Directions

During ANLY 512 we will be studying the theory and practice of data visualization. We will be using R and the packages within R to assemble data and construct many different types of visualizations. Before we begin studying data visualizations we need to develop some data wrangling skills. We will use these skills to wrangle our data into a form that we can use for visualizations.

The objective of this assignment is to introduce you to R Studio, Rmarkdown, the tidyverse and more specifically the dplyr package.

Each question is worth 5 points.

To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyper linked and that I can see the visualization and the code required to create it.

Question #1

Use the nycflights13 package and the flights data frame to answer the following questions: a.What month had the highest proportion of cancelled flights? b.What month had the lowest?

library(nycflights13)
glimpse(flights)
## Rows: 336,776
## Columns: 19
## $ year           <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…
## $ month          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ day            <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ dep_time       <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, …
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, …
## $ dep_delay      <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1…
## $ arr_time       <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,…
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,…
## $ arr_delay      <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1…
## $ carrier        <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "…
## $ flight         <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4…
## $ tailnum        <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394…
## $ origin         <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",…
## $ dest           <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",…
## $ air_time       <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1…
## $ distance       <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, …
## $ hour           <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6…
## $ minute         <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0…
## $ time_hour      <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0…
summary(flights)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 106  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 906  
##  Median :2013   Median : 7.000   Median :16.00   Median :1401   Median :1359  
##  Mean   :2013   Mean   : 6.549   Mean   :15.71   Mean   :1349   Mean   :1344  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##                                                  NA's   :8255                 
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1124   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1556   Median :  -5.000  
##  Mean   :  12.64   Mean   :1502   Mean   :1536   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1945   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##  NA's   :8255      NA's   :8713                  NA's   :9430      
##    carrier              flight       tailnum             origin         
##  Length:336776      Min.   :   1   Length:336776      Length:336776     
##  Class :character   1st Qu.: 553   Class :character   Class :character  
##  Mode  :character   Median :1496   Mode  :character   Mode  :character  
##                     Mean   :1972                                        
##                     3rd Qu.:3465                                        
##                     Max.   :8500                                        
##                                                                         
##      dest              air_time        distance         hour      
##  Length:336776      Min.   : 20.0   Min.   :  17   Min.   : 1.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 502   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 872   Median :13.00  
##                     Mean   :150.7   Mean   :1040   Mean   :13.18  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##                     NA's   :9430                                  
##      minute        time_hour                     
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00.00  
##  1st Qu.: 8.00   1st Qu.:2013-04-04 13:00:00.00  
##  Median :29.00   Median :2013-07-03 10:00:00.00  
##  Mean   :26.23   Mean   :2013-07-03 05:22:54.64  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 07:00:00.00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00.00  
## 
flights %>% 
  group_by(month) %>%
  summarise(canc_prop = (sum(is.na(dep_time))/n()) * 100) %>% 
  arrange(desc(canc_prop))
## # A tibble: 12 × 2
##    month canc_prop
##    <int>     <dbl>
##  1     2     5.05 
##  2    12     3.64 
##  3     6     3.57 
##  4     7     3.19 
##  5     3     2.99 
##  6     4     2.36 
##  7     5     1.96 
##  8     1     1.93 
##  9     8     1.66 
## 10     9     1.64 
## 11    11     0.854
## 12    10     0.817
  1. February (month 2) is the month that had the highest proportion of cancelled flights.
  2. The lowest proportion of cancelled flights was in the month of October (month 10).

Question #2

Consider the following pipeline:

library(tidyverse)

summary(mtcars)

mtcars %>%
  group_by(cyl) %>%
  summarize(avg_mpg = mean(mpg)) %>%
  filter(am == 1)

What is the problem with this pipeline?

mtcars %>%
  group_by(cyl) %>%
  filter(am == 1) %>%
  summarize(avg_mpg = mean(mpg))

Filter being after the summarizing part of pipeline caused the problem. Moving the filter piece between grouping and summarizing parts helped to solve the issue.

Question #3

Define two new variables in the Teams data frame in the pkg Lahman() package.

  1. batting average (BA). Batting average is the ratio of hits (H) to at-bats (AB)

