“La variedad de sintaxis R brinda muchas formas de ‘decir’ lo mismo” (Amelia McNamara)

Les comparto los resultados de utilizar los codigos de la primera pagina este cheat sheet

1. Dollar sign syntax

library(datasets)

mtcars = mtcars
str(mtcars)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
summary(mtcars)
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000

1.1 Summary statistics:

# one continuous variable:
mean(mtcars$mpg)
## [1] 20.09062
# one categorical variable:
table(mtcars$cyl)
## 
##  4  6  8 
## 11  7 14
# two categorical variables: (forma de tabla cruzada)
table(mtcars$cyl, mtcars$am)
##    
##      0  1
##   4  3  8
##   6  4  3
##   8 12  2
# one continuous, one categorical:
mean(mtcars$mpg[mtcars$cyl==4])
## [1] 26.66364
mean(mtcars$mpg[mtcars$cyl==6])
## [1] 19.74286
mean(mtcars$mpg[mtcars$cyl==8])
## [1] 15.1

1.2 Ploting

# one continuous variable:
hist(mtcars$disp)

boxplot(mtcars$disp)

# one categorical variable:
barplot(table(mtcars$cyl))

#two continuous variables:
plot(mtcars$disp, mtcars$mpg)

#two categorical variables:
mosaicplot(table(mtcars$am, mtcars$cyl))

library(lattice)

#one continuous, one categorical:
histogram(mtcars$disp[mtcars$cyl==4])

histogram(mtcars$disp[mtcars$cyl==6])

histogram(mtcars$disp[mtcars$cyl==8])

boxplot(mtcars$disp[mtcars$cyl==4])

boxplot(mtcars$disp[mtcars$cyl==6])

boxplot(mtcars$disp[mtcars$cyl==8])

1.3 Wrangling

# subsetting:
mtcars[mtcars$mpg>30, ]
##                 mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Fiat 128       32.4   4 78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic    30.4   4 75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla 33.9   4 71.1  65 4.22 1.835 19.90  1  1    4    1
## Lotus Europa   30.4   4 95.1 113 3.77 1.513 16.90  1  1    5    2
# making a new variable:
mtcars$efficient[mtcars$mpg>30] <- TRUE
mtcars$efficient[mtcars$mpg<30] <- FALSE
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb efficient
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4     FALSE
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4     FALSE
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1     FALSE
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1     FALSE
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2     FALSE
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1     FALSE
mtcars$efficient2 = ifelse(mtcars$mpg>30, T, F)
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb efficient
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4     FALSE
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4     FALSE
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1     FALSE
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1     FALSE
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2     FALSE
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1     FALSE
##                   efficient2
## Mazda RX4              FALSE
## Mazda RX4 Wag          FALSE
## Datsun 710             FALSE
## Hornet 4 Drive         FALSE
## Hornet Sportabout      FALSE
## Valiant                FALSE
table(mtcars$efficient2)
## 
## FALSE  TRUE 
##    28     4

2. Formula syntax

2.1 Summary statistics:

#install.packages("mosaic")

library(mosaic)
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
# one continuous variable:
mean(~mpg, data=mtcars)
## [1] 20.09062
mean(~mpg, data=mtcars)
## [1] 20.09062
# one categorical variable:
tally(~cyl, data=mtcars)
## cyl
##  4  6  8 
## 11  7 14
# two categorical variables: (forma de tabla cruzada)
tally(cyl~am, data=mtcars)
##    am
## cyl  0  1
##   4  3  8
##   6  4  3
##   8 12  2
# one continuous, one categorical:
mean(mpg~cyl, data=mtcars)
##        4        6        8 
## 26.66364 19.74286 15.10000

2.2 Ploting

library(lattice)

# one continuous variable:
histogram(~disp, data=mtcars)

bwplot(~disp, data=mtcars)

# one categorical variable:
bargraph(~cyl, data=mtcars)

# two continuous variables:
xyplot(mpg~disp, data=mtcars)

# two categorical variables:
bargraph(~am, data=mtcars, group=cyl)

# one continuous, one categorical:
histogram(~disp|cyl, data=mtcars)

bwplot(cyl~disp, data=mtcars)

3. Tidyverse syntax

3.1 Summary statistics:

# shortcut pipe Ctrl + Shift + M

library(dplyr)

# one continuous variable:
mtcars %>% summarize(mean(mpg))
##   mean(mpg)
## 1  20.09062
# one categorical variable:
mtcars %>% group_by(cyl) %>%
summarize(n())
## # A tibble: 3 × 2
##     cyl `n()`
##   <dbl> <int>
## 1     4    11
## 2     6     7
## 3     8    14
# two categorical variables: (forma de dataset)
mtcars %>% group_by(cyl, am) %>%
summarize(n())
## `summarise()` has grouped output by 'cyl'. You can override using the `.groups`
## argument.
## # A tibble: 6 × 3
## # Groups:   cyl [3]
##     cyl    am `n()`
##   <dbl> <dbl> <int>
## 1     4     0     3
## 2     4     1     8
## 3     6     0     4
## 4     6     1     3
## 5     8     0    12
## 6     8     1     2
# one continuous, one categorical:
mtcars %>% group_by(cyl) %>%
summarize(mean(mpg))
## # A tibble: 3 × 2
##     cyl `mean(mpg)`
##   <dbl>       <dbl>
## 1     4        26.7
## 2     6        19.7
## 3     8        15.1

3.2 Ploting

library(ggplot2)

# one continuous variable:
qplot(x=mpg, data=mtcars, geom = "histogram")
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

qplot(y=disp, x=1, data=mtcars, geom="boxplot")

# one categorical variable:
qplot(x=cyl, data=mtcars, geom="bar")

# two continuous variables:
qplot(x=disp, y=mpg, data=mtcars, geom="point")

# two categorical variables:
qplot(x=factor(cyl), data=mtcars, geom="bar") +
  facet_grid(.~am)

# one continuous, one categorical:
qplot(x=disp, data=mtcars, geom = "histogram") +
  facet_grid(.~cyl)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

qplot(y=disp, x=factor(cyl), data=mtcars,
               geom="boxplot")

3.3 Wrangling

# subsetting:
mtcars %>% filter(mpg>30)
##                 mpg cyl disp  hp drat    wt  qsec vs am gear carb efficient
## Fiat 128       32.4   4 78.7  66 4.08 2.200 19.47  1  1    4    1      TRUE
## Honda Civic    30.4   4 75.7  52 4.93 1.615 18.52  1  1    4    2      TRUE
## Toyota Corolla 33.9   4 71.1  65 4.22 1.835 19.90  1  1    4    1      TRUE
## Lotus Europa   30.4   4 95.1 113 3.77 1.513 16.90  1  1    5    2      TRUE
##                efficient2
## Fiat 128             TRUE
## Honda Civic          TRUE
## Toyota Corolla       TRUE
## Lotus Europa         TRUE
mtcars$efficient = NULL
mtcars$efficient2 = NULL
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
# making a new variable:
mtcars <- mtcars %>%
  mutate(efficient = if_else(mpg>30, TRUE, FALSE))
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb efficient
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4     FALSE
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4     FALSE
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1     FALSE
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1     FALSE
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2     FALSE
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1     FALSE