsIHJlY29nbml0aW9uLCBkYXRhIHByaXZhY3kgbGVnaXNsYXRpb24sIGFuZCBnZW5vbWljIHByaXZhY3kgZHVyaW5nIG15IGZpbmFsIHByb2plY3QuIFRoZSB0aHJlZSB0b3BpY3MsIGxpa2UgbW9zdCwgYXJlIGludGVydHdpbmVkIHdpdGggZWFjaCBvdGhlci4gIEkgd2lsbCBhZGRyZXNzIHRoZXNlIGlzc3VlcyB0aHJvdWdoIGEgdGllcmVkIGFwcHJvYWNoIG9mIGltcG9ydGFuY2UuICBGaXJzdCwgSSBiZWxpZXZlIGxlZ2lzbGF0aW9uIGFuZCByZWd1bGF0aW9ucyB3aWxsIGVuYWJsZSBnb3Zlcm5tZW50IGFuZCBwcml2YXRlIHByaXZhY3kgcHJvdGVjdGlvbiBtZWFzdXJlcyBhcyBzZWVuIHRocm91Z2ggaG93IGhvc3BpdGFscyBwcm90ZWN0IHBhdGllbnQgaW5mb3JtYXRpb24sIGhvdyBnb3Zlcm5tZW50IGFuZCBidXNpbmVzc2VzIHVzZSBmYWNpYWwgcmVjb2duaXRpb24sIGFuZCBjcmVhdGluZyBnZW5vbWljIHByaXZhY3kuICBPbmx5IHRob3VnaCBsZWdpc2xhdGlvbiB3aWxsIGl0IGJlIHJlYXNvbmFibGUgdG8gYXNzdW1lIHRoZXJlIHdpbGwgYmUgbWVhbmluZ2Z1bCBwcm90ZWN0aW9ucyBmb3IgaG93IGRhdGEgaXMgc2hhcmVkLCBkZS1pZGVudGlmaWVkLCBhbmQgY29sbGVjdGVkIGluIHRoZSBnb3Zlcm5tZW50YWwgYW5kIHByaXZhdGUgZG9tYWlucy4KCiMjIyBQcml2YWN5IFByb3RlY3Rpb24gTGF3cyBhbmQgUmVndWxhdGlvbnMKVG8gYWRyZXNzIHRoZSBpc3N1ZSBvZiBsYWdnaW5nIHByaXZhY3kgcHJvdGVjdGlvbiBwb2xpY3kgaW4gdGhlIFVuaXRlZCBTdGF0ZXMsIEkgaGF2ZSBmb3VuZCB0aGUgcHJvamVjdCBbVGhlIEdvdmVybm1lbnQgUHJvdGVjdHMgb3VyIEZvb2QgYW5kIENhcnMuIFdoeSBOb3Qgb3VyIERhdGE/XShodHRwczovL3d3dy5ueXRpbWVzLmNvbS8yMDE5LzExLzAyL3N1bmRheS1yZXZpZXcvZGF0YS1wcm90ZWN0aW9uLXByaXZhY3kuaHRtbCkgKFNpbmdlciwgMjAxOSkuIFdpdGhpbiB0aGUgTmV3IFlvcmsgVGltZXMgYXJ0aWNsZSB0aGVyZSBpcyBubyBzaG9ydGFnZSBvZiBkYXRhIHNvdXJjZXMgdG8ganVzdGlmeSB0aGUgYXJndW1lbnQgZnJvbSB0aGUgYXV0aG9yIHRoYXQgdGhlIFVuaXRlZCBTdGF0ZXMgcmVxdWlyZXMgbW9yZSByb2J1c3QgZGF0YSBwcml2YWN5IGxlZ2lzbGF0aW9uLiAgVGhlIGF1dGhvciByZWZlcmVuY2VzIGZhbW91cyBkYXRhIHNlY3VyaXR5IGJyZWFjaGVzIGxpa2Ugd2hhdCBvY2N1cmVkIHdpdGggU3