  2. slugging percentage (SLG). Slugging percentage is total bases divided by at-bats (AB). To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
head(Teams)
##   yearID lgID teamID franchID divID Rank  G Ghome  W  L DivWin WCWin LgWin
## 1   1871   NA    BS1      BNA  <NA>    3 31    NA 20 10   <NA>  <NA>     N
## 2   1871   NA    CH1      CNA  <NA>    2 28    NA 19  9   <NA>  <NA>     N
## 3   1871   NA    CL1      CFC  <NA>    8 29    NA 10 19   <NA>  <NA>     N
## 4   1871   NA    FW1      KEK  <NA>    7 19    NA  7 12   <NA>  <NA>     N
## 5   1871   NA    NY2      NNA  <NA>    5 33    NA 16 17   <NA>  <NA>     N
## 6   1871   NA    PH1      PNA  <NA>    1 28    NA 21  7   <NA>  <NA>     Y
##   WSWin   R   AB   H X2B X3B HR BB SO SB CS HBP SF  RA  ER  ERA CG SHO SV
## 1  <NA> 401 1372 426  70  37  3 60 19 73 16  NA NA 303 109 3.55 22   1  3
## 2  <NA> 302 1196 323  52  21 10 60 22 69 21  NA NA 241  77 2.76 25   0  1
## 3  <NA> 249 1186 328  35  40  7 26 25 18  8  NA NA 341 116 4.11 23   0  0
## 4  <NA> 137  746 178  19   8  2 33  9 16  4  NA NA 243  97 5.17 19   1  0
## 5  <NA> 302 1404 403  43  21  1 33 15 46 15  NA NA 313 121 3.72 32   1  0
## 6  <NA> 376 1281 410  66  27  9 46 23 56 12  NA NA 266 137 4.95 27   0  0
##   IPouts  HA HRA BBA SOA   E DP    FP                    name
## 1    828 367   2  42  23 243 24 0.834    Boston Red Stockings
## 2    753 308   6  28  22 229 16 0.829 Chicago White Stockings
## 3    762 346  13  53  34 234 15 0.818  Cleveland Forest Citys
## 4    507 261   5  21  17 163  8 0.803    Fort Wayne Kekiongas
## 5    879 373   7  42  22 235 14 0.840        New York Mutuals
## 6    747 329   3  53  16 194 13 0.845  Philadelphia Athletics
##                           park attendance BPF PPF teamIDBR teamIDlahman45
## 1          South End Grounds I         NA 103  98      BOS            BS1
## 2      Union Base-Ball Grounds         NA 104 102      CHI            CH1
## 3 National Association Grounds         NA  96 100      CLE            CL1
## 4               Hamilton Field         NA 101 107      KEK            FW1
## 5     Union Grounds (Brooklyn)         NA  90  88      NYU            NY2
## 6     Jefferson Street Grounds         NA 102  98      ATH            PH1
##   teamIDretro
## 1         BS1
## 2         CH1
## 3         CL1
## 4         FW1
## 5         NY2
## 6         PH1
summary(Teams)
##      yearID     lgID          teamID        franchID       divID          
##  Min.   :1871   AA:  85   CHN    : 146   ATL    : 146   Length:2985       
##  1st Qu.:1922   AL:1295   PHI    : 139   CHC    : 146   Class :character  
##  Median :1967   FL:  16   PIT    : 135   CIN    : 140   Mode  :character  
##  Mean   :1959   NA:  50   CIN    : 132   PIT    : 140                     
##  3rd Qu.:1997   NL:1519   SLN    : 130   STL    : 140                     
##  Max.   :2021   PL:   8   BOS    : 121   PHI    : 139                     
##                 UA:  12   (Other):2182   (Other):2134                     
##       Rank              G           Ghome             W         
##  Min.   : 1.000   Min.   :  6   Min.   :24.00   Min.   :  0.00  
##  1st Qu.: 2.000   1st Qu.:154   1st Qu.:77.00   1st Qu.: 66.00  
##  Median : 4.000   Median :159   Median :81.00   Median : 77.00  
##  Mean   : 4.039   Mean   :150   Mean   :78.05   Mean   : 74.61  
##  3rd Qu.: 6.000   3rd Qu.:162   3rd Qu.:81.00   3rd Qu.: 87.00  
##  Max.   :13.000   Max.   :165   Max.   :84.00   Max.   :116.00  
##                                 NA's   :399                     
##        L             DivWin             WCWin              LgWin          
##  Min.   :  4.00   Length:2985        Length:2985        Length:2985       
##  1st Qu.: 65.00   Class :character   Class :character   Class :character  
##  Median : 76.00   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 74.61                                                           
##  3rd Qu.: 87.00                                                           
##  Max.   :134.00                                                           
##                                                                           
##     WSWin                 R              AB             H       
##  Length:2985        Min.   :  24   Min.   : 211   Min.   :  33  
##  Class :character   1st Qu.: 614   1st Qu.:5135   1st Qu.:1299  
##  Mode  :character   Median : 691   Median :5402   Median :1390  
##                     Mean   : 681   Mean   :5129   Mean   :1339  
##                     3rd Qu.: 764   3rd Qu.:5519   3rd Qu.:1465  
##                     Max.   :1220   Max.   :5781   Max.   :1783  
##                                                                 
##       X2B             X3B               HR              BB       
##  Min.   :  1.0   Min.   :  0.00   Min.   :  0.0   Min.   :  1.0  
##  1st Qu.:194.0   1st Qu.: 29.00   1st Qu.: 45.0   1st Qu.:425.8  
##  Median :234.0   Median : 40.00   Median :110.0   Median :494.0  
##  Mean   :228.7   Mean   : 45.67   Mean   :105.9   Mean   :473.6  
##  3rd Qu.:272.0   3rd Qu.: 59.00   3rd Qu.:155.0   3rd Qu.:554.2  
##  Max.   :376.0   Max.   :150.00   Max.   :307.0   Max.   :835.0  
##                                                   NA's   :1      
##        SO               SB              CS              HBP        
##  Min.   :   3.0   Min.   :  1.0   Min.   :  3.00   Min.   :  7.00  
##  1st Qu.: 516.0   1st Qu.: 62.5   1st Qu.: 33.00   1st Qu.: 32.00  
##  Median : 761.0   Median : 93.0   Median : 44.00   Median : 43.00  
##  Mean   : 762.1   Mean   :109.4   Mean   : 46.55   Mean   : 45.82  
##  3rd Qu.: 990.0   3rd Qu.:137.0   3rd Qu.: 56.00   3rd Qu.: 57.00  
##  Max.   :1596.0   Max.   :581.0   Max.   :191.00   Max.   :160.00  
##  NA's   :16       NA's   :126     NA's   :832      NA's   :1158    
##        SF              RA             ER              ERA       
##  Min.   : 7.00   Min.   :  34   Min.   :  23.0   Min.   :1.220  
##  1st Qu.:38.00   1st Qu.: 610   1st Qu.: 503.0   1st Qu.:3.370  
##  Median :44.00   Median : 689   Median : 594.0   Median :3.840  
##  Mean   :44.11   Mean   : 681   Mean   : 573.4   Mean   :3.841  
##  3rd Qu.:50.00   3rd Qu.: 766   3rd Qu.: 671.0   3rd Qu.:4.330  
##  Max.   :77.00   Max.   :1252   Max.   :1023.0   Max.   :8.000  
##  NA's   :1541                                                   
##        CG              SHO               SV            IPouts    
##  Min.   :  0.00   Min.   : 0.000   Min.   : 0.00   Min.   : 162  
##  1st Qu.:  9.00   1st Qu.: 6.000   1st Qu.:10.00   1st Qu.:4080  
##  Median : 41.00   Median : 9.000   Median :25.00   Median :4252  
##  Mean   : 47.55   Mean   : 9.588   Mean   :24.42   Mean   :4013  
##  3rd Qu.: 76.00   3rd Qu.:12.000   3rd Qu.:39.00   3rd Qu.:4341  
##  Max.   :148.00   Max.   :32.000   Max.   :68.00   Max.   :4518  
##                                                                  
##        HA            HRA             BBA             SOA        
##  Min.   :  49   Min.   :  0.0   Min.   :  1.0   Min.   :   0.0  
##  1st Qu.:1287   1st Qu.: 51.0   1st Qu.:429.0   1st Qu.: 511.0  
##  Median :1389   Median :113.0   Median :495.0   Median : 762.0  
##  Mean   :1339   Mean   :105.9   Mean   :473.7   Mean   : 761.6  
##  3rd Qu.:1468   3rd Qu.:153.0   3rd Qu.:554.0   3rd Qu.: 997.0  
##  Max.   :1993   Max.   :305.0   Max.   :827.0   Max.   :1687.0  
##                                                                 
##        E               DP              FP             name          
##  Min.   : 20.0   Min.   :  0.0   Min.   :0.7610   Length:2985       
##  1st Qu.:111.0   1st Qu.:116.0   1st Qu.:0.9660   Class :character  
##  Median :141.0   Median :140.0   Median :0.9770   Mode  :character  
##  Mean   :180.8   Mean   :132.6   Mean   :0.9664                     
##  3rd Qu.:207.0   3rd Qu.:157.0   3rd Qu.:0.9810                     
##  Max.   :639.0   Max.   :217.0   Max.   :0.9910                     
##                                                                     
##      park             attendance           BPF             PPF       
##  Length:2985        Min.   :      0   Min.   : 60.0   Min.   : 60.0  
##  Class :character   1st Qu.: 538461   1st Qu.: 97.0   1st Qu.: 97.0  
##  Mode  :character   Median :1190886   Median :100.0   Median :100.0  
##                     Mean   :1376599   Mean   :100.2   Mean   :100.2  
##                     3rd Qu.:2066598   3rd Qu.:103.0   3rd Qu.:103.0  
##                     Max.   :4483350   Max.   :129.0   Max.   :141.0  
##                     NA's   :279                                      
##    teamIDBR         teamIDlahman45     teamIDretro       
##  Length:2985        Length:2985        Length:2985       
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##                                                          
##                                                          
##                                                          
## 
Teams = mutate(Teams, BA=H/AB)
Teams = mutate(Teams, SLG=(H+2*X2B+3*X3B+4*HR)/AB)
colnames(Teams)
##  [1] "yearID"         "lgID"           "teamID"         "franchID"      
##  [5] "divID"          "Rank"           "G"              "Ghome"         
##  [9] "W"              "L"              "DivWin"         "WCWin"         
## [13] "LgWin"          "WSWin"          "R"              "AB"            
## [17] "H"              "X2B"            "X3B"            "HR"            
## [21] "BB"             "SO"             "SB"             "CS"            
## [25] "HBP"            "SF"             "RA"             "ER"            
## [29] "ERA"            "CG"             "SHO"            "SV"            
## [33] "IPouts"         "HA"             "HRA"            "BBA"           
## [37] "SOA"            "E"              "DP"             "FP"            
## [41] "name"           "park"           "attendance"     "BPF"           
## [45] "PPF"            "teamIDBR"       "teamIDlahman45" "teamIDretro"   
## [49] "BA"             "SLG"

