The experiment is aimed to test the growth rate (GR) and total leaf area variation of Arabidopsis mutant allele selection based on top candidate genes using GWAS output for the data collected over 360 Arabidopsis accessions in HapMap population. This markdown file includes the first batch (from 2022-11-09 to 2022-11-18) with 8 Raspi PhenoRigs and 16 cameras.
library(ggplot2)
library(tidyr)
library(dplyr)
library(ggpubr)
library(tidyverse)
library(reshape2)
library(corrplot)
library(plotly)
library(cowplot)
library(npreg)
library(ggformula)
#import list containing samples
sample.list1 <- read.table("/Users/Leon/OneDrive - Cornell University/3_Manuscript/Manuscript10/Experiments/At_mutant/Batch_1/Results/At_mutant_set1.list", sep ="\t", header = F)
### import each samples
for (i in 1:nrow(sample.list1)){
sample.df <- read.csv(paste0("/Users/Leon/OneDrive - Cornell University/3_Manuscript/Manuscript10/Experiments/At_mutant/Batch_1/Results/",sample.list1[i,1]), header = T)
assign(sample.list1[i,1], sample.df)
}
#Create Meta phenotype sheet by combining multiple files
Set1_list <- lapply(ls(pattern = "At_mutant_set1.result-single-value"), get)
Raspi_At_mutant1 <- bind_rows(Set1_list)
Raspi <- Raspi_At_mutant1
### clean the file contatning plantID and plant are information
Raspi_clean <- Raspi[,c(31,18:30)]
Raspi_clean <- Raspi_clean %>% separate(plantID, c("Raspi.ID","Cam.ID", "Year", "Month", "Date","Hour", "Minute", "Second", "PlantID"))
# Fisrt - make sure that EVERYTHING is as numeric
numeric_list <- c("Year", "Month", "Date", "Hour", "Minute", "Second")
for (num in numeric_list){
Raspi_clean [, num] <- as.numeric(as.character(Raspi_clean [, num]))
}
Raspi_clean <- Raspi_clean[
order(Raspi_clean[,"Raspi.ID"],
Raspi_clean[,"Cam.ID"],
Raspi_clean[,"Year"],
Raspi_clean[,"Month"],
Raspi_clean[,"Date"],
Raspi_clean[,"Hour"],
Raspi_clean[,"Minute"],
Raspi_clean[,"PlantID"]),]
Raspi_clean$ID <- paste(Raspi_clean$Raspi.ID, Raspi_clean$Cam.ID, Raspi_clean$PlantID, sep="_")
# Transform all timestamps into minutes (where we have to also integrate the month):
Raspi_clean$month.min <- (Raspi_clean[,"Month"] - Raspi_clean[1,"Month"])*31*24*60
Raspi_clean$day.min <- (Raspi_clean[,"Date"]- Raspi_clean[1,"Date"])*24*60
Raspi_clean$hour.min <- (Raspi_clean[,"Hour"]-Raspi_clean[1,"Hour"])*60
### calculate the total minutes
Raspi_clean$all.min <- Raspi_clean$month.min + Raspi_clean$day.min + Raspi_clean$hour.min + Raspi_clean$Minute
tail(Raspi_clean)
Raspi_clean
Note: decoding file should be in a correct column settings:
1: Raspi
2: Camera
3: Position
4: Treatment
###load decoding information
decoding <- read.csv("/Users/Leon/OneDrive - Cornell University/3_Manuscript/Manuscript10/Experiments/At_mutant/Batch_1/decoding_set1.csv", header = T)
decoding$ID <- paste(decoding[,"Raspi"], decoding[,"Camera"], decoding[,"position"], sep="_")
