This human activity recognition research has traditionally focused on discriminating between different activities, i.e. to predict “which” activity was performed at a specific point in time. This research is based on Human Activity Recognition(HAR) which have many potential applications for HAR, like: elderly monitoring, life log systems for monitoring energy expenditure and for supporting weight-loss programs, and digital assistants for weight lifting exercises. In this Machine Learning Experiment I’ve used the WLE Dataset (cite: http://groupware.les.inf.puc-rio.br/public/papers/2013.Velloso.QAR-WLE.pdf*). Six young health participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions: exactly according to the specification (Class A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E). This report shows how I’ve created a Machine Learning Model to predict such activities (A,B,C,D,E).

It should be noted that the transformations made on the Training Data Set must be made on the Testing as well. In my machine learning model I have used the Random Forests algorithm. Packages used:
-dplyr : for Data Wrangling -caret : for Model fitting and predictions
-doParellel: for CPU optimization

Exploring Data

After collecting data, we start our data analysis by exploring the data.
I used str function to explore the data.

#Exploring Data
dim(training)
## [1] 19622   160
dim(testing)
## [1]  20 160
str(training)
## 'data.frame':    19622 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : chr  "carlitos" "carlitos" "carlitos" "carlitos" ...
##  $ raw_timestamp_part_1    : int  1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 1323084232 ...
##  $ raw_timestamp_part_2    : int  788290 808298 820366 120339 196328 304277 368296 440390 484323 484434 ...
##  $ cvtd_timestamp          : chr  "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" "05/12/2011 11:23" ...
##  $ new_window              : chr  "no" "no" "no" "no" ...
##  $ num_window              : int  11 11 11 12 12 12 12 12 12 12 ...
##  $ roll_belt               : num  1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
##  $ pitch_belt              : num  8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
##  $ yaw_belt                : num  -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
##  $ total_accel_belt        : int  3 3 3 3 3 3 3 3 3 3 ...
##  $ kurtosis_roll_belt      : chr  "" "" "" "" ...
##  $ kurtosis_picth_belt     : chr  "" "" "" "" ...
##  $ kurtosis_yaw_belt       : chr  "" "" "" "" ...
##  $ skewness_roll_belt      : chr  "" "" "" "" ...
##  $ skewness_roll_belt.1    : chr  "" "" "" "" ...
##  $ skewness_yaw_belt       : chr  "" "" "" "" ...
##  $ max_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_belt            : chr  "" "" "" "" ...
##  $ min_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_belt          : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_belt            : chr  "" "" "" "" ...
##  $ amplitude_roll_belt     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : chr  "" "" "" "" ...
##  $ var_total_accel_belt    : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_belt           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_belt          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_belt            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
##  $ gyros_belt_y            : num  0 0 0 0 0.02 0 0 0 0 0 ...
##  $ gyros_belt_z            : num  -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
##  $ accel_belt_x            : int  -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
##  $ accel_belt_y            : int  4 4 5 3 2 4 3 4 2 4 ...
##  $ accel_belt_z            : int  22 22 23 21 24 21 21 21 24 22 ...
##  $ magnet_belt_x           : int  -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
##  $ magnet_belt_y           : int  599 608 600 604 600 603 599 603 602 609 ...
##  $ magnet_belt_z           : int  -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
##  $ roll_arm                : num  -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
##  $ pitch_arm               : num  22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
##  $ yaw_arm                 : num  -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
##  $ total_accel_arm         : int  34 34 34 34 34 34 34 34 34 34 ...
