1 機能語の種類

Term Info1 Info2 Freq id

3 たい 助動詞 * 1 1

4 だ 助動詞 * 10 1

5 ない 助動詞 * 3 1

6 と 助詞 並立助詞 5 1

7 は 助詞 係助詞 8 1

8 も 助詞 係助詞 5 1

1.1 Hでは

1.1.1 Info 1

[1] “助動詞” “助詞” “動詞” “名詞” “接続詞” “その他” “接頭詞” “フィラー” [9] “形容詞”

1.1.2 Info 2

[1] “*” “並立助詞” “係助詞”
[4] “副助詞” “副助詞/並立助詞/終助詞” “接続助詞”
[7] “格助詞” “終助詞” “連体化”
[10] “接尾” “非自立” “間投”
[13] “副詞化” “名詞接続” “特殊”

1.2 Mでは

[1] “助動詞” “助詞” “動詞” “名詞” “感動詞” “接続詞” “接頭詞” “フィラー” [9] “形容詞”

[1] “*” “並立助詞” “係助詞”
[4] “副助詞” “副助詞/並立助詞/終助詞” “接続助詞”
[7] “格助詞” “終助詞” “連体化”
[10] “非自立” “接尾” “名詞接続”
[13] “副詞化”

1.3 Lでは

“助動詞” “助詞” “動詞” “名詞” “接続詞” “接頭詞” “フィラー”

[1] “*” “並立助詞” “係助詞”
[4] “副助詞” “副助詞/並立助詞/終助詞” “接続助詞”
[7] “格助詞” “終助詞” “連体化”
[10] “非自立” “接尾” “名詞接続”
[13] “副詞化”

1.4

1.4.1 助動詞

です、ます、たい

1.4.2 助詞

並立助詞 と

係助詞 は

副助詞 かも、じゃ

副助詞/並立助詞/終助詞 か

接続助詞 から、ので、けど

格助詞 が、で

終助詞 ね、よ

連体化 の

副詞化 に(極めて少ない)

1.4.3 名詞

接尾 的、さん

1.4.4 動詞

接尾 れる

1.4.5 形容詞 

接尾 っぽい

1.4.6 動詞 非自立

1.4.7 名詞接続 接頭詞

1.4.8 特殊 

ん(極めて少ない)

1.5 まとめ

ということで、

助動詞、

並立助詞、

係助詞、

副助詞、

副助詞/並立助詞/終助詞、

接続助詞、

格助詞、

終助詞、

連体化、

非自立動詞、

名詞接尾

を分析する。

2 Data import

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0      ✔ purrr   1.0.0 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.1      ✔ stringr 1.5.0 
## ✔ readr   2.1.3      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(ggpubr)
library(rstatix)
## 
## Attaching package: 'rstatix'
## 
## The following object is masked from 'package:stats':
## 
##     filter
library(readxl)

dat <- read_excel("/Users/riku/Documents/goimitsudo_0123.xlsx")


dat$id <- as.factor(dat$id)
dat$trueid <- as.factor(dat$trueid)

dat$task <- ordered(dat$task, levels=c("L","M","H"))
dat$proficiency <- as.factor(dat$proficiency)
dat$proficiency <- ordered(dat$proficiency, levels=c("lower","middle","upper"))

2.1 Boxplot

bxp <- ggboxplot(
  dat, x = "task", y = "jyodoushi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("jyodoushi")

bxp <- ggboxplot(
  dat, x = "task", y = "heiritsu", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("heiritsu")

bxp <- ggboxplot(
  dat, x = "task", y = "kakari", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakari")

bxp <- ggboxplot(
  dat, x = "task", y = "fukujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("fukujyoshi")

bxp <- ggboxplot(
  dat, x = "task", y = "ka", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("ka")

bxp <- ggboxplot(
  dat, x = "task", y = "setsuzokujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsuzokujyoshi")

bxp <- ggboxplot(
  dat, x = "task", y = "kakujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakujyoshi")

bxp <- ggboxplot(
  dat, x = "task", y = "syujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("syujyoshi")

bxp <- ggboxplot(
  dat, x = "task", y = "rentai", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("rentai")

bxp <- ggboxplot(
  dat, x = "task", y = "hijiritsu", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("hijiritsu")

bxp <- ggboxplot(
  dat, x = "task", y = "setsubimeishi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubimeishi")

bxp <- ggboxplot(
  dat, x = "task", y = "setsubidoushi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubidoushi")

bxp <- ggboxplot(
  dat, x = "task", y = "setsubikeiyoushi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubikeiyoushi")

3 Comparison between M and H ——-

dat_MH <- dat %>% filter(task == "M"| task == "H")
dat_MH$task <- ordered(dat_MH$task, levels=c("M","H"))

3.1 Jyodoushi MH ——-

習熟度と認知負荷が有意であった。

3.1.1 Box plot ———–

bxp <- ggboxplot(
  dat_MH, x = "task", y = "jyodoushi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("jyodoushi")

3.1.2 Check assumptions ——-

dat_MH %>%
  group_by(task, proficiency) %>%
  identify_outliers(jyodoushi)
## # A tibble: 1 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 H     upper       10    10      38.3   4.9    64   128      8     10         2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_MH %>%
  group_by(task, proficiency) %>%
  shapiro_test(jyodoushi)
## # A tibble: 6 × 5
##   task  proficiency variable  statistic      p
##   <ord> <ord>       <chr>         <dbl>  <dbl>
## 1 M     lower       jyodoushi     0.974 0.926 
## 2 M     middle      jyodoushi     0.889 0.116 
## 3 M     upper       jyodoushi     0.879 0.0851
## 4 H     lower       jyodoushi     0.868 0.0738
## 5 H     middle      jyodoushi     0.967 0.878 
## 6 H     upper       jyodoushi     0.954 0.696
ggqqplot(dat_MH, "jyodoushi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_MH %>%
  group_by(task) %>%
  levene_test(jyodoushi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic     p
##   <ord> <int> <int>     <dbl> <dbl>
## 1 M         2    32     0.775 0.469
## 2 H         2    32     0.371 0.693

3.1.3 Computation ——-

res