Directions

During ANLY 512 we will be studying the theory and practice of data visualization. We will be using R and the packages within R to assemble data and construct many different types of visualizations. Before we begin studying data visualizations we need to develop some data wrangling skills. We will use these skills to wrangle our data into a form that we can use for visualizations.

The objective of this assignment is to introduce you to R Studio, Rmarkdown, the tidyverse and more specifically the dplyr package.

Each question is worth 5 points.

To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyper linked and that I can see the visualization and the code required to create it.

Question #1

Use the nycflights13 package and the flights data frame to answer the following questions: a.What month had the highest proportion of cancelled flights? b.What month had the lowest?

#Load the required libraries
library(nycflights13)
library(dplyr)

#Check the dataset
head(flights)
## # A tibble: 6 × 19
##    year month   day dep_time sched_dep…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##   <int> <int> <int>    <int>       <int>   <dbl>   <int>   <int>   <dbl> <chr>  
## 1  2013     1     1      517         515       2     830     819      11 UA     
## 2  2013     1     1      533         529       4     850     830      20 UA     
## 3  2013     1     1      542         540       2     923     850      33 AA     
## 4  2013     1     1      544         545      -1    1004    1022     -18 B6     
## 5  2013     1     1      554         600      -6     812     837     -25 DL     
## 6  2013     1     1      554         558      -4     740     728      12 UA     
## # … with 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
## #   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
## #   time_hour <dttm>, and abbreviated variable names ¹​sched_dep_time,
## #   ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay
#Code
flights_data = flights %>% group_by(month) %>%
  summarise(flights_cancelled = sum(is.na(arr_delay)),
            total_flights = n(),
            cancelled_flights_prop = flights_cancelled/total_flights) %>%
  arrange(desc(cancelled_flights_prop))

#Output results
flights_data
## # A tibble: 12 × 4
##    month flights_cancelled total_flights cancelled_flights_prop
##    <int>             <int>         <int>                  <dbl>
##  1     2              1340         24951                0.0537 
##  2     6              1168         28243                0.0414 
##  3    12              1115         28135                0.0396 
##  4     7              1132         29425                0.0385 
##  5     3               932         28834                0.0323 
##  6     4               766         28330                0.0270 
##  7     5               668         28796                0.0232 
##  8     1               606         27004                0.0224 
##  9     9               564         27574                0.0205 
## 10     8               571         29327                0.0195 
## 11    11               297         27268                0.0109 
## 12    10               271         28889                0.00938
#Part a. What month had the highest proportion of cancelled flights?
#With 'cancelled_flights_prop' value of 0.053705262 , February (month 2) had the highest proportion of cancelled flights.

#Part b. What month had the lowest?
#With 'cancelled_flights_prop' value of 0.009380733, October (month 10) had the lowest proportion of cancelled flights.

Question #2

Consider the following pipeline:

library(tidyverse)

#mtcars %>%
#  group_by(cyl) %>%
#  summarize(avg_mpg = mean(mpg)) %>%
#  filter(am == 1)

What is the problem with this pipeline?

The issue with the above pipeline is the placement of ‘filter(am == 1)’ operator, since ‘group_by()’ and ‘summarize()’ functions are already being used before the filter operator, the only columns left are ‘cyl’ and ‘avg_mpg’. Due to which, we will get an error message on the assignment of ‘am’ column. In other words, the ‘am’ column does not exists after using the previous two functions.

Correct order of execution should be: mtcars %>% filter(am == 1) group_by(cyl) %>% summarize(avg_mpg = mean(mpg))

Question #3

Define two new variables in the Teams data frame in the pkg Lahman() package.

  1. batting average (BA). Batting average is the ratio of hits (H) to at-bats (AB)

  2. slugging percentage (SLG). Slugging percentage is total bases divided by at-bats (AB). To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

#Load the required library
library(Lahman)

