Directions

During ANLY 512 we will be studying the theory and practice of data visualization. We will be using R and the packages within R to assemble data and construct many different types of visualizations. Before we begin studying data visualizations we need to develop some data wrangling skills. We will use these skills to wrangle our data into a form that we can use for visualizations.

The objective of this assignment is to introduce you to R Studio, Rmarkdown, the tidyverse and more specifically the dplyr package.

Each question is worth 5 points.

To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyper linked and that I can see the visualization and the code required to create it.

Question #1

Use the nycflights13 package and the flights data frame to answer the following questions: a.What month had the highest proportion of cancelled flights? October b.What month had the lowest? February

library(nycflights13)
flights[is.na(flights$dep_time),]
## # A tibble: 8,255 × 19
##     year month   day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##    <int> <int> <int>    <int>      <int>   <dbl>   <int>   <int>   <dbl> <chr>  
##  1  2013     1     1       NA       1630      NA      NA    1815      NA EV     
##  2  2013     1     1       NA       1935      NA      NA    2240      NA AA     
##  3  2013     1     1       NA       1500      NA      NA    1825      NA AA     
##  4  2013     1     1       NA        600      NA      NA     901      NA B6     
##  5  2013     1     2       NA       1540      NA      NA    1747      NA EV     
##  6  2013     1     2       NA       1620      NA      NA    1746      NA EV     
##  7  2013     1     2       NA       1355      NA      NA    1459      NA EV     
##  8  2013     1     2       NA       1420      NA      NA    1644      NA EV     
##  9  2013     1     2       NA       1321      NA      NA    1536      NA EV     
## 10  2013     1     2       NA       1545      NA      NA    1910      NA AA     
## # … with 8,245 more rows, 9 more variables: flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>, and abbreviated variable names
## #   ¹​sched_dep_time, ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay
flight_cancelations <- flights %>%
  group_by(month) %>%
  summarize(cancelled = sum(is.na(dep_time)), 
  cancelled_proportion = cancelled/n()*100) %>%
  arrange(cancelled_proportion)
flight_cancelations
## # A tibble: 12 × 3
##    month cancelled cancelled_proportion
##    <int>     <int>                <dbl>
##  1    10       236                0.817
##  2    11       233                0.854
##  3     9       452                1.64 
##  4     8       486                1.66 
##  5     1       521                1.93 
##  6     5       563                1.96 
##  7     4       668                2.36 
##  8     3       861                2.99 
##  9     7       940                3.19 
## 10     6      1009                3.57 
## 11    12      1025                3.64 
## 12     2      1261                5.05

Question #2

Consider the following pipeline:

library(tidyverse)
mtcars %>%
  group_by(cyl) %>%
  summarize(avg_mpg = mean(mpg)) %>%
  filter(am == 1)

What is the problem with this pipeline?

We should filter on am first, and then calculate each cyl’s avg mpg.

library(tidyverse)
mtcars %>%
  filter(am == 1) %>%
  group_by(cyl) %>%
  summarize(avg_mpg = mean(mpg))
## # A tibble: 3 × 2
##     cyl avg_mpg
##   <dbl>   <dbl>
## 1     4    28.1
## 2     6    20.6
## 3     8    15.4

Question #3

Define two new variables in the Teams data frame in the pkg Lahman() package.

  1. batting average (BA). Batting average is the ratio of hits (H) to at-bats (AB)