##  $ var_accel_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ var_yaw_arm             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
##  $ gyros_arm_y             : num  0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##  $ gyros_arm_z             : num  -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
##  $ accel_arm_x             : int  -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
##  $ accel_arm_y             : int  109 110 110 111 111 111 111 111 109 110 ...
##  $ accel_arm_z             : int  -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
##  $ magnet_arm_x            : int  -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
##  $ magnet_arm_y            : int  337 337 344 344 337 342 336 338 341 334 ...
##  $ magnet_arm_z            : int  516 513 513 512 506 513 509 510 518 516 ...
##  $ kurtosis_roll_arm       : chr  "" "" "" "" ...
##  $ kurtosis_picth_arm      : chr  "" "" "" "" ...
##  $ kurtosis_yaw_arm        : chr  "" "" "" "" ...
##  $ skewness_roll_arm       : chr  "" "" "" "" ...
##  $ skewness_pitch_arm      : chr  "" "" "" "" ...
##  $ skewness_yaw_arm        : chr  "" "" "" "" ...
##  $ max_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_roll_arm            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_arm           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_arm             : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  13.1 13.1 12.9 13.4 13.4 ...
##  $ pitch_dumbbell          : num  -70.5 -70.6 -70.3 -70.4 -70.4 ...
##  $ yaw_dumbbell            : num  -84.9 -84.7 -85.1 -84.9 -84.9 ...
##  $ kurtosis_roll_dumbbell  : chr  "" "" "" "" ...
##  $ kurtosis_picth_dumbbell : chr  "" "" "" "" ...
##  $ kurtosis_yaw_dumbbell   : chr  "" "" "" "" ...
##  $ skewness_roll_dumbbell  : chr  "" "" "" "" ...
##  $ skewness_pitch_dumbbell : chr  "" "" "" "" ...
##  $ skewness_yaw_dumbbell   : chr  "" "" "" "" ...
##  $ max_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : chr  "" "" "" "" ...
##  $ min_roll_dumbbell       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : chr  "" "" "" "" ...
##  $ amplitude_roll_dumbbell : num  NA NA NA NA NA NA NA NA NA NA ...
##   [list output truncated]
str(testing)
## 'data.frame':    20 obs. of  160 variables:
##  $ X                       : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ user_name               : chr  "pedro" "jeremy" "jeremy" "adelmo" ...
##  $ raw_timestamp_part_1    : int  1323095002 1322673067 1322673075 1322832789 1322489635 1322673149 1322673128 1322673076 1323084240 1322837822 ...
##  $ raw_timestamp_part_2    : int  868349 778725 342967 560311 814776 510661 766645 54671 916313 384285 ...
##  $ cvtd_timestamp          : chr  "05/12/2011 14:23" "30/11/2011 17:11" "30/11/2011 17:11" "02/12/2011 13:33" ...
##  $ new_window              : chr  "no" "no" "no" "no" ...
##  $ num_window              : int  74 431 439 194 235 504 485 440 323 664 ...
##  $ roll_belt               : num  123 1.02 0.87 125 1.35 -5.92 1.2 0.43 0.93 114 ...
##  $ pitch_belt              : num  27 4.87 1.82 -41.6 3.33 1.59 4.44 4.15 6.72 22.4 ...
##  $ yaw_belt                : num  -4.75 -88.9 -88.5 162 -88.6 -87.7 -87.3 -88.5 -93.7 -13.1 ...
##  $ total_accel_belt        : int  20 4 5 17 3 4 4 4 4 18 ...
##  $ kurtosis_roll_belt      : logi  NA NA NA NA NA NA ...
##  $ kurtosis_picth_belt     : logi  NA NA NA NA NA NA ...
##  $ kurtosis_yaw_belt       : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_belt      : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_belt.1    : logi  NA NA NA NA NA NA ...
##  $ skewness_yaw_belt       : logi  NA NA NA NA NA NA ...
##  $ max_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ max_picth_belt          : logi  NA NA NA NA NA NA ...
##  $ max_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ min_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ min_pitch_belt          : logi  NA NA NA NA NA NA ...
##  $ min_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ amplitude_roll_belt     : logi  NA NA NA NA NA NA ...
##  $ amplitude_pitch_belt    : logi  NA NA NA NA NA NA ...
##  $ amplitude_yaw_belt      : logi  NA NA NA NA NA NA ...
##  $ var_total_accel_belt    : logi  NA NA NA NA NA NA ...
##  $ avg_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ stddev_roll_belt        : logi  NA NA NA NA NA NA ...
##  $ var_roll_belt           : logi  NA NA NA NA NA NA ...
##  $ avg_pitch_belt          : logi  NA NA NA NA NA NA ...
##  $ stddev_pitch_belt       : logi  NA NA NA NA NA NA ...
##  $ var_pitch_belt          : logi  NA NA NA NA NA NA ...