#create a 'Teams' dataset variable
team_data = Teams

#Check the dataset
head(team_data)
##   yearID lgID teamID franchID divID Rank  G Ghome  W  L DivWin WCWin LgWin
## 1   1871   NA    BS1      BNA  <NA>    3 31    NA 20 10   <NA>  <NA>     N
## 2   1871   NA    CH1      CNA  <NA>    2 28    NA 19  9   <NA>  <NA>     N
## 3   1871   NA    CL1      CFC  <NA>    8 29    NA 10 19   <NA>  <NA>     N
## 4   1871   NA    FW1      KEK  <NA>    7 19    NA  7 12   <NA>  <NA>     N
## 5   1871   NA    NY2      NNA  <NA>    5 33    NA 16 17   <NA>  <NA>     N
## 6   1871   NA    PH1      PNA  <NA>    1 28    NA 21  7   <NA>  <NA>     Y
##   WSWin   R   AB   H X2B X3B HR BB SO SB CS HBP SF  RA  ER  ERA CG SHO SV
## 1  <NA> 401 1372 426  70  37  3 60 19 73 16  NA NA 303 109 3.55 22   1  3
## 2  <NA> 302 1196 323  52  21 10 60 22 69 21  NA NA 241  77 2.76 25   0  1
## 3  <NA> 249 1186 328  35  40  7 26 25 18  8  NA NA 341 116 4.11 23   0  0
## 4  <NA> 137  746 178  19   8  2 33  9 16  4  NA NA 243  97 5.17 19   1  0
## 5  <NA> 302 1404 403  43  21  1 33 15 46 15  NA NA 313 121 3.72 32   1  0
## 6  <NA> 376 1281 410  66  27  9 46 23 56 12  NA NA 266 137 4.95 27   0  0
##   IPouts  HA HRA BBA SOA   E DP    FP                    name
## 1    828 367   2  42  23 243 24 0.834    Boston Red Stockings
## 2    753 308   6  28  22 229 16 0.829 Chicago White Stockings
## 3    762 346  13  53  34 234 15 0.818  Cleveland Forest Citys
## 4    507 261   5  21  17 163  8 0.803    Fort Wayne Kekiongas
## 5    879 373   7  42  22 235 14 0.840        New York Mutuals
## 6    747 329   3  53  16 194 13 0.845  Philadelphia Athletics
##                           park attendance BPF PPF teamIDBR teamIDlahman45
## 1          South End Grounds I         NA 103  98      BOS            BS1
## 2      Union Base-Ball Grounds         NA 104 102      CHI            CH1
## 3 National Association Grounds         NA  96 100      CLE            CL1
## 4               Hamilton Field         NA 101 107      KEK            FW1
## 5     Union Grounds (Brooklyn)         NA  90  88      NYU            NY2
## 6     Jefferson Street Grounds         NA 102  98      ATH            PH1
##   teamIDretro
## 1         BS1
## 2         CH1
## 3         CL1
## 4         FW1
## 5         NY2
## 6         PH1
#Variable a. Batting Average (BA)
team_data = mutate(team_data, BA = H/AB) 

#Variable b. Slugging Percentage (SLG)
team_data = mutate(team_data, SLG = (H + 2*X2B + 3*X3B + 4*HR)/AB)

#Output additional columns
head(team_data)
##   yearID lgID teamID franchID divID Rank  G Ghome  W  L DivWin WCWin LgWin
## 1   1871   NA    BS1      BNA  <NA>    3 31    NA 20 10   <NA>  <NA>     N
## 2   1871   NA    CH1      CNA  <NA>    2 28    NA 19  9   <NA>  <NA>     N
## 3   1871   NA    CL1      CFC  <NA>    8 29    NA 10 19   <NA>  <NA>     N
## 4   1871   NA    FW1      KEK  <NA>    7 19    NA  7 12   <NA>  <NA>     N
## 5   1871   NA    NY2      NNA  <NA>    5 33    NA 16 17   <NA>  <NA>     N
## 6   1871   NA    PH1      PNA  <NA>    1 28    NA 21  7   <NA>  <NA>     Y
##   WSWin   R   AB   H X2B X3B HR BB SO SB CS HBP SF  RA  ER  ERA CG SHO SV
## 1  <NA> 401 1372 426  70  37  3 60 19 73 16  NA NA 303 109 3.55 22   1  3
## 2  <NA> 302 1196 323  52  21 10 60 22 69 21  NA NA 241  77 2.76 25   0  1
## 3  <NA> 249 1186 328  35  40  7 26 25 18  8  NA NA 341 116 4.11 23   0  0
## 4  <NA> 137  746 178  19   8  2 33  9 16  4  NA NA 243  97 5.17 19   1  0
## 5  <NA> 302 1404 403  43  21  1 33 15 46 15  NA NA 313 121 3.72 32   1  0
## 6  <NA> 376 1281 410  66  27  9 46 23 56 12  NA NA 266 137 4.95 27   0  0
##   IPouts  HA HRA BBA SOA   E DP    FP                    name
## 1    828 367   2  42  23 243 24 0.834    Boston Red Stockings
## 2    753 308   6  28  22 229 16 0.829 Chicago White Stockings
## 3    762 346  13  53  34 234 15 0.818  Cleveland Forest Citys
## 4    507 261   5  21  17 163  8 0.803    Fort Wayne Kekiongas
## 5    879 373   7  42  22 235 14 0.840        New York Mutuals
## 6    747 329   3  53  16 194 13 0.845  Philadelphia Athletics
##                           park attendance BPF PPF teamIDBR teamIDlahman45
## 1          South End Grounds I         NA 103  98      BOS            BS1
## 2      Union Base-Ball Grounds         NA 104 102      CHI            CH1
## 3 National Association Grounds         NA  96 100      CLE            CL1
## 4               Hamilton Field         NA 101 107      KEK            FW1
## 5     Union Grounds (Brooklyn)         NA  90  88      NYU            NY2
## 6     Jefferson Street Grounds         NA 102  98      ATH            PH1
##   teamIDretro        BA       SLG
## 1         BS1 0.3104956 0.5021866
## 2         CH1 0.2700669 0.4431438
## 3         CL1 0.2765599 0.4603710
## 4         FW1 0.2386059 0.3324397
## 5         NY2 0.2870370 0.3960114
## 6         PH1 0.3200625 0.5144418