### check if decoding information matched the plant ID
decoding$ID %in% unique(Raspi_clean$ID)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [46] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [76] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [91] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [106] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [136] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [151] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [166] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [196] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [211] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [226] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [241] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [256] TRUE
### merge decode information with phenotype dataset
deco_data <- na.omit(right_join(Raspi_clean, decoding, by = "ID"))
write.csv(deco_data,
"/Users/Leon/OneDrive - Cornell University/3_Manuscript/Manuscript10/Experiments/At_mutant/Batch_1/deco_data_batch1.csv", row.names = F)
### remove data points associated with no plants
deco_data <- deco_data[deco_data$area > 1000,]
### define a cutoff of plant pixel ranges
Plant_pixel_limit <- 5000
### remove the plant with limited growth
Plant_individual <- unique(deco_data[,"ID"])
length(unique(deco_data[,"ID"]))
## [1] 254
deco_data$Range <- "fill"
for (i in 1:length(Plant_individual)){
temp <- deco_data[deco_data$ID == Plant_individual[i],]
### calculate the range of area
Plant_pixel_range <- (max(temp$area)-min(temp$area))
if(Plant_pixel_range < Plant_pixel_limit){
### Mark plants to be removed
deco_data[deco_data$ID == Plant_individual[i],"Range"] <- "FALSE"
} else {
### Mark plants to be retained
deco_data[deco_data$ID == Plant_individual[i],"Range"] <- "TRUE"
}
}
### remove small plants
deco_data_clean <- deco_data[deco_data$Range == "TRUE",]
### Check numbers of plants been removed
length(unique(deco_data_clean[,"ID"]))
## [1] 253
### remove time point at the final stage
#deco_plot <- deco_data_clean[deco_data_clean$all.min < 10080,]
deco_plot <- deco_data_clean[deco_data_clean$all.min < 7800,]
rig_list <- c("raspiL", "raspiM", "raspiU","raspiT","raspiR", "raspiK", "raspiS", "raspiV" )
for (i in 1:length(rig_list)){
temp <- deco_plot[deco_plot $Raspi.ID == rig_list[i],]
### Plot clean deco_data
temp_plot <- ggplot(temp, aes(x= all.min, y=area, group = ID, color = Genotype)) +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.2, size = 0.2) +
facet_wrap( ~ Treatment) +
ylab("Rosette Area of individual plant") +
xlab("Total Time (minutes)")+
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Treatment), alpha=0.3)+
### Plot stats summary of the average data
stat_summary(fun=mean, aes(group=Treatment), size=0.7, geom="line", linetype = "dashed") +
theme_classic() +
scale_x_continuous(breaks=seq(0,max(deco_plot$area),by=2500)) +
scale_y_continuous(breaks=seq(0,max(deco_plot$area),by=100000))
#print(ggplotly(temp_plot))
assign(paste0(rig_list[i],"_graph"),temp_plot)
}
Remove_list <- c("raspiV_cameraA_3","raspiV_cameraB_11","raspiV_cameraB_13","raspiV_cameraB_14",
"raspiV_cameraB_3","raspiV_cameraB_15",
"raspiS_cameraB_12","raspiS_cameraB_4","raspiS_cameraA_6",
"raspiK_cameraB_9","raspiK_cameraB_9","raspiK_cameraA_15","raspiK_cameraA_9",
"raspiK_cameraA_3","raspiK_cameraA_7","raspiK_cameraB_15","raspiK_cameraB_12",
"raspiR_cameraB_3","raspiR_cameraA_15","raspiR_cameraA_11","raspiR_cameraB_5",
"raspiR_cameraB_8","raspiR_cameraA_2","raspiR_cameraA_9","raspiR_cameraB_13",
"raspiR_cameraA_13","raspiR_cameraA_7","raspiR_cameraA_5","raspiR_cameraB_10",