Question #4

Using the Teams data frame in the pkg Lahman() package. display the top-5 teams ranked in terms of slugging percentage (SLG) in Major League Baseball history. Repeat this using teams since 1969. Slugging percentage is total bases divided by at-bats.To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
Teams %>%
  select(teamID,SLG,yearID) %>%
  arrange(desc(SLG)) %>%
  head(5)
##   teamID       SLG yearID
## 1    HOU 0.6092998   2019
## 2    MIN 0.6071179   2019
## 3    BOS 0.6033975   2003
## 4    NYA 0.5996776   2019
## 5    ATL 0.5964320   2020
Teams %>%
  filter(yearID>=1969) %>%
  select(teamID,SLG,yearID) %>%
  arrange(desc(SLG)) %>%
  head(5)
##   teamID       SLG yearID
## 1    HOU 0.6092998   2019
## 2    MIN 0.6071179   2019
## 3    BOS 0.6033975   2003
## 4    NYA 0.5996776   2019
## 5    ATL 0.5964320   2020

Adding the filter didn’t change results as the top-5 teams by SLG are all from the 21st century.

Question #5

Use the Batting, Pitching, and People tables in the pkg Lahman() package to answer the following questions.

a.Name every player in baseball history who has accumulated at least 300 home runs (HR) and at least 300 stolen bases (SB). You can find the first and last name of the player in the Master data frame. Join this to your result along with the total home runs and total bases stolen for each of these elite players.

  1. Similarly, name every pitcher in baseball history who has accumulated at least 300 wins (W) and at least 3,000 strikeouts (SO).

  2. Identify the name and year of every player who has hit at least 50 home runs in a single season. Which player had the lowest batting average in that season?