##  $ avg_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ stddev_yaw_belt         : logi  NA NA NA NA NA NA ...
##  $ var_yaw_belt            : logi  NA NA NA NA NA NA ...
##  $ gyros_belt_x            : num  -0.5 -0.06 0.05 0.11 0.03 0.1 -0.06 -0.18 0.1 0.14 ...
##  $ gyros_belt_y            : num  -0.02 -0.02 0.02 0.11 0.02 0.05 0 -0.02 0 0.11 ...
##  $ gyros_belt_z            : num  -0.46 -0.07 0.03 -0.16 0 -0.13 0 -0.03 -0.02 -0.16 ...
##  $ accel_belt_x            : int  -38 -13 1 46 -8 -11 -14 -10 -15 -25 ...
##  $ accel_belt_y            : int  69 11 -1 45 4 -16 2 -2 1 63 ...
##  $ accel_belt_z            : int  -179 39 49 -156 27 38 35 42 32 -158 ...
##  $ magnet_belt_x           : int  -13 43 29 169 33 31 50 39 -6 10 ...
##  $ magnet_belt_y           : int  581 636 631 608 566 638 622 635 600 601 ...
##  $ magnet_belt_z           : int  -382 -309 -312 -304 -418 -291 -315 -305 -302 -330 ...
##  $ roll_arm                : num  40.7 0 0 -109 76.1 0 0 0 -137 -82.4 ...
##  $ pitch_arm               : num  -27.8 0 0 55 2.76 0 0 0 11.2 -63.8 ...
##  $ yaw_arm                 : num  178 0 0 -142 102 0 0 0 -167 -75.3 ...
##  $ total_accel_arm         : int  10 38 44 25 29 14 15 22 34 32 ...
##  $ var_accel_arm           : logi  NA NA NA NA NA NA ...
##  $ avg_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ stddev_roll_arm         : logi  NA NA NA NA NA NA ...
##  $ var_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ avg_pitch_arm           : logi  NA NA NA NA NA NA ...
##  $ stddev_pitch_arm        : logi  NA NA NA NA NA NA ...
##  $ var_pitch_arm           : logi  NA NA NA NA NA NA ...
##  $ avg_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ stddev_yaw_arm          : logi  NA NA NA NA NA NA ...
##  $ var_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ gyros_arm_x             : num  -1.65 -1.17 2.1 0.22 -1.96 0.02 2.36 -3.71 0.03 0.26 ...
##  $ gyros_arm_y             : num  0.48 0.85 -1.36 -0.51 0.79 0.05 -1.01 1.85 -0.02 -0.5 ...
##  $ gyros_arm_z             : num  -0.18 -0.43 1.13 0.92 -0.54 -0.07 0.89 -0.69 -0.02 0.79 ...
##  $ accel_arm_x             : int  16 -290 -341 -238 -197 -26 99 -98 -287 -301 ...
##  $ accel_arm_y             : int  38 215 245 -57 200 130 79 175 111 -42 ...
##  $ accel_arm_z             : int  93 -90 -87 6 -30 -19 -67 -78 -122 -80 ...
##  $ magnet_arm_x            : int  -326 -325 -264 -173 -170 396 702 535 -367 -420 ...
##  $ magnet_arm_y            : int  385 447 474 257 275 176 15 215 335 294 ...
##  $ magnet_arm_z            : int  481 434 413 633 617 516 217 385 520 493 ...
##  $ kurtosis_roll_arm       : logi  NA NA NA NA NA NA ...
##  $ kurtosis_picth_arm      : logi  NA NA NA NA NA NA ...
##  $ kurtosis_yaw_arm        : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_arm       : logi  NA NA NA NA NA NA ...
##  $ skewness_pitch_arm      : logi  NA NA NA NA NA NA ...
##  $ skewness_yaw_arm        : logi  NA NA NA NA NA NA ...
##  $ max_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ max_picth_arm           : logi  NA NA NA NA NA NA ...
##  $ max_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ min_roll_arm            : logi  NA NA NA NA NA NA ...
##  $ min_pitch_arm           : logi  NA NA NA NA NA NA ...
##  $ min_yaw_arm             : logi  NA NA NA NA NA NA ...
##  $ amplitude_roll_arm      : logi  NA NA NA NA NA NA ...
##  $ amplitude_pitch_arm     : logi  NA NA NA NA NA NA ...
##  $ amplitude_yaw_arm       : logi  NA NA NA NA NA NA ...
##  $ roll_dumbbell           : num  -17.7 54.5 57.1 43.1 -101.4 ...
##  $ pitch_dumbbell          : num  25 -53.7 -51.4 -30 -53.4 ...
##  $ yaw_dumbbell            : num  126.2 -75.5 -75.2 -103.3 -14.2 ...
##  $ kurtosis_roll_dumbbell  : logi  NA NA NA NA NA NA ...
##  $ kurtosis_picth_dumbbell : logi  NA NA NA NA NA NA ...
##  $ kurtosis_yaw_dumbbell   : logi  NA NA NA NA NA NA ...
##  $ skewness_roll_dumbbell  : logi  NA NA NA NA NA NA ...
##  $ skewness_pitch_dumbbell : logi  NA NA NA NA NA NA ...
##  $ skewness_yaw_dumbbell   : logi  NA NA NA NA NA NA ...
##  $ max_roll_dumbbell       : logi  NA NA NA NA NA NA ...
##  $ max_picth_dumbbell      : logi  NA NA NA NA NA NA ...
##  $ max_yaw_dumbbell        : logi  NA NA NA NA NA NA ...
##  $ min_roll_dumbbell       : logi  NA NA NA NA NA NA ...
##  $ min_pitch_dumbbell      : logi  NA NA NA NA NA NA ...
##  $ min_yaw_dumbbell        : logi  NA NA NA NA NA NA ...
##  $ amplitude_roll_dumbbell : logi  NA NA NA NA NA NA ...
##   [list output truncated]