"raspiT_cameraA_3","raspiT_cameraB_13","raspiT_cameraA_11","raspiT_cameraA_10",
"raspiT_cameraB_15","raspiT_cameraB_15","raspiT_cameraA_7","raspiT_cameraA_6",
"raspiT_cameraB_6","raspiT_cameraB_11",
"raspiU_cameraB_7","raspiU_cameraB_3","raspiU_cameraA_13","raspiU_cameraB_2",
"raspiU_cameraB_14","raspiU_cameraB_6","raspiU_cameraB_13","raspiU_cameraA_3",
"raspiU_cameraB_15","raspiU_cameraA_10","raspiU_cameraA_1","raspiU_cameraB_11",
"raspiU_cameraA_14","raspiU_cameraA_0",
"raspiM_cameraA_12","raspiM_cameraB_12","raspiM_cameraB_14","raspiM_cameraA_15",
"raspiM_cameraA_5","raspiM_cameraB_9","raspiM_cameraB_7",
"raspiL_cameraA_8","raspiL_cameraB_5","raspiL_cameraA_3","raspiL_cameraA_14",
"raspiL_cameraB_15","raspiL_cameraB_13","raspiL_cameraA_11","raspiL_cameraB_7",
"raspiL_cameraB_14","raspiL_cameraB_8","raspiL_cameraA_12","raspiL_cameraB_12",
"raspiM_cameraB_3","raspiL_cameraB_14","raspiM_cameraA_0"
)
deco_plot_clean <- deco_plot[! deco_plot $ID %in% Remove_list,]
for (i in 1:length(rig_list)){
temp <- deco_plot_clean[deco_plot_clean$Raspi.ID == rig_list[i],]
### Plot clean deco_data
temp_plot <- ggplot(temp, aes(x= all.min, y=area, group = ID, color = Genotype)) +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.2, size = 0.2) +
facet_wrap( ~ Treatment) +
ylab("Rosette Area of individual plant") +
xlab("Total Time (minutes)")+
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Treatment), alpha=0.3)+
### Plot stats summary of the average data
stat_summary(fun=mean, aes(group=Treatment), size=0.7, geom="line", linetype = "dashed") +
theme_classic()
print(ggplotly(temp_plot))
assign(paste0(rig_list[i],"_graph"),temp_plot)
}
raspiL_graph
raspiM_graph
raspiU_graph
raspiT_graph
raspiR_graph
raspiK_graph
raspiS_graph
raspiV_graph
### Plot clean deco_data
clean_graph <- ggplot(deco_plot_clean, aes(x= all.min, y=area, group = ID, color = Treatment)) +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.2, size = 0.2) +
facet_wrap( ~ Genotype) +
ylab("Rosette Area of individual plant") +
xlab("Total Time (minutes)")+
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Treatment), alpha=0.3)+
### Plot stats summary of the average data
stat_summary(fun=mean, aes(group=Treatment), size=0.7, geom="line", linetype = "dashed") +
theme_classic() +
scale_color_manual(values = c(Drought="tomato", Control="steelblue"))
clean_graph
### import data
test_data <- deco_plot_clean
Plant_individual <- unique(deco_plot_clean[,"ID"])
##Parameter settings
Range1 = 1
Range2 = 1.5
Range3 = 2
Range4 = 3
nknots = 5
Fit_night = "Yes"
### non-linear model with smooth.spline (ss function)
for (i in 1:length(Plant_individual)){
temp <- test_data[test_data$ID == Plant_individual[i], ]
mod.ss <- ss(temp$all.min, temp$area, nknots = nknots)
mod.sum <- summary(mod.ss)
temp$sigma1 <- Range1 * mod.sum$sigma
temp$sigma2 <- Range2 * mod.sum$sigma
temp$sigma3 <- Range3 * mod.sum$sigma
temp$sigma4 <- Range4 * mod.sum$sigma
temp$residual <- abs(mod.sum$residuals)
temp_clean <- temp[temp$residual < temp$sigma2,]
### Regression model before removal of outliers
Predict_matrix1 <- predict(mod.ss, temp$all.min)
P1 <- ggplot(temp, aes(x=all.min, y=area) ) +
geom_point(aes(y = area), size=1.5, shape = 21) +