library(Lahman)
head(Batting)
##    playerID yearID stint teamID lgID  G  AB  R  H X2B X3B HR RBI SB CS BB SO
## 1 abercda01   1871     1    TRO   NA  1   4  0  0   0   0  0   0  0  0  0  0
## 2  addybo01   1871     1    RC1   NA 25 118 30 32   6   0  0  13  8  1  4  0
## 3 allisar01   1871     1    CL1   NA 29 137 28 40   4   5  0  19  3  1  2  5
## 4 allisdo01   1871     1    WS3   NA 27 133 28 44  10   2  2  27  1  1  0  2
## 5 ansonca01   1871     1    RC1   NA 25 120 29 39  11   3  0  16  6  2  2  1
## 6 armstbo01   1871     1    FW1   NA 12  49  9 11   2   1  0   5  0  1  0  1
##   IBB HBP SH SF GIDP
## 1  NA  NA NA NA    0
## 2  NA  NA NA NA    0
## 3  NA  NA NA NA    1
## 4  NA  NA NA NA    0
## 5  NA  NA NA NA    0
## 6  NA  NA NA NA    0
head(Pitching)
##    playerID yearID stint teamID lgID  W  L  G GS CG SHO SV IPouts   H  ER HR BB
## 1 bechtge01   1871     1    PH1   NA  1  2  3  3  2   0  0     78  43  23  0 11
## 2 brainas01   1871     1    WS3   NA 12 15 30 30 30   0  0    792 361 132  4 37
## 3 fergubo01   1871     1    NY2   NA  0  0  1  0  0   0  0      3   8   3  0  0
## 4 fishech01   1871     1    RC1   NA  4 16 24 24 22   1  0    639 295 103  3 31
## 5 fleetfr01   1871     1    NY2   NA  0  1  1  1  1   0  0     27  20  10  0  3
## 6 flowedi01   1871     1    TRO   NA  0  0  1  0  0   0  0      3   1   0  0  0
##   SO BAOpp   ERA IBB WP HBP BK  BFP GF   R SH SF GIDP
## 1  1    NA  7.96  NA  7  NA  0  146  0  42 NA NA   NA
## 2 13    NA  4.50  NA  7  NA  0 1291  0 292 NA NA   NA
## 3  0    NA 27.00  NA  2  NA  0   14  0   9 NA NA   NA
## 4 15    NA  4.35  NA 20  NA  0 1080  1 257 NA NA   NA
## 5  0    NA 10.00  NA  0  NA  0   57  0  21 NA NA   NA
## 6  0    NA  0.00  NA  0  NA  0    3  1   0 NA NA   NA
head(People)
##    playerID birthYear birthMonth birthDay birthCountry birthState  birthCity
## 1 aardsda01      1981         12       27          USA         CO     Denver
## 2 aaronha01      1934          2        5          USA         AL     Mobile
## 3 aaronto01      1939          8        5          USA         AL     Mobile
## 4  aasedo01      1954          9        8          USA         CA     Orange
## 5  abadan01      1972          8       25          USA         FL Palm Beach
## 6  abadfe01      1985         12       17         D.R.  La Romana  La Romana
##   deathYear deathMonth deathDay deathCountry deathState deathCity nameFirst
## 1        NA         NA       NA         <NA>       <NA>      <NA>     David
## 2      2021          1       22          USA         GA   Atlanta      Hank
## 3      1984          8       16          USA         GA   Atlanta    Tommie
## 4        NA         NA       NA         <NA>       <NA>      <NA>       Don
## 5        NA         NA       NA         <NA>       <NA>      <NA>      Andy
## 6        NA         NA       NA         <NA>       <NA>      <NA>  Fernando
##   nameLast        nameGiven weight height bats throws      debut  finalGame
## 1  Aardsma      David Allan    215     75    R      R 2004-04-06 2015-08-23
## 2    Aaron      Henry Louis    180     72    R      R 1954-04-13 1976-10-03
## 3    Aaron       Tommie Lee    190     75    R      R 1962-04-10 1971-09-26
## 4     Aase   Donald William    190     75    R      R 1977-07-26 1990-10-03
## 5     Abad    Fausto Andres    184     73    L      L 2001-09-10 2006-04-13
## 6     Abad Fernando Antonio    235     74    L      L 2010-07-28 2021-10-01
##    retroID   bbrefID  deathDate  birthDate
## 1 aardd001 aardsda01       <NA> 1981-12-27
## 2 aaroh101 aaronha01 2021-01-22 1934-02-05
## 3 aarot101 aaronto01 1984-08-16 1939-08-05
## 4 aased001  aasedo01       <NA> 1954-09-08
## 5 abada001  abadan01       <NA> 1972-08-25
## 6 abadf001  abadfe01       <NA> 1985-12-17
summary(Batting)
##    playerID             yearID         stint          teamID      lgID      
##  Length:110495      Min.   :1871   Min.   :1.00   CHN    : 5129   AA: 1893  
##  Class :character   1st Qu.:1938   1st Qu.:1.00   PHI    : 5026   AL:50965  
##  Mode  :character   Median :1977   Median :1.00   PIT    : 4984   FL:  472  
##                     Mean   :1968   Mean   :1.08   SLN    : 4904   NA:  737  
##                     3rd Qu.:2002   3rd Qu.:1.00   CIN    : 4786   NL:55945  
##                     Max.   :2021   Max.   :5.00   CLE    : 4731   PL:  149  
##                                                   (Other):80935   UA:  334  
##        G                AB              R               H         
##  Min.   :  1.00   Min.   :  0.0   Min.   :  0.0   Min.   :  0.00  
##  1st Qu.: 12.00   1st Qu.:  3.0   1st Qu.:  0.0   1st Qu.:  0.00  
##  Median : 34.00   Median : 45.0   Median :  4.0   Median :  8.00  
##  Mean   : 50.61   Mean   :138.6   Mean   : 18.4   Mean   : 36.18  
##  3rd Qu.: 78.00   3rd Qu.:222.0   3rd Qu.: 26.0   3rd Qu.: 55.00  
##  Max.   :165.00   Max.   :716.0   Max.   :198.0   Max.   :262.00  
##                                                                   
##       X2B              X3B               HR             RBI        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.00   Min.   :  0.00  
##  1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.00   1st Qu.:  0.00  
##  Median : 1.000   Median : 0.000   Median : 0.00   Median :  3.00  
##  Mean   : 6.177   Mean   : 1.234   Mean   : 2.86   Mean   : 16.72  
##  3rd Qu.: 9.000   3rd Qu.: 1.000   3rd Qu.: 2.00   3rd Qu.: 24.00  
##  Max.   :67.000   Max.   :36.000   Max.   :73.00   Max.   :191.00  
##                                                    NA's   :756     
##        SB                CS               BB               SO        
##  Min.   :  0.000   Min.   : 0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  0.000   1st Qu.: 0.000   1st Qu.:  0.00   1st Qu.:  1.00  
##  Median :  0.000   Median : 0.000   Median :  2.00   Median :  9.00  
##  Mean   :  2.893   Mean   : 1.162   Mean   : 12.79   Mean   : 20.62  
##  3rd Qu.:  2.000   3rd Qu.: 1.000   3rd Qu.: 18.00   3rd Qu.: 29.00  
##  Max.   :138.000   Max.   :42.000   Max.   :232.00   Max.   :223.00  
##  NA's   :2368      NA's   :23541                     NA's   :2100    
##       IBB              HBP               SH               SF       
##  Min.   :  0.00   Min.   : 0.000   Min.   : 0.000   Min.   : 0.00  
##  1st Qu.:  0.00   1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.00  
##  Median :  0.00   Median : 0.000   Median : 0.000   Median : 0.00  
##  Mean   :  1.04   Mean   : 1.061   Mean   : 2.169   Mean   : 1.01  
##  3rd Qu.:  1.00   3rd Qu.: 1.000   3rd Qu.: 3.000   3rd Qu.: 1.00  
##  Max.   :120.00   Max.   :51.000   Max.   :67.000   Max.   :19.00  
##  NA's   :36650    NA's   :2816     NA's   :6068     NA's   :36103  
##       GIDP       
##  Min.   : 0.000  
##  1st Qu.: 0.000  
##  Median : 0.000  
##  Mean   : 2.875  
##  3rd Qu.: 4.000  
##  Max.   :36.000  
##  NA's   :25441
summary(Pitching)
##    playerID             yearID         stint           teamID      lgID      
##  Length:49430       Min.   :1871   Min.   :1.000   PHI    : 2277   AA:  657  
##  Class :character   1st Qu.:1946   1st Qu.:1.000   CHN    : 2225   AL:23279  
##  Mode  :character   Median :1984   Median :1.000   PIT    : 2192   FL:  173  
##                     Mean   :1973   Mean   :1.082   SLN    : 2187   NA:  132  
##                     3rd Qu.:2006   3rd Qu.:1.000   CIN    : 2119   NL:25035  
##                     Max.   :2021   Max.   :5.000   CLE    : 2096   PL:   58  
##                                                    (Other):36334   UA:   96  
##        W                L                G                GS        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.00   Min.   : 0.000  
##  1st Qu.: 0.000   1st Qu.: 1.000   1st Qu.:  7.00   1st Qu.: 0.000  
##  Median : 2.000   Median : 3.000   Median : 21.00   Median : 2.000  
##  Mean   : 4.504   Mean   : 4.504   Mean   : 23.42   Mean   : 9.059  
##  3rd Qu.: 7.000   3rd Qu.: 7.000   3rd Qu.: 34.00   3rd Qu.:16.000  
##  Max.   :60.000   Max.   :48.000   Max.   :106.00   Max.   :75.000  
##                                                                     
##        CG              SHO                SV             IPouts      
##  Min.   : 0.000   Min.   : 0.0000   Min.   : 0.000   Min.   :   0.0  
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.: 0.000   1st Qu.:  46.0  
##  Median : 0.000   Median : 0.0000   Median : 0.000   Median : 155.0  
##  Mean   : 2.871   Mean   : 0.4104   Mean   : 1.475   Mean   : 242.4  
##  3rd Qu.: 2.000   3rd Qu.: 0.0000   3rd Qu.: 1.000   3rd Qu.: 370.0  
##  Max.   :75.000   Max.   :16.0000   Max.   :62.000   Max.   :2040.0  
##                                                                      
##        H                ER               HR               BB        
##  Min.   :  0.00   Min.   :  0.00   Min.   : 0.000   Min.   :  0.00  
##  1st Qu.: 17.00   1st Qu.:  9.00   1st Qu.: 1.000   1st Qu.:  7.00  
##  Median : 51.00   Median : 23.00   Median : 4.000   Median : 20.00  
##  Mean   : 80.87   Mean   : 34.67   Mean   : 6.393   Mean   : 28.61  
##  3rd Qu.:125.00   3rd Qu.: 55.00   3rd Qu.: 9.000   3rd Qu.: 43.00  
##  Max.   :772.00   Max.   :291.00   Max.   :50.000   Max.   :289.00  
##                                                                     
##        SO             BAOpp            ERA               IBB        
##  Min.   :  0.00   Min.   :0.000   Min.   :  0.000   Min.   : 0.000  
##  1st Qu.:  8.00   1st Qu.:0.238   1st Qu.:  3.150   1st Qu.: 0.000  
##  Median : 30.00   Median :0.265   Median :  4.160   Median : 1.000  
##  Mean   : 45.99   Mean   :0.311   Mean   :  5.152   Mean   : 2.205  
##  3rd Qu.: 67.00   3rd Qu.:0.300   3rd Qu.:  5.580   3rd Qu.: 3.000  
##  Max.   :513.00   Max.   :9.990   Max.   :189.000   Max.   :23.000  
##                   NA's   :4441    NA's   :97        NA's   :14578   
##        WP              HBP               BK               BFP        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.0000   Min.   :   0.0  
##  1st Qu.: 0.000   1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:  70.0  
##  Median : 1.000   Median : 1.000   Median : 0.0000   Median : 225.0  
##  Mean   : 2.559   Mean   : 2.351   Mean   : 0.2896   Mean   : 345.8  
##  3rd Qu.: 4.000   3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.: 529.0  
##  Max.   :83.000   Max.   :54.000   Max.   :16.0000   Max.   :2906.0  
##                   NA's   :734                        NA's   :3       
##        GF               R                SH               SF        
##  Min.   : 0.000   Min.   :  0.00   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 0.000   1st Qu.: 10.00   1st Qu.: 0.000   1st Qu.: 0.000  
##  Median : 2.000   Median : 26.00   Median : 1.000   Median : 1.000  
##  Mean   : 6.184   Mean   : 41.12   Mean   : 2.595   Mean   : 2.106  
##  3rd Qu.: 8.000   3rd Qu.: 64.00   3rd Qu.: 4.000   3rd Qu.: 3.000  
##  Max.   :84.000   Max.   :519.00   Max.   :27.000   Max.   :17.000  
##                                    NA's   :19187    NA's   :19187   
##       GIDP       
##  Min.   : 0.000  
##  1st Qu.: 1.000  
##  Median : 3.000  
##  Mean   : 5.664  
##  3rd Qu.: 8.000  
##  Max.   :47.000  
##  NA's   :20318
summary(People)
##    playerID           birthYear      birthMonth       birthDay    
##  Length:20370       Min.   :1820   Min.   : 1.00   Min.   : 1.00  
##  Class :character   1st Qu.:1897   1st Qu.: 4.00   1st Qu.: 8.00  
##  Mode  :character   Median :1943   Median : 7.00   Median :16.00  
##                     Mean   :1935   Mean   : 6.63   Mean   :15.62  
##                     3rd Qu.:1974   3rd Qu.:10.00   3rd Qu.:23.00  
##                     Max.   :2001   Max.   :12.00   Max.   :31.00  
##                     NA's   :111    NA's   :279     NA's   :420    
##  birthCountry        birthState         birthCity           deathYear    
##  Length:20370       Length:20370       Length:20370       Min.   :1872   
##  Class :character   Class :character   Class :character   1st Qu.:1944   
##  Mode  :character   Mode  :character   Mode  :character   Median :1969   
##                                                           Mean   :1967   
##                                                           3rd Qu.:1994   
##                                                           Max.   :2022   
##                                                           NA's   :10366  
##    deathMonth       deathDay     deathCountry        deathState       
##  Min.   : 1.00   Min.   : 1.00   Length:20370       Length:20370      
##  1st Qu.: 3.00   1st Qu.: 8.00   Class :character   Class :character  
##  Median : 6.00   Median :15.00   Mode  :character   Mode  :character  
##  Mean   : 6.48   Mean   :15.52                                        
##  3rd Qu.:10.00   3rd Qu.:23.00                                        
##  Max.   :12.00   Max.   :31.00                                        
##  NA's   :10367   NA's   :10368                                        
##   deathCity          nameFirst           nameLast          nameGiven        
##  Length:20370       Length:20370       Length:20370       Length:20370      
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##      weight        height        bats        throws         debut          