  2. slugging percentage (SLG). Slugging percentage is total bases divided by at-bats (AB). To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
Teams <- Teams %>%
  mutate(BA = H/AB) %>%
  mutate(SLG = (H+2*X2B+3*X3B+4*HR)/AB)
summary(Teams)
##      yearID     lgID          teamID        franchID       divID          
##  Min.   :1871   AA:  85   CHN    : 146   ATL    : 146   Length:2985       
##  1st Qu.:1922   AL:1295   PHI    : 139   CHC    : 146   Class :character  
##  Median :1967   FL:  16   PIT    : 135   CIN    : 140   Mode  :character  
##  Mean   :1959   NA:  50   CIN    : 132   PIT    : 140                     
##  3rd Qu.:1997   NL:1519   SLN    : 130   STL    : 140                     
##  Max.   :2021   PL:   8   BOS    : 121   PHI    : 139                     
##                 UA:  12   (Other):2182   (Other):2134                     
##       Rank              G           Ghome             W         
##  Min.   : 1.000   Min.   :  6   Min.   :24.00   Min.   :  0.00  
##  1st Qu.: 2.000   1st Qu.:154   1st Qu.:77.00   1st Qu.: 66.00  
##  Median : 4.000   Median :159   Median :81.00   Median : 77.00  
##  Mean   : 4.039   Mean   :150   Mean   :78.05   Mean   : 74.61  
##  3rd Qu.: 6.000   3rd Qu.:162   3rd Qu.:81.00   3rd Qu.: 87.00  
##  Max.   :13.000   Max.   :165   Max.   :84.00   Max.   :116.00  
##                                 NA's   :399                     
##        L             DivWin             WCWin              LgWin          
##  Min.   :  4.00   Length:2985        Length:2985        Length:2985       
##  1st Qu.: 65.00   Class :character   Class :character   Class :character  
##  Median : 76.00   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 74.61                                                           
##  3rd Qu.: 87.00                                                           
##  Max.   :134.00                                                           
##                                                                           
##     WSWin                 R              AB             H       
##  Length:2985        Min.   :  24   Min.   : 211   Min.   :  33  
##  Class :character   1st Qu.: 614   1st Qu.:5135   1st Qu.:1299  
##  Mode  :character   Median : 691   Median :5402   Median :1390  
##                     Mean   : 681   Mean   :5129   Mean   :1339  
##                     3rd Qu.: 764   3rd Qu.:5519   3rd Qu.:1465  
##                     Max.   :1220   Max.   :5781   Max.   :1783  
##                                                                 
##       X2B             X3B               HR              BB       
##  Min.   :  1.0   Min.   :  0.00   Min.   :  0.0   Min.   :  1.0  
##  1st Qu.:194.0   1st Qu.: 29.00   1st Qu.: 45.0   1st Qu.:425.8  
##  Median :234.0   Median : 40.00   Median :110.0   Median :494.0  
##  Mean   :228.7   Mean   : 45.67   Mean   :105.9   Mean   :473.6  
##  3rd Qu.:272.0   3rd Qu.: 59.00   3rd Qu.:155.0   3rd Qu.:554.2  
##  Max.   :376.0   Max.   :150.00   Max.   :307.0   Max.   :835.0  
##                                                   NA's   :1      
##        SO               SB              CS              HBP        
##  Min.   :   3.0   Min.   :  1.0   Min.   :  3.00   Min.   :  7.00  
##  1st Qu.: 516.0   1st Qu.: 62.5   1st Qu.: 33.00   1st Qu.: 32.00  
##  Median : 761.0   Median : 93.0   Median : 44.00   Median : 43.00  
##  Mean   : 762.1   Mean   :109.4   Mean   : 46.55   Mean   : 45.82  
##  3rd Qu.: 990.0   3rd Qu.:137.0   3rd Qu.: 56.00   3rd Qu.: 57.00  
##  Max.   :1596.0   Max.   :581.0   Max.   :191.00   Max.   :160.00  
##  NA's   :16       NA's   :126     NA's   :832      NA's   :1158    
##        SF              RA             ER              ERA       
##  Min.   : 7.00   Min.   :  34   Min.   :  23.0   Min.   :1.220  
##  1st Qu.:38.00   1st Qu.: 610   1st Qu.: 503.0   1st Qu.:3.370  
##  Median :44.00   Median : 689   Median : 594.0   Median :3.840  
##  Mean   :44.11   Mean   : 681   Mean   : 573.4   Mean   :3.841  
##  3rd Qu.:50.00   3rd Qu.: 766   3rd Qu.: 671.0   3rd Qu.:4.330  
##  Max.   :77.00   Max.   :1252   Max.   :1023.0   Max.   :8.000  
##  NA's   :1541                                                   
##        CG              SHO               SV            IPouts    
##  Min.   :  0.00   Min.   : 0.000   Min.   : 0.00   Min.   : 162  
##  1st Qu.:  9.00   1st Qu.: 6.000   1st Qu.:10.00   1st Qu.:4080  
##  Median : 41.00   Median : 9.000   Median :25.00   Median :4252  
##  Mean   : 47.55   Mean   : 9.588   Mean   :24.42   Mean   :4013  
##  3rd Qu.: 76.00   3rd Qu.:12.000   3rd Qu.:39.00   3rd Qu.:4341  
##  Max.   :148.00   Max.   :32.000   Max.   :68.00   Max.   :4518  
##                                                                  
##        HA            HRA             BBA             SOA        
##  Min.   :  49   Min.   :  0.0   Min.   :  1.0   Min.   :   0.0  
##  1st Qu.:1287   1st Qu.: 51.0   1st Qu.:429.0   1st Qu.: 511.0  
##  Median :1389   Median :113.0   Median :495.0   Median : 762.0  
##  Mean   :1339   Mean   :105.9   Mean   :473.7   Mean   : 761.6  
##  3rd Qu.:1468   3rd Qu.:153.0   3rd Qu.:554.0   3rd Qu.: 997.0  
##  Max.   :1993   Max.   :305.0   Max.   :827.0   Max.   :1687.0  
##                                                                 
##        E               DP              FP             name          
##  Min.   : 20.0   Min.   :  0.0   Min.   :0.7610   Length:2985       
##  1st Qu.:111.0   1st Qu.:116.0   1st Qu.:0.9660   Class :character  
##  Median :141.0   Median :140.0   Median :0.9770   Mode  :character  
##  Mean   :180.8   Mean   :132.6   Mean   :0.9664                     
##  3rd Qu.:207.0   3rd Qu.:157.0   3rd Qu.:0.9810                     
##  Max.   :639.0   Max.   :217.0   Max.   :0.9910                     
##                                                                     
##      park             attendance           BPF             PPF       
##  Length:2985        Min.   :      0   Min.   : 60.0   Min.   : 60.0  
##  Class :character   1st Qu.: 538461   1st Qu.: 97.0   1st Qu.: 97.0  
##  Mode  :character   Median :1190886   Median :100.0   Median :100.0  
##                     Mean   :1376599   Mean   :100.2   Mean   :100.2  
##                     3rd Qu.:2066598   3rd Qu.:103.0   3rd Qu.:103.0  
##                     Max.   :4483350   Max.   :129.0   Max.   :141.0  
##                     NA's   :279                                      
##    teamIDBR         teamIDlahman45     teamIDretro              BA        
##  Length:2985        Length:2985        Length:2985        Min.   :0.1564  
##  Class :character   Class :character   Class :character   1st Qu.:0.2494  
##  Mode  :character   Mode  :character   Mode  :character   Median :0.2600  
##                                                           Mean   :0.2607  
##                                                           3rd Qu.:0.2708  
##                                                           Max.   :0.3498  
##                                                                           
##       SLG        
##  Min.   :0.1659  
##  1st Qu.:0.4192  
##  Median :0.4596  
##  Mean   :0.4561  
##  3rd Qu.:0.4950  
##  Max.   :0.6093  
## 