Question #4

Using the Teams data frame in the pkg Lahman() package. display the top-5 teams ranked in terms of slugging percentage (SLG) in Major League Baseball history. Repeat this using teams since 1969. Slugging percentage is total bases divided by at-bats.To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

#Load the required library
library(Lahman)

#Part 1: Top 5 ranked teams 
top_5 = arrange(team_data, desc(SLG)) %>%
  select(yearID, teamID, SLG)

#Output top 5 teams
head(top_5, 5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320
#Part 2: Top 5 ranked teams since 1969
top_5_conditional = arrange(team_data, desc(SLG)) %>%
  select(yearID, teamID, SLG) %>%
  filter(yearID >= 1969)

#Output top 5 teams since 1969
head(top_5_conditional, 5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320

Question #5

Use the Batting, Pitching, and People tables in the pkg Lahman() package to answer the following questions.

  1. Name every player in baseball history who has accumulated at least 300 home runs (HR) and at least 300 stolen bases (SB). You can find the first and last name of the player in the Master data frame. Join this to your result along with the total home runs and total bases stolen for each of these elite players.

  2. Similarly, name every pitcher in baseball history who has accumulated at least 300 wins (W) and at least 3,000 strikeouts (SO).

  3. Identify the name and year of every player who has hit at least 50 home runs in a single season. Which player had the lowest batting average in that season?

#Load the required library
library(Lahman)

##Part a
b_data = Batting %>% 
  group_by(playerID) %>% 
  summarise(total_HR = sum(HR),
            total_SB = sum(SB)) %>%
  filter(total_HR >= 300 &
           total_SB >= 300) %>%
  inner_join(People, by = c('playerID' = 'playerID')) %>%
  select(nameFirst, nameLast, total_HR, total_SB)

#Output results
b_data
## # A tibble: 8 × 4
##   nameFirst nameLast  total_HR total_SB
##   <chr>     <chr>        <int>    <int>
## 1 Carlos    Beltran        435      312
## 2 Barry     Bonds          762      514
## 3 Bobby     Bonds          332      461
## 4 Andre     Dawson         438      314
## 5 Steve     Finley         304      320
## 6 Willie    Mays           660      338
## 7 Alex      Rodriguez      696      329
## 8 Reggie    Sanders        305      304
##Part b
p_data = Pitching %>% 
  group_by(playerID) %>% 
  summarise(total_W = sum(W),
            total_SO = sum(SO)) %>%
  filter(total_W >= 300 &
           total_SO >= 3000) %>%
  inner_join(People, by = c('playerID' = 'playerID')) %>%
  select(nameFirst, nameLast, total_W, total_SO)

#Output results
p_data
## # A tibble: 10 × 4
##    nameFirst nameLast total_W total_SO
##    <chr>     <chr>      <int>    <int>
##  1 Steve     Carlton      329     4136
##  2 Roger     Clemens      354     4672
##  3 Randy     Johnson      303     4875
##  4 Walter    Johnson      417     3509
##  5 Greg      Maddux       355     3371
##  6 Phil      Niekro       318     3342
##  7 Gaylord   Perry        314     3534
##  8 Nolan     Ryan         324     5714
##  9 Tom       Seaver       311     3640
## 10 Don       Sutton       324     3574
##Part c
ba_data = Batting %>%
  group_by(playerID, yearID) %>%
  summarise(total_HR = sum(HR), 
            BA = sum(H)/sum(AB)) %>%
  filter(total_HR >= 50) %>%
  inner_join(People, by = c('playerID' = 'playerID')) %>%
  select(nameFirst, nameLast, yearID, total_HR, BA) %>%
  ungroup() %>%
  arrange(BA)

#Output results
ba_data
## # A tibble: 46 × 6
##    playerID  nameFirst nameLast yearID total_HR    BA
##    <chr>     <chr>     <chr>     <int>    <int> <dbl>
##  1 alonspe01 Pete      Alonso     2019       53 0.260
##  2 bautijo02 Jose      Bautista   2010       54 0.260
##  3 jonesan01 Andruw    Jones      2005       51 0.263
##  4 marisro01 Roger     Maris      1961       61 0.269
##  5 vaughgr01 Greg      Vaughn     1998       50 0.272
##  6 mcgwima01 Mark      McGwire    1997       58 0.274
##  7 fieldce01 Cecil     Fielder    1990       51 0.277
##  8 mcgwima01 Mark      McGwire    1999       65 0.278
##  9 stantmi03 Giancarlo Stanton    2017       59 0.281
## 10 judgeaa01 Aaron     Judge      2017       52 0.284
## # … with 36 more rows