##  Min.   : 65   Min.   :43.00   B   : 1242   L   : 3909   Length:20370      
##  1st Qu.:172   1st Qu.:71.00   L   : 5321   R   :15483   Class :character  
##  Median :185   Median :72.00   R   :12626   S   :    1   Mode  :character  
##  Mean   :188   Mean   :72.36   NA's: 1181   NA's:  977                     
##  3rd Qu.:200   3rd Qu.:74.00                                               
##  Max.   :320   Max.   :83.00                                               
##  NA's   :816   NA's   :736                                                 
##   finalGame           retroID            bbrefID            deathDate         
##  Length:20370       Length:20370       Length:20370       Min.   :1872-03-17  
##  Class :character   Class :character   Class :character   1st Qu.:1944-01-31  
##  Mode  :character   Mode  :character   Mode  :character   Median :1969-04-10  
##                                                           Mean   :1967-07-21  
##                                                           3rd Qu.:1994-11-02  
##                                                           Max.   :2022-02-09  
##                                                           NA's   :10368       
##    birthDate         
##  Min.   :1820-04-17  
##  1st Qu.:1899-02-01  
##  Median :1944-03-22  
##  Mean   :1936-12-02  
##  3rd Qu.:1975-01-19  
##  Max.   :2001-03-01  
##  NA's   :420
#a.1.
Batting %>%
  group_by(playerID) %>%
  summarise(sum_HR = sum(HR), sum_SB = sum(SB)) %>% 
  filter(sum_HR >= 300 , sum_SB >=300) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>% 
  select(nameFirst, nameLast, sum_HR, sum_SB)
## # A tibble: 8 × 4
##   nameFirst nameLast  sum_HR sum_SB
##   <chr>     <chr>      <int>  <int>
## 1 Carlos    Beltran      435    312
## 2 Barry     Bonds        762    514
## 3 Bobby     Bonds        332    461
## 4 Andre     Dawson       438    314
## 5 Steve     Finley       304    320
## 6 Willie    Mays         660    338
## 7 Alex      Rodriguez    696    329
## 8 Reggie    Sanders      305    304
#a.2.
Pitching %>%
  group_by(playerID) %>%
  summarise(sum_W = sum(W), sum_SO = sum(SO)) %>% 
  filter(sum_W >= 300 , sum_SO >=3000) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>% 
  select(nameFirst, nameLast, sum_W, sum_SO)
## # A tibble: 10 × 4
##    nameFirst nameLast sum_W sum_SO
##    <chr>     <chr>    <int>  <int>
##  1 Steve     Carlton    329   4136
##  2 Roger     Clemens    354   4672
##  3 Randy     Johnson    303   4875
##  4 Walter    Johnson    417   3509
##  5 Greg      Maddux     355   3371
##  6 Phil      Niekro     318   3342
##  7 Gaylord   Perry      314   3534
##  8 Nolan     Ryan       324   5714
##  9 Tom       Seaver     311   3640
## 10 Don       Sutton     324   3574
#b.
Batting %>%
  mutate(BA=H/AB) %>%
  filter(HR>=50) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>% 
  select(nameFirst, nameLast, yearID, HR, BA) %>%
  arrange(BA)
##    nameFirst  nameLast yearID HR        BA
## 1       Pete    Alonso   2019 53 0.2596315
## 2       Jose  Bautista   2010 54 0.2601054
## 3     Andruw     Jones   2005 51 0.2627986
## 4      Roger     Maris   1961 61 0.2694915
## 5       Greg    Vaughn   1998 50 0.2722513
## 6      Cecil   Fielder   1990 51 0.2774869
## 7       Mark   McGwire   1999 65 0.2783109
## 8  Giancarlo   Stanton   2017 59 0.2814070
## 9      Aaron     Judge   2017 52 0.2841328
## 10       Ken   Griffey   1998 56 0.2843602
## 11     Chris     Davis   2013 53 0.2859589
## 12     David     Ortiz   2006 54 0.2867384
## 13    Prince   Fielder   2007 50 0.2879581
## 14     Sammy      Sosa   1999 63 0.2880000
## 15     Brady  Anderson   1996 50 0.2970639
## 16      Mark   McGwire   1998 70 0.2986248
## 17      Alex Rodriguez   2002 57 0.2996795
## 18    Johnny      Mize   1947 51 0.3020478
## 19       Jim     Thome   2002 52 0.3041667
## 20       Ken   Griffey   1997 56 0.3042763
## 21     Sammy      Sosa   1998 66 0.3079316
## 22     Ralph     Kiner   1949 54 0.3096539
## 23      Mark   McGwire   1996 52 0.3120567
## 24      Ryan    Howard   2006 58 0.3132530
## 25     Ralph     Kiner   1947 51 0.3132743
## 26      Alex Rodriguez   2007 54 0.3138937
## 27      Hank Greenberg   1938 58 0.3147482
## 28    Albert     Belle   1995 50 0.3168498
## 29    Mickey    Mantle   1961 54 0.3171206
## 30    Willie      Mays   1965 52 0.3172043
## 31      Alex Rodriguez   2001 52 0.3180380
## 32    Willie      Mays   1955 51 0.3189655
## 33     Sammy      Sosa   2000 50 0.3195364
## 34    George    Foster   1977 52 0.3203252
## 35      Babe      Ruth   1928 54 0.3227612
## 36      Luis  Gonzalez   2001 57 0.3251232
## 37     Sammy      Sosa   2001 64 0.3275563
## 38     Barry     Bonds   2001 73 0.3277311
## 39    Jimmie      Foxx   1938 50 0.3486726
## 40    Mickey    Mantle   1956 52 0.3527205
## 41      Babe      Ruth   1927 60 0.3555556
## 42      Hack    Wilson   1930 56 0.3555556
## 43    Jimmie      Foxx   1932 58 0.3641026
## 44      Babe      Ruth   1920 54 0.3763676
## 45      Babe      Ruth   1921 59 0.3777778