Question #4

Using the Teams data frame in the pkg Lahman() package. display the top-5 teams ranked in terms of slugging percentage (SLG) in Major League Baseball history. Repeat this using teams since 1969. Slugging percentage is total bases divided by at-bats.To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
Teams %>%
  select(yearID,teamID, SLG) %>%
  arrange(desc(SLG)) %>%
  head(5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320
Teams %>%
  select(yearID,teamID, SLG) %>%
  filter(yearID >= 1969) %>%
  arrange(desc(SLG)) %>%
  head(5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320

Question #5

Use the Batting, Pitching, and People tables in the pkg Lahman() package to answer the following questions.

a.Name every player in baseball history who has accumulated at least 300 home runs (HR) and at least 300 stolen bases (SB). You can find the first and last name of the player in the Master data frame. Join this to your result along with the total home runs and total bases stolen for each of these elite players.

  1. Similarly, name every pitcher in baseball history who has accumulated at least 300 wins (W) and at least 3,000 strikeouts (SO).

  2. Identify the name and year of every player who has hit at least 50 home runs in a single season. Which player had the lowest batting average in that season?

library(Lahman)
Batting %>%
  group_by(playerID) %>%
  summarize(home_runs = sum(HR), stolen_bases = sum (SB)) %>%
  filter(home_runs >= 300 & stolen_bases >= 300) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>%
  select(nameFirst, nameLast, nameGiven, home_runs, stolen_bases)
## # A tibble: 8 × 5
##   nameFirst nameLast  nameGiven          home_runs stolen_bases
##   <chr>     <chr>     <chr>                  <int>        <int>
## 1 Carlos    Beltran   Carlos Ivan              435          312
## 2 Barry     Bonds     Barry Lamar              762          514
## 3 Bobby     Bonds     Bobby Lee                332          461
## 4 Andre     Dawson    Andre Nolan              438          314
## 5 Steve     Finley    Steven Allen             304          320
## 6 Willie    Mays      Willie Howard            660          338
## 7 Alex      Rodriguez Alexander Enmanuel       696          329
## 8 Reggie    Sanders   Reginald Laverne         305          304
Pitching %>%
  group_by(playerID) %>%
  summarize(wins = sum(W), strikeouts = sum(SO)) %>%
  filter(wins >= 300 & strikeouts >= 3000) %>%
  inner_join(People, by =  c("playerID" = "playerID")) %>%
  select(nameFirst, nameLast, nameGiven, wins, strikeouts)
## # A tibble: 10 × 5
##    nameFirst nameLast nameGiven        wins strikeouts
##    <chr>     <chr>    <chr>           <int>      <int>
##  1 Steve     Carlton  Steven Norman     329       4136
##  2 Roger     Clemens  William Roger     354       4672
##  3 Randy     Johnson  Randall David     303       4875
##  4 Walter    Johnson  Walter Perry      417       3509
##  5 Greg      Maddux   Gregory Alan      355       3371
##  6 Phil      Niekro   Philip Henry      318       3342
##  7 Gaylord   Perry    Gaylord Jackson   314       3534
##  8 Nolan     Ryan     Lynn Nolan        324       5714
##  9 Tom       Seaver   George Thomas     311       3640
## 10 Don       Sutton   Donald Howard     324       3574
Batting %>%
  group_by(playerID, yearID) %>%
  summarize(home_runs = sum(HR), batting_avg = sum(H)/sum(AB)) %>%
  filter(home_runs >= 50) %>%
  inner_join(People, by = c("playerID" = "playerID")) %>%
  select(yearID, nameFirst, nameLast, nameGiven, home_runs, batting_avg) %>%
  arrange(batting_avg)
## # A tibble: 46 × 7
## # Groups:   playerID [30]
##    playerID  yearID nameFirst nameLast nameGiven              home_runs battin…¹
##    <chr>      <int> <chr>     <chr>    <chr>                      <int>    <dbl>
##  1 alonspe01   2019 Pete      Alonso   Peter Morgan                  53    0.260
##  2 bautijo02   2010 Jose      Bautista Jose Antonio                  54    0.260
##  3 jonesan01   2005 Andruw    Jones    Andruw Rudolf                 51    0.263
##  4 marisro01   1961 Roger     Maris    Roger Eugene                  61    0.269
##  5 vaughgr01   1998 Greg      Vaughn   Gregory Lamont                50    0.272
##  6 mcgwima01   1997 Mark      McGwire  Mark David                    58    0.274
##  7 fieldce01   1990 Cecil     Fielder  Cecil Grant                   51    0.277
##  8 mcgwima01   1999 Mark      McGwire  Mark David                    65    0.278
##  9 stantmi03   2017 Giancarlo Stanton  Giancarlo Cruz-Michael        59    0.281
## 10 judgeaa01   2017 Aaron     Judge    Aaron James                   52    0.284
## # … with 36 more rows, and abbreviated variable name ¹​batting_avg