geom_spline(aes(x = all.min, y = area), nknots = nknots, size=1, color = "blue") +
geom_ribbon(aes(ymin = Predict_matrix1$y - unique(temp$sigma1),
ymax = Predict_matrix1$y + unique(temp$sigma1)), alpha = 0.2, fill = "#542788") +
theme_classic() +
xlab("Total Time (minutes)") +
ylab(paste0("Leaf area of ",Plant_individual[i]))
### plot after removal of outliers
Predict_matrix2 <- predict(mod.ss, temp_clean$all.min)
P2 <- ggplot(temp_clean, aes(x=all.min, y=area) ) +
geom_point(aes(y = area), size=1.5, shape = 21) +
geom_spline(aes(x = all.min, y = area), nknots = nknots, size=1, color = "blue") +
geom_ribbon(aes(ymin = Predict_matrix2$y - unique(temp$sigma2),
ymax = Predict_matrix2$y + unique(temp$sigma2)), alpha = 0.2, fill = "#8073AC") +
theme_classic() +
xlab("Total Time (minutes)") +
ylab(paste0("Leaf area of ",Plant_individual[i]))
### Combine and output the plots
#print(plot_grid(P1, P2, labels = c('A', 'B'), label_size = 12))
if (Fit_night == "Yes"){
### Generate the timpoint during night
timeline <- seq(0, max(temp$all.min), 30)
Predict_matrix <- predict(mod.ss, timeline)
Predict_matrix$ID <- unique(temp$ID)
colnames(Predict_matrix) <- c("all.min", "Fit", "se", "ID")
### Extract all predicted values across time-point (Using the temp file)
smooth_matrix <- predict(mod.ss, temp$all.min)
temp$Fit <- smooth_matrix$y
} else {
### Extract all predicted values across time-point (Using the temp file)
smooth_matrix <- predict(mod.ss, temp$all.min)
temp$Fit <- smooth_matrix$y
}
### export clean data-sheet (without night interval fit)
assign(paste0("Smooth_raw", Plant_individual[i]), temp_clean)
assign(paste0("Smooth_fit", Plant_individual[i]), temp)
### export clean data-sheet (with night interval fit)
assign(paste0("Smooth_night", Plant_individual[i]), Predict_matrix)
}
###Combined the curated data using raw data for plot
Smooth_list_raw <- lapply(ls(pattern = "Smooth_raw"), get)
deco_Smooth_raw <- bind_rows(Smooth_list_raw )
###Combined the curated data using fitted data for plot (without night point)
Smooth_list_fit <- lapply(ls(pattern = "Smooth_fit"), get)
deco_Smooth_fit <- bind_rows(Smooth_list_fit)
deco_Smooth_fit
###Combined the curated data using fitted data for plot (with night point)
Smooth_list_night_fit <- lapply(ls(pattern = "Smooth_night"), get)
deco_Smooth_night_fit <- bind_rows(Smooth_list_night_fit)
deco_Smooth_night_fit
write.csv(deco_Smooth_fit,"/Users/Leon/OneDrive - Cornell University/3_Manuscript/Manuscript10/Experiments/At_mutant/Batch_1/Raspi_At_mutant_smoothspline.csv")
### Replot the curation dataset
mydata=deco_Smooth_fit
curation_graph <- ggplot(data=mydata, aes(x= all.min, y=Fit, group = ID, color = Treatment)) +
theme_classic() +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.1, size = 0.5) +
ylab("Smoothed rosette area of individual plant") + xlab("Total Time (minutes)") +
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Treatment), alpha=0.3) +
stat_summary(fun=mean, aes(group= Treatment), size=0.7, geom="line", linetype = "dashed") +
stat_compare_means(aes(group = Treatment), label = "p.signif", method = "t.test") +
scale_x_continuous(breaks=seq(0,max(deco_data_clean$area),by=2500)) +
facet_wrap( ~ Genotype) +