Cleaning Dataset

We see that first row of the data set are the row indices. Excluding it from data. On exploring the data, it can be seen that there is an unwanted/unclean value “#DIV/0!”. Using gsub to replace unclean values with NA values.

#removing unwanted variables
training<-training[,-1]
testing<-testing[,-1]
testing<-testing[,-dim(testing)[2]]
for(i in 1:dim(training)[2])
{
  training[,i]<-gsub(pattern = "#DIV/0!",replacement = NA,training[,i])
}

for(i in 1:dim(testing)[2])
{
  testing[,i]<-gsub(pattern = "#DIV/0!",replacement = NA,testing[,i])
}

After cleaning the data, it is observed that the use of the gsub function converts all the variables to character type. In my exploratory analysis with this dataset, I realized that certain variables must be made to factor type and the rest of the variables to numeric for best results. The variables converted to factor type are: classe, cvtd_timestamp, new_window, num_window, total_accel_belt and user_name.

#Convert to factor type:
training<-mutate(training,classe=as.factor(classe))
training<-mutate(training,cvtd_timestamp=as.factor(cvtd_timestamp))
testing<-mutate(testing,cvtd_timestamp=as.factor(cvtd_timestamp))
training<-mutate(training,new_window=as.factor(new_window))
testing<-mutate(testing,new_window=as.factor(new_window))
training<-mutate(training,num_window=as.factor(num_window))
testing<-mutate(testing,num_window=as.factor(num_window))
training<-mutate(training,total_accel_belt=as.factor(total_accel_belt))
testing<-mutate(testing,total_accel_belt=as.factor(total_accel_belt))
training<-mutate(training,user_name=as.factor(user_name))
testing<-mutate(testing,user_name=as.factor(user_name))
#convert from character to numeric
for(i in c(2:3,6:(dim(training)[2]-1)))
{
  if(is.character(training[,i]))
  {
    class(training[,i])<-"numeric"
    class(testing[,i])<-"numeric"
  }
}

Selecting Covariates:

This is an important part in our Machine Learning Model building. I used the nearZeroVar function which calculates the total zero variance and near zero variance of the variables. For my machine learning algorith, I eliminated those variables with near zero values. Also, during the time of data exploration, I analyzed that a almost 50% of the variables were incomplete and would result to problems for making predictions. I excluded those variables from the dataset which have more than have of the fields as NA values.

nearZeroVar(training,saveMetrics = T)->asd
training<-training[,!asd$nzv]
testing<-testing[,!asd$nzv[1:length(asd$nzv)-1]]
#Removing Incomple Variables
index=NULL
for(i in 1:dim(training)[2])
{
  if((dim(training)[1]/2)<length(training[,i][is.na(training[,i])]))
  {
    index<-c(index,i)
  }
}
training<-training[,-index]
testing<-testing[,-index]

Building sub-training set.

I used a subtraining data set with around six thousand observations as the Random Forests model would have taken very very long for the original number of observations, ie. 19,000.

#Create subtraining data set
intrain<-createDataPartition(training$classe,p=.3,list=F)
subtraining<-training[intrain,]
subtesting<-training[-intrain,]
dim(subtraining)
## [1] 5889   58

Training the dataset

I then trained my subtraining dataset using the train function and passing method=‘rf’ as a parameter for using the Random Forests model.

#fit<-train(classe~.,subtraining,method="rf",na.action=na.pass)

Making Predictions using created model

The final part of the Data Analysis is making predictions using the predict function.

#predict(fit,testing)
##Loading required package: randomForest
##randomForest 4.6-10
##Type rfNews() to see new features/changes/bug fixes.

##Attaching package: 'randomForest'

##The following object is masked from 'package:dplyr':

##    combine

## [1] B A A A A E D B A A B C B A E E A B B B
##Levels: A B C D E

NOTE: Accuracy achieved using this Machine Learning Algorithm : 19/20, ie. 95 Percent.

Citation to Dataset and Research Paper:

Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human ’13) . Stuttgart, Germany: ACM SIGCHI, 2013.

http://groupware.les.inf.puc-rio.br/public/papers/2013.Velloso.QAR-WLE.pdf

Note: This dataset is licensed under the Creative Commons license (CC BY-SA). The CC BY-SA license means you can remix, tweak, and build upon this work even for commercial purposes, as long as you credit the authors of the original work and you license your new creations under the identical terms we are licensing to you. This license is often compared to “copyleft” free and open source software licenses. All new works based on this dataset will carry the same license, so any derivatives will also allow commercial use.