1 Overview

The present analysis is based on 1066 respondents from South Africa, Nigeria, Kenya, and Ghana completing our survey for pilot wave 9 (Jan 2023). The related GitHub issue is here.


2 Associations between sorting questions and trust factors

We have 21 sorting questions, each answered on a Likert scale from 1 to 5 (1 = I Disagree Strongly, 2 = I Disagree, 3 = I’m Unsure, 4 = I Agree 5 = I Agree Strongly):

Question Text Variable Name
People are still dying from COVID. covid_is_a_problem
COVID is a problem in [my country] covid_is_problem_my_country
I think the COVID vaccines are safe vax_is_safe
COVID vaccines help prevent serious sickness and death vax_prevent_sick_death
You need a vaccine for protection from sickness (not because you are sick) need_vax_for_protection
Getting the vaccine is much safer than getting COVID vax_safer_covid
I think the people who developed the vaccine wanted to help people developer_want_to_help
I think my local healthcare workers want me to be healthy and well health_worker_want_to_help
I think my government’s department of health workers want me to be healthy and well gov_want_to_help
It is important to me that I protect myself from the effects of COVID important_to_protect_myself
It is important to me that I protect others from the effects of COVID important_to_protect_other
Getting vaccinated is a moral issue vax_moral
I worry about short-term side effects of the COVID vaccine worry_short_term_side_effect
I worry about long-term side effects of the COVID vaccine worry_long_term_side_effect
COVID has killed millions of people worldwide covid_is_real
I will probably be exposed to someone with COVID over the next year probably_exposed
I am very afraid of needles afraid_needle
I am a deeply religious person deeply_religious
It is important to me that I be a moral person important_moral
It is important to me to feel like I “fit in” in with my group fit_in_group_importance
It is important to me to feel like I am a responsible member of my community responsible_importance

We assess the relationship between these 21 sorting questions and 5 trust-related factors output from the factor analysis:




2.1 Trust Factor 1

2.1.1 Overall

rowvec <- c("health_department", "who", "clinic_worker", "doctor")

# associations

mat1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.4 <-
  df %>% 
  select(rowvec[4], sorting_qs) %>%
  mutate(doctor = parse_number(doctor)) %>% 
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.4 <-
  df %>% 
  select(rowvec[4], sorting_qs) %>%
  mutate(doctor = parse_number(doctor)) %>% 
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3, mat1.4) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3, matp1.4) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 1\n(N = 1066)") +
  theme(legend.position = "bottom")

2.1.2 Vax Likelihood [1 or 5]

rowvec <- c("health_department", "who", "clinic_worker", "doctor")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>% 
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.4 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>%
  select(rowvec[4], sorting_qs) %>%
  mutate(doctor = parse_number(doctor)) %>% 
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.4 <-
  df %>% 
  filter(vax_next_year %in% c(1, 5)) %>%
  select(rowvec[4], sorting_qs) %>%
  mutate(doctor = parse_number(doctor)) %>% 
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3, mat1.4) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3, matp1.4) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 1\n(N = 578)") +
  theme(legend.position = "bottom")

2.1.3 Vax Likelihood [2-4]

rowvec <- c("health_department", "who", "clinic_worker", "doctor")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>% 
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.4 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[4], sorting_qs) %>%
  mutate(doctor = parse_number(doctor)) %>% 
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.4 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[4], sorting_qs) %>%
  mutate(doctor = parse_number(doctor)) %>% 
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3, mat1.4) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3, matp1.4) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 1\n(N = 488)") +
  theme(legend.position = "bottom")


2.2 Trust Factor 2

2.2.1 Overall

rowvec <- c("international_scientist", "international_ngo", "african_scientist")

# associations

mat1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 2\n(N = 1066)") +
  theme(legend.position = "bottom")

2.2.2 Vax Likelihood [1 or 5]

rowvec <- c("international_scientist", "international_ngo", "african_scientist")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 2\n(N = 578)") +
  theme(legend.position = "bottom")

2.2.3 Vax Likelihood [2-4]

rowvec <- c("international_scientist", "international_ngo", "african_scientist")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 2\n(N = 488)") +
  theme(legend.position = "bottom")


2.3 Trust Factor 3

2.3.1 Overall

rowvec <- c("community_leader", "minister_religious_leader", "community_based_org")

# associations

mat1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 3\n(N = 1066)") +
  theme(legend.position = "bottom")

2.3.2 Vax Likelihood [1 or 5]

rowvec <- c("community_leader", "minister_religious_leader", "community_based_org")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 3\n(N = 578)") +
  theme(legend.position = "bottom")

2.3.3 Vax Likelihood [2-4]

rowvec <- c("community_leader", "minister_religious_leader", "community_based_org")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.3 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.3 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[3], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2, mat1.3) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2, matp1.3) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 3\n(N = 488)") +
  theme(legend.position = "bottom")

2.4 Trust Factor 4

2.4.1 Overall

rowvec <- c("local_news_media", "international_news_media")

# associations

mat1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 4\n(N = 1066)") +
  theme(legend.position = "bottom")

2.4.2 Vax Likelihood [1 or 5]

rowvec <- c("local_news_media", "international_news_media")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 4\n(N = 578)") +
  theme(legend.position = "bottom")

2.4.3 Vax Likelihood [2-4]

rowvec <- c("local_news_media", "international_news_media")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 4\n(N = 488)") +
  theme(legend.position = "bottom")

2.5 Trust Factor 5

2.5.1 Overall

rowvec <- c("family", "friends")

# associations

mat1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 5\n(N = 1066)") +
  theme(legend.position = "bottom")

2.5.2 Vax Likelihood [1 or 5]

rowvec <- c("family", "friends")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(1,5)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 5\n(N = 578)") +
  theme(legend.position = "bottom")

2.5.3 Vax Likelihood [2-4]

rowvec <- c("family", "friends")

# associations

mat1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

mat1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


# pvalues

matp1.1 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[1], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]

matp1.2 <-
  df %>% 
  filter(vax_next_year %in% c(2,3,4)) %>%
  select(rowvec[2], sorting_qs) %>%
  cor_pmat(use = "pairwise.complete.obs") %>% 
  .[1, 2:22]


final_mat <- tibble(mat1.1, mat1.2) %>% as.matrix() %>% t()
final_pmat <- tibble(matp1.1, matp1.2) %>% as.matrix() %>% t()

colnames(final_mat) <- sorting_qs
rownames(final_mat) <- rowvec
rownames(final_pmat) <- rowvec

ggcorrplot(final_mat, lab = TRUE, lab_size = 3, tl.cex = 10, p.mat = final_pmat, colors = c(cb_colors[2], "white", cb_colors[1])) + 
  labs(subtitle = "Sorting Questions x Trust Factor 5\n(N = 488)") +
  theme(legend.position = "bottom")