scale_color_manual(values = c(Drought="tomato", Control="steelblue"))
curation_graph
### extract the accession information
Genotype <- unique(deco_Smooth_fit$Genotype)
Genotype <- Genotype[Genotype!= "Col-0"]
### extract the control dataset
deco_Smooth_fit_control <- deco_Smooth_fit[deco_Smooth_fit$Treatment == "Control",]
for(i in 1:length(Genotype)){
smooth_temp <- deco_Smooth_fit_control[deco_Smooth_fit_control$Genotype == "Col-0" | deco_Smooth_fit_control$Genotype == Genotype[i],]
temp_graph <- ggplot(data=smooth_temp, aes(x= all.min, y=Fit, group = ID, color = Genotype)) +
theme_classic() +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.1, size = 0.5) +
ylab("Smoothed rosette area of individual plant (Control)") + xlab("Total Time (minutes)") +
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Genotype), alpha=0.3) +
stat_summary(fun=mean, aes(group= Genotype), size=0.7, geom="line", linetype = "dashed") +
stat_compare_means(aes(group = Genotype), label = "p.signif", method = "t.test") +
scale_x_continuous(breaks=seq(0,max(deco_data_clean$area),by=2500)) +
scale_color_manual(values = c("#666666","#E7298A"))
assign(paste0("Graph_Control_",str_replace(Genotype[i], "-","_")),temp_graph)
}
plot_grid(Graph_Control_CP.GR4_2, Graph_Control_CP.EVT2_1, Graph_Control_CP.NPQ1_1, Graph_Control_CP.EVT5_1,
Graph_Control_CP.NPQ6_4, Graph_Control_CP.EVT9_2, Graph_Control_CP.EVT6_2, Graph_Control_CP.NPQ4_1,
Graph_Control_CP.EVT4_1, Graph_Control_CP.NPQ5_2, Graph_Control_CP.EVT4_2, Graph_Control_CP.NPQ7_1,
Graph_Control_CP.EVT7, Graph_Control_CP.EVT1_1, Graph_Control_CP.GR2_2, Graph_Control_CP.GR5,
Graph_Control_CP.GR4_1, Graph_Control_CP.GR3_1, Graph_Control_CP.EVT3_1, Graph_Control_CP.EVT2_2,
Graph_Control_CP.NPQ6_5, Graph_Control_CP.GR2_1, Graph_Control_CP.NPQ6_3, Graph_Control_CP.NPQ1_2,
Graph_Control_CP.GR2_3, Graph_Control_CP.GR3_2,Graph_Control_CP.NPQ5_1, Graph_Control_CP.EVT8, Graph_Control_CP.EVT9_1,
Graph_Control_CP.EVT1_2)
### Pairwise comparison relative to the Col-0 genotype under the Drought
condition
### extract the drought dataset
deco_Smooth_fit_drought <- deco_Smooth_fit[deco_Smooth_fit$Treatment == "Drought",]
for(i in 1:length(Genotype)){
smooth_temp <- deco_Smooth_fit_drought[deco_Smooth_fit_drought$Genotype == "Col-0" | deco_Smooth_fit_drought$Genotype == Genotype[i],]
temp_graph <- ggplot(data=smooth_temp, aes(x= all.min, y=Fit, group = ID, color = Genotype)) +
theme_classic() +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.1, size = 0.5) +
ylab("Smoothed rosette area of individual plant (Drought)") + xlab("Total Time (minutes)") +
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Genotype), alpha=0.3) +
stat_summary(fun=mean, aes(group= Genotype), size=0.7, geom="line", linetype = "dashed") +
stat_compare_means(aes(group = Genotype), label = "p.signif", method = "t.test") +
scale_x_continuous(breaks=seq(0,max(deco_data_clean$area),by=2500)) +
scale_color_manual(values = c("#666666","#E7298A"))
assign(paste0("Graph_Drought_",str_replace(Genotype[i], "-","_")),temp_graph)
}
plot_grid(Graph_Drought_CP.GR4_2, Graph_Drought_CP.EVT2_1, Graph_Drought_CP.NPQ1_1, Graph_Drought_CP.EVT5_1,
Graph_Drought_CP.NPQ6_4, Graph_Drought_CP.EVT9_2, Graph_Drought_CP.EVT6_2, Graph_Drought_CP.NPQ4_1,
