Part 1
install.packages("psych", repos = "https://cloud.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/5_/389qrkvs1sd7nkp792bslx5r0000gn/T//RtmpQrivO3/downloaded_packages
library("psych")
?psych
data(iris)
x <- iris
describe(x)
## vars n mean sd median trimmed mad min max range skew
## Sepal.Length 1 150 5.84 0.83 5.80 5.81 1.04 4.3 7.9 3.6 0.31
## Sepal.Width 2 150 3.06 0.44 3.00 3.04 0.44 2.0 4.4 2.4 0.31
## Petal.Length 3 150 3.76 1.77 4.35 3.76 1.85 1.0 6.9 5.9 -0.27
## Petal.Width 4 150 1.20 0.76 1.30 1.18 1.04 0.1 2.5 2.4 -0.10
## Species* 5 150 2.00 0.82 2.00 2.00 1.48 1.0 3.0 2.0 0.00
## kurtosis se
## Sepal.Length -0.61 0.07
## Sepal.Width 0.14 0.04
## Petal.Length -1.42 0.14
## Petal.Width -1.36 0.06
## Species* -1.52 0.07
nrow(iris)
## [1] 150
#they are 150 cases in the data set.
summary(x)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
#There are 4 numerical variables in the data. 1-Sepal.length,
#2-Sepal.Width, 3-petal.Length, 4- Petal.Width
?str
str(x)
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
y <- sapply(x, is.numeric)
y
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## TRUE TRUE TRUE TRUE FALSE
#The numeric variables are continuous.
# There is only one categorical variable "Species"
?levels
levels(x$Species)
## [1] "setosa" "versicolor" "virginica"
# The categories of Species are: "setosa, versicolor, virginica"
Part 2
data(women)
w <- women
w
## height weight
## 1 58 115
## 2 59 117
## 3 60 120
## 4 61 123
## 5 62 126
## 6 63 129
## 7 64 132
## 8 65 135
## 9 66 139
## 10 67 142
## 11 68 146
## 12 69 150
## 13 70 154
## 14 71 159
## 15 72 164
summary(w)
## height weight
## Min. :58.0 Min. :115.0
## 1st Qu.:61.5 1st Qu.:124.5
## Median :65.0 Median :135.0
## Mean :65.0 Mean :136.7
## 3rd Qu.:68.5 3rd Qu.:148.0
## Max. :72.0 Max. :164.0
# this data is cross sectional
class(w$height)
## [1] "numeric"
class(w$weight)
## [1] "numeric"
typeof(w$height)
## [1] "double"
typeof(w$weight)
## [1] "double"
# both variables are numeric and continuous.
?plot
## Help on topic 'plot' was found in the following packages:
##
## Package Library
## base /Library/Frameworks/R.framework/Resources/library
## graphics /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library
##
##
## Using the first match ...
plot(w$height, w$weight, main = "US women",
xlab="Height", ylab= "Weight")
?abline
?lm
abline(lm(w$weight~w$height), col='purple')
install.packages("car", repos = "https://cloud.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/5_/389qrkvs1sd7nkp792bslx5r0000gn/T//RtmpQrivO3/downloaded_packages
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
scatterplot(w$weight ~ w$height,
xlab = "Height", ylab = "weight",
main = "US women's DATA")
?scatterplotMatrix
scatterplotMatrix(~w$weight+w$height, data = w,
main = "US Woomen's")
install.packages("scatterplot3d", repos = "https://cloud.r-project.org")
##
## The downloaded binary packages are in
## /var/folders/5_/389qrkvs1sd7nkp792bslx5r0000gn/T//RtmpQrivO3/downloaded_packages
library(scatterplot3d)
scatterplot3d(w$weight,w$height, pch=16, highlight.3d = TRUE,
type = "h", main = "US Women's")