RyYXZhIGxvY2F0aW9uIGRhdGEsIEFwcGxlIGZhY2V0aW1lIHNlY3VyaXR5LCBhbmQgRml0Yml0IHZ1bG5lcmFiaWxpdGllcy4gIEhvd2V2ZXIsIHRoZSBidWxrIG9mIHRoZSBhdXRob3JzIGFyZ3VtZW50IGNpcmN1bGF0ZXMgYXJvdW5kIHRoZSBzZXZlcmUgaW5xdWlyeSBiZXR3ZWVuIHdoYXQgdGhlIGdvdmVybm1lbnQgcmVndWxhdGVzIHZzLiBob3cgaXQgcmVndWxhdGVzIGRhdGEuICBUaGUgY3VsbWluYXRpb24gb2YgdGhlIGF1dGhvcnMgYXJndW1lbnQgaXMgdGhhdCBhIHNlcGVyYXRlIGluZGVwZW5kZW50IGFnZW5jeSBzaW1pbGFyIHRvIHRoZSBGb29kIGFuZCBEcnVnIEFkbWluaXN0cmF0aW9uIChGREEpIHNob3VsZCBiZSBjcmVhdGVkIHRvIGFkZHJlc3MgaG93IHRoZSBnb3Zlcm5tZW50IG92ZXJzZWVzIGhvdyBkYXRhIGlzIHByb3RlY3RlZCB3aXRoaW4gdGhlIFVuaXRlZCBTdGF0ZXMuCgpUaGUgZGF0YSBwcml2YWN5IGxhYiBwcm9qZWN0IHRoYXQgYWRkZXJlc3NlcyB0aGUgbmVlZCBmb3IgYSBISVBQQSBwcml2YWN5IHByb3RlY3Rpb24gbGVnaXN0bGF0aW9uIGlzIFtQYXRpZW50IFByaXZhY3kgUmlza3MgaW4gVS5TLiBTdXByZW1lIENvdXJ0IENhc2UgU29ycmVsbCB2cy4gSU1TIEhlYWx0aF0oaHR0cHM6Ly9kYXRhcHJpdmFjeWxhYi5vcmcvcHJvamVjdHMvaWRlbnRpZmlhYmlsaXR5L3BoYXJtYTIucGRmKSAoU3dlZW5leSwgbi5kLikuICBKdXN0IGxpa2UgdGhlIE5ldyBZb3JrIFRpbWVzIFByaXZhY3kgUHJvamVjdCBhcnRpY2xlLCB0aGUgY291cnQgY2FzZSBmb3VuZCB0aGF0IHRoZXJlIHdhcyBhIGxhY2sgaW4gcmVndWxhdGlvbnMgaW4gaG93IEhJUFBBIGRhdGEgaXMgcHJvdGVjdGVkIHRvIHByZXZlbnQgcmUtaWRlbnRpZmljYXRpb24gYW5kIGhvdyByZS1pZGVudGlmaWNhdGlvbiBjb3VsZCBuZWdhdGl2ZWx5IGltcGFjdCBzb2NpZXR5LiAgCgojIyMgRmFjaWFsIFJlY29nbml0aW9uClRvIGFkZHJlc3MgZGF0YSBwcml2YWN5IGlzc3VlcyByZWdhcmRpbmcgZmFjaWFsIHJlY29nbml0aW9uIHNvZnR3YXJlLCBJIHdpbGwgZXhwbG9yZSB0aGUgcHJvamVjdCBbWW91J3JlIEluIGEgUG9saWNlIExpbmUgVXAgUmlnaHQgTm93XShodHRwczovL3d3dy5ueXRpbWVzLmNvbS8yMDE5LzEwLzE1L29waW5pb24vZmFjaWFsLXJlY29nbml0aW9uLXBvbGljZS5odG1sKSAoR2FydmllLCAyMDE5KS4gVGhlIGFydGljbGUgcHJlc2VudHMgdmlnbmV0dGVzIHRoYXQgc2hvdyBjb21tb24gcGl0ZmFsbHMgZnJvbSB0aGUgbWlzdXNlLCBiaWFzLCBhbmQgcHJvdGVjdGlvbiBvZiBmYWNpYWwgcmVjb2duaXRpb24gaW4gYXBwbGljYXRpb24uICBXaGlsZSB0aGUgdmlkZW8gcHJlc2VudHMgb3RoZXIgZGF0YSBldGhpY3MgY29uY2VybnMgc3VjaCBhcyBpbmZvcm1lZCBjb25zZW50IG9mIGhvdyBvdXIgZGF0YSBpcyBzaGFyZWQsIGFuZCBnZW5lcmFsIGFub255bWl0eSBjb25jZXJucywgdGhlIGZvY3VzIGlzIGhvdyBsYXcgZW5mb3JjZW1lbnQgbGV2ZXJhZ2VzIGZhY2lhbCByZWNvZ25pdGlvbiB0ZWNobm9sb2d5IHRha2VuIGZyb20gcGhvdG9zIGNvbGxlY3RlZCBmcm9tIHdoZW4gQW1lcmljYW5zIGFwcGx5IGZvciBhIGRyaXZlcnMgbGljZW5zZS4gCgpUaGUgcHJpdmFjeSBsYWIgcHJvamVjdCB0aGF0IG91dGxpbmVzIHJlY29tbWVuZGF0aW9ucyBmb3IgaW1wbGVtZW50YXRpb24gb2YgcHJpdmFjeSBwcm90ZWN0aW9uIHdpdGggZmFjaWFsIHJlZ29jbml0aW9uIHRlY2hub2xvZ3kgaXMgW1ByZXNlcnZpbmcgUHJpdmFjeSBieSBEZS1JZGVudGlmeWluZyBGYWNpYWwgSW1hZ2VzXShodHRwczovL2RhdGFwcml2YWN5bGFiLm9yZy9kYXRhcHJpdmFjeS9wcm9qZWN0cy92aWRlby9wYXBlci5wZGYpIChOZXd0b24sIDIwMDMpLiBJbiB0aGUgcHJvamVjdCwgYWxnb3JpdGhtcyBhcmUgcHJvcG9zZWQgdGhhdCBjb250aW51ZSB0byBhbGxvdyB0aGUgYmVuZWZpdCBvZiBmYWNpYWwgcmVjb2duaXRpb24gdGVjaG5vbG9neSB3aGlsZSBjb250aW51aW5nIHRvIHByZXZlbnQgcG90ZW50aWFsIGhhcm1zIHRoYXQgY2FuIG9jY3VyIGZyb20gaXRzIHVzZS4gIFRoZSBhdXRob3IncyBwcmVzZW50IHNldmVyYWwgbWV0aG9kcyB0byBkZSBpZGVudGlmeSBmYWNpYWwgaW1hZ2VzIHdpdGhvdXQgcmVtb3ZpbmcgdGhlIHZhbHVlIG9mIGZhY2lhbCByZWdvY250aW9uIHRlY2hub2xpb2d5IGJ5IHVuZGVyc3RhbmRpbmcgdGhhdCBtZXRob2RzIHN1Y2ggYXMgYSBjb21wbGV0ZWx5IHBpeGVsYXRlZCBmYWNlIHdvdWxkIHJlbmRlciBhIHN5c3RlbXMgdXNlbGVzcy4gIAoKCiMjIyBHZW5vbWljIFByaXZhY3kKVG8gYWRkcmVzcyBnZW5vbWljIHByaXZhY3kgSSB3aWxsIGV4cGxvcmUgdGhlIHByb2plY3QgW1doeSBBcmUgWW91IFB1YmxpY2x5IFNoYXJpbmcgWW91ciBDaGlsZCdzIEROQSBJbmZvcm1hdGlvbl0oaHR0cHM6Ly93d3cubnl0aW1lcy5jb20vMjAyMC8wMS8wMi9vcGluaW9uL2RuYS10ZXN0LXByaXZhY3ktY2hpbGRyZW4uaHRtbCkgKEJhbGEsIDIwMTkpLiAgVGhlIGZvY3VzIG9mIHRoaXMgc2VjdGlvbiB3aWxsIGFkZHJlc3MgaG93IGdlbm9taWMgcHJpdmFjeSBpcyByZXF1aXJlZCBmb3IgYW5vbnltaXR5IGFuZCBpbGx1c3RyYXRlIHRoZSBwaXRmYWxscyBmcm9tIHJlbGVhc2Ugb2YgZ2Vub21pYyBpbmZvcm1hdGlvbi4gIEluIHRoZSBOZXcgWW9yIFRpbWVzIFByaXZhY3kgUHJvamVjdCBhcnRpY2xlIHRoZSBhdXRob3IgcHJlc2VudHMgZGFuZ2VycyBmcm9tIGVtcGxveWluZyBzZXJ2aWNlcyBmcm9tIGNvbXBhbmllcyBsaWtlIDIzIGFuZCBNZSwgTWFwIG15IEdlbmUsIGFuZCBPcmczbi4gIFRoZSBhdXRob3IgZXhwbGFpbnMgaG93IGJ5IHV0aWxpemluZyB0aGUgc2VydmljZXMsIGNvbnN1bWVycyBpbmFkdmVydGVudGx5IHNoYXJlIGZhbWlsYWwgaW5mb3JtYXRpb24gYW5kIGVyb2RlIHRoZSBwcml2YWN5IG9mIHRoZSBjb25zdW1lcidzIGZhbWlseS4gIAoKVGhlIHByaXZhY3kgbGFiIHByb2plY3QgdGhhdCBwcmVzZW50cyBzb2x1dGlvbnMgZm9yIHRoZSBpc3N1ZSBpcyBbV2h5IFBzZXVkb255bXMgRG9u4oCZdCBBbm9ueW1pemU6IEEgQ29tcHV0YXRpb25hbCBSZS1pZGVudGlmaWNhdGlvbiBBbmFseXNpcyBvZiBHZW5vbWljIERhdGEgUHJpdmFjeSBQcm90ZWN0aW9uIFN5c3RlbXNdKGh0dHBzOi8vZGF0YXByaXZhY3lsYWIub3JnL2RhdGFwcml2YWN5L3Byb2plY3RzL2xpbmthZ2UvbGlkYXAtd3AxOS5wZGYpIChNYWxpbiwgMjAwMykuICBXaGlsZSB0aGUgTmV3IFlvcmsgVGltZXMgUHJvamVjdCBwcmVzZW50cyBkYW5nZXJzIGluIGhvdyBmYW1pbHkgbWVtYmVycyBjYW4gYmUgaWRlbnRpZmllZCB0aHJvdWdoIGdlbm9taWMgdGVzdGluZywgdGhlIFByaXZhY3kgUHJvamVjdCBhcnRpY2xlIGFpbXMgdG8gcHJlc2VudCBtZXRob2RzIHRvIHByb3RlY3QgZ2Vub21pYyBkYXRhIGZyb20gcmUtaWRlbnRpZmljYXRpb24gYXR0YWNrcy4gIFRoZSBtZXRob2RzIHByZXNlbnRlZCBpbiB0aGlzIHBhcGVyIHN0cmVudGhlbiBob3cgZ2Vub21pYyBkYXRhIGlzIHByb3RlY3RlZCB3aXRob3V0IHJlbW92aW5nIHRoZSB2YWx1ZSBmcm9tIGFuYWx5c2lzIG9mIGdlbm9tZSBkYXRhLgoKIyMgUmVmZXJlbmNlcwoKQmFsYSwgTi4gKDIwMjApLiBXaHkgQXJlIFlvdSBTaGFyaW5nIFlvdXIgQ2hpbGQncyBETkEgSW5mb3JtYXRpb24/IE5ldyBZb3JrIFRpbWVzLiBSZXRpZXZlZCBKYW51YXJ5IDI4LCAyMDIzIGZyb20gaHR0cHM6Ly93d3cubnl0aW1lcy5jb20vMjAyMC8wMS8wMi9vcGluaW9uL2RuYS10ZXN0LXByaXZhY3ktY2hpbGRyZW4uaHRtbAoKR2FydmllLCBDLiAoMjAxOSkuIFlvdSdyZSBJbiBBIFBvbGljZSBMaW5ldXAgUmlnaHQgTm93LiBOZXcgWW9yayBUaW1lcy4gUmV0cmlldmVkIEphbnVhcnkgMjcsIDIwMjMgZnJvbSBodHRwczovL3d3dy5ueXRpbWVzLmNvbS8yMDE5LzEwLzE1L29waW5pb24vZmFjaWFsLXJlY29nbml0aW9uLXBvbGljZS5odG1sCgpNYWxpbiwgQi4gKDIwMDMpLiBXaHkgUHNldWRvbnltcyBEb27igJl0IEFub255bWl6ZTogQSBDb21wdXRhdGlvbmFsIFJlLWlkZW50aWZpY2F0aW9uIEFuYWx5c2lzIG9mIEdlbm9taWMgRGF0YSBQcml2YWN5IFByb3RlY3Rpb24gU3lzdGVtcy4gQ2FybmVnaWUgTWVsb24gVW5pdmVyc2l0eS4gUmV0cmlldmVkIEphbnVhcnkgMjgsIDIwMjMgZnJvbSBodHRwczovL2RhdGFwcml2YWN5bGFiLm9yZy9kYXRhcHJpdmFjeS9wcm9qZWN0cy9saW5rYWdlL2xpZGFwLXdwMTkucGRmCgpOZXd0b24sIEUuLCBTd2VlbmV5LCBMLiwgTWFsaW4sIEIuICgyMDAzKS4gUHJlc2VydmluZyBQcml2YWN5IGJ5IERlLUlkZW50aWZ5aW5nIEZhY2lhbCBJbWFnZXMuIENhcm5lZ2llIE1lbG9uIFVuaXZlcnNpdHkuIFJldHJpZXZlZCBKYW51YXJ5IDI3LCAyMDIzIGZyb20gaHR0cHM6Ly9kYXRhcHJpdmFjeWxhYi5vcmcvZGF0YXByaXZhY3kvcHJvamVjdHMvdmlkZW8vcGFwZXIucGRmCgpTaW5nZXIsIE4uICgyMDE5KS4gVGhlIEdvdmVybm1lbnQgUHJvdGVjdHMgb3V0IEZvb2QgYW5kIENhcnMuIFdoeSBOb3QgT3VyIERhdGE/IE5ldyBZb3JrIFRpbWVzLiBSZXRyaWV2ZWQgSmFudWFyeSAyNiwgMjAyMyBmcm9tIGh0dHBzOi8vd3d3Lm55dGltZXMuY29tLzIwMTkvMTEvMDIvc3VuZGF5LXJldmlldy9kYXRhLXByb3RlY3Rpb24tcHJpdmFjeS5odG1sCgpTd2VlbmV5LCBMLiAobi5kLikuIFBhdGllbnQgUHJpdmFjeSBSaXNrcyBpbiBVLlMuIFN1cHJlbWUgQ291cnQgQ2FzZSBTb3JyZWxsIHZzLiBJTVMgSGVhbHRoLiBQcml2YWN5IExhYiBQcm9qZWN0LiBSZXRyaWV2ZWQgSmFudWFyeSAyNiwgZnJvbSBodHRwczovL2RhdGFwcml2YWN5bGFiLm9yZy9wcm9qZWN0cy9pZGVudGlmaWFiaWxpdHkvcGhhcm1hMi5wZGYKCgo=