Graph_Drought_CP.EVT4_1, Graph_Drought_CP.NPQ5_2, Graph_Drought_CP.EVT4_2, Graph_Drought_CP.NPQ7_1,
Graph_Drought_CP.EVT7, Graph_Drought_CP.EVT1_1, Graph_Drought_CP.GR2_2, Graph_Drought_CP.GR5,
Graph_Drought_CP.GR4_1, Graph_Drought_CP.GR3_1, Graph_Drought_CP.EVT3_1, Graph_Drought_CP.EVT2_2,
Graph_Drought_CP.NPQ6_5, Graph_Drought_CP.GR2_1, Graph_Drought_CP.NPQ6_3, Graph_Drought_CP.NPQ1_2,
Graph_Drought_CP.GR2_3, Graph_Drought_CP.GR3_2,Graph_Drought_CP.NPQ5_1, Graph_Drought_CP.EVT8, Graph_Drought_CP.EVT9_1,
Graph_Drought_CP.EVT1_2)
window size defined by number of minutes (unit: Minutes)
step size by minutes (unit: Minutes)
### define numbers of hour in a certain interval
window_size <- 300
step_size <- 300
data_source <- deco_Smooth_night_fit
### define interval using the numbers of hours and total minutes of experiments
timeline <- seq(0, max(data_source$all.min), step_size)
Plant_individual_clean <- Plant_individual
### Calculate the plant-wise growth rate (GR) across defined window above
for (NUMBER in 1:length(Plant_individual_clean)){
### Subset data for each Plant
Sub_plant <- na.omit((data_source[data_source$ID == Plant_individual_clean[NUMBER], ]))
if (nrow(Sub_plant) != 0) {
### Create plant-wise statistical table
Sub_plant_stats <- data.frame(matrix(ncol = 5 , nrow = length(timeline)))
colnames(Sub_plant_stats) <- c("Starttime","Endtime", "Intercept","Slope", "R.square")
Sub_plant_stats$Starttime <- timeline
Sub_plant_stats$Endtime <- timeline + window_size
for (i in 1:length(timeline)){
## Subset data for each window under the same plant
Window <- na.omit(Sub_plant[Sub_plant$all.min > Sub_plant_stats[i,1] & Sub_plant$all.min <= Sub_plant_stats[i,2],])
if (nrow(Window) >= 3){
### generate the linear model
linear_model <- lm(Window$Fit~ Window$all.min)
linear_summary <- summary(linear_model)
### extract intercept
Sub_plant_stats[i,4] <- linear_summary$coefficients[2]
### extract the slope
Sub_plant_stats[i,3] <- linear_summary$coefficients[1]
### extract the R.square
Sub_plant_stats[i,5] <- linear_summary$r.squared
### Plot the linear regression fit
ggplot(Window, aes(x = all.min, y = area)) +
geom_point() + theme_classic() +
geom_smooth(method = "lm", alpha = .15)
} else {
Sub_plant_stats[i,4] <- NA
### extract the slope
Sub_plant_stats[i,3] <- NA
### extract the R.square
Sub_plant_stats[i,5] <- NA
}
}
Sub_plant_stats$ID <- Plant_individual_clean[NUMBER]
assign(paste0(Plant_individual_clean[NUMBER], "_GR_summary"), Sub_plant_stats)
}
}
### Combine GR for all plants
GR_list <- lapply(ls(pattern = "_GR_summary"), get)
Total_GR <- na.omit(bind_rows(GR_list))
### join decoding file and the total_GR file
growth_data <- left_join(Total_GR, decoding, by = "ID")
growth_data <- growth_data[growth_data$Slope > 0,]
growth_data$Point <- (growth_data$Starttime + growth_data$Endtime)/2
GR_lgraph <- ggplot(data=growth_data, aes(x= Point, y=Slope, group = ID, color = Treatment)) +
geom_line(alpha = 0.2) +
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group= Treatment), alpha=0.3) +
stat_summary(fun=mean, aes(group= Treatment), size=0.7, geom="line", linetype = "dashed") +
stat_compare_means(aes(group = Treatment), label = "p.signif", method = "t.test", hide.ns = T) +
ylab(paste0("Growth Rate under ",window_size,"window_size")) + xlab("Minutes After Experiments") +
theme_classic() +
facet_wrap( ~ Genotype) +
scale_color_manual(values = c(Drought="tomato", Control="steelblue"))
GR_lgraph
### determine the input data
data_source <- deco_Smooth_fit
Plant_individual_clean <- unique(deco_Smooth_fit$ID)
### define interval using the numbers of hours and total minutes of experiments
timeline <- unique(data_source[,c("Year", "Month", "Date")])
### Calculate the plant-wise growth rate (GR) across defined window above
for (NUMBER in 1:length(Plant_individual_clean)){
### Subset data for each Plant
Sub_plant <- na.omit((data_source[data_source$ID == Plant_individual_clean[NUMBER], ]))
if (nrow(Sub_plant) != 0) {
### Create plant-wise statistical table
Sub_plant_stats <- data.frame(matrix(ncol = 7 , nrow = nrow(timeline)))
colnames(Sub_plant_stats) <- c("Year","Month","Date","Intercept", "Slope","R.square", "Index")
Sub_plant_stats[,1:3] <- timeline[,1:3]
Sub_plant_stats$Index <- rownames(Sub_plant_stats)
for (i in 1:nrow(timeline)){
## Subset data for each window under the same plant
Window <- na.omit(Sub_plant[Sub_plant$Year == timeline[i,1] & Sub_plant$Month == timeline[i,2] & Sub_plant$Date == timeline[i,3],])
if (nrow(Window) >= 3){
### generate the linear model
linear_model <- lm(Window$Fit ~ Window$all.min)
linear_summary <- summary(linear_model)
### extract intercept
Sub_plant_stats[i,4] <- linear_summary$coefficients[1]
### extract the slope
Sub_plant_stats[i,5] <- linear_summary$coefficients[2]
### extract the R.square
Sub_plant_stats[i,6] <- linear_summary$r.squared
} else {
Sub_plant_stats[i,5] <- NA
### extract the slope
Sub_plant_stats[i,4] <- NA
### extract the R.square
Sub_plant_stats[i,6] <- NA
}
}
Sub_plant_stats$ID <- Plant_individual_clean[NUMBER]
assign(paste0(Plant_individual_clean[NUMBER], "_DGR_summary"), Sub_plant_stats)
}
}
### Combine GR for all plants
DGR_list <- lapply(ls(pattern = "_DGR_summary"), get)
Total_DGR <- na.omit(bind_rows(DGR_list))
### join decoding file and the total_GR file
growth_data <- left_join(Total_DGR , decoding, by = "ID")
growth_data <- growth_data[growth_data$Slope < 40,]
growth_data$Index <- as.integer(growth_data$Index)
### Plot DGR
DGR_lgraph <- ggplot(data=growth_data, aes(x= Index, y=Slope, group = ID, color = Treatment)) +
theme_classic() +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.1, size = 0.5) +
ylab("Smoothed rosette area of individual plant") + xlab("Total Time (minutes)") +
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Treatment), alpha=0.3) +
stat_summary(fun=mean, aes(group= Treatment), size=0.7, geom="line", linetype = "dashed") +
stat_compare_means(aes(group = Treatment), label = "p.signif", method = "t.test") +
scale_x_continuous(breaks=seq(0,max(deco_data_clean$area),by=2500)) +
facet_wrap( ~ Genotype) +
scale_color_manual(values = c(Drought="tomato", Control="steelblue"))
DGR_lgraph
### join decoding file and the total_GR file
growth_data <- left_join(Total_DGR , decoding, by = "ID")
growth_data <- growth_data[growth_data$Slope < 40,]
growth_data$Index <- as.integer(growth_data$Index)
### extract the drought dataset
growth_data_control <- growth_data[growth_data$Treatment == "Control",]
for(i in 1:length(Genotype)){
DGR_temp <- growth_data_control[growth_data_control$Genotype == "Col-0" | growth_data_control$Genotype == Genotype[i],]
tempDGR_graph <- ggplot(data=DGR_temp, aes(x= Index, y=Slope, group = ID, color = Genotype)) +
theme_classic() +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.1, size = 0.5) +
ylab("DGR of individual plant (Control)") + xlab("Total Time (days)") +
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Genotype), alpha=0.3) +
stat_summary(fun=mean, aes(group= Genotype), size=0.7, geom="line", linetype = "dashed") +
stat_compare_means(aes(group = Genotype), label = "p.signif", method = "t.test") +
scale_x_continuous(breaks=seq(0,max(deco_data_clean$area),by=2500)) +
scale_color_manual(values = c("#666666","#E7298A"))
assign(paste0("DGR_Control_",str_replace(Genotype[i], "-","_")),tempDGR_graph)
}
plot_grid(DGR_Control_CP.GR4_2, DGR_Control_CP.EVT2_1, DGR_Control_CP.NPQ1_1, DGR_Control_CP.EVT5_1,
DGR_Control_CP.NPQ6_4, DGR_Control_CP.EVT9_2, DGR_Control_CP.EVT6_2, DGR_Control_CP.NPQ4_1,
DGR_Control_CP.EVT4_1, DGR_Control_CP.NPQ5_2, DGR_Control_CP.EVT4_2, DGR_Control_CP.NPQ7_1,
DGR_Control_CP.EVT7, DGR_Control_CP.EVT1_1, DGR_Control_CP.GR2_2, DGR_Control_CP.GR5,
DGR_Control_CP.GR4_1, DGR_Control_CP.GR3_1, DGR_Control_CP.EVT3_1, DGR_Control_CP.EVT2_2,
DGR_Control_CP.NPQ6_5, DGR_Control_CP.GR2_1, DGR_Control_CP.NPQ6_3, DGR_Control_CP.NPQ1_2,
DGR_Control_CP.GR2_3, DGR_Control_CP.GR3_2,DGR_Control_CP.NPQ5_1, DGR_Control_CP.EVT8, DGR_Control_CP.EVT9_1,
DGR_Control_CP.EVT1_2)
### extract the drought dataset
growth_data_drought <- growth_data[growth_data$Treatment == "Drought",]
for(i in 1:length(Genotype)){
DGR_temp <- growth_data_drought[growth_data_drought$Genotype == "Col-0" | growth_data_drought$Genotype == Genotype[i],]
tempDGR_graph <- ggplot(data=DGR_temp, aes(x= Index, y=Slope, group = ID, color = Genotype)) +
theme_classic() +
geom_line(alpha = 0.2) +
geom_point(alpha = 0.1, size = 0.5) +
ylab("DGR of individual plant (Drought)") + xlab("Total Time (days)") +
stat_summary(fun.data = mean_se, geom="ribbon", linetype=0, aes(group=Genotype), alpha=0.3) +
stat_summary(fun=mean, aes(group= Genotype), size=0.7, geom="line", linetype = "dashed") +
stat_compare_means(aes(group = Genotype), label = "p.signif", method = "t.test") +
scale_x_continuous(breaks=seq(0,max(deco_data_clean$area),by=2500)) +
scale_color_manual(values = c("#666666","#E7298A"))
assign(paste0("DGR_Drought_",str_replace(Genotype[i], "-","_")),tempDGR_graph)
}
plot_grid(DGR_Drought_CP.GR4_2, DGR_Drought_CP.EVT2_1, DGR_Drought_CP.NPQ1_1, DGR_Drought_CP.EVT5_1,
DGR_Drought_CP.NPQ6_4, DGR_Drought_CP.EVT9_2, DGR_Drought_CP.EVT6_2, DGR_Drought_CP.NPQ4_1,
DGR_Drought_CP.EVT4_1, DGR_Drought_CP.NPQ5_2, DGR_Drought_CP.EVT4_2, DGR_Drought_CP.NPQ7_1,
DGR_Drought_CP.EVT7, DGR_Drought_CP.EVT1_1, DGR_Drought_CP.GR2_2, DGR_Drought_CP.GR5,
DGR_Drought_CP.GR4_1, DGR_Drought_CP.GR3_1, DGR_Drought_CP.EVT3_1, DGR_Drought_CP.EVT2_2,
DGR_Drought_CP.NPQ6_5, DGR_Drought_CP.GR2_1, DGR_Drought_CP.NPQ6_3, DGR_Drought_CP.NPQ1_2,
DGR_Drought_CP.GR2_3, DGR_Drought_CP.GR3_2,DGR_Drought_CP.NPQ5_1, DGR_Drought_CP.EVT8, DGR_Drought_CP.EVT9_1,
DGR_Drought_CP.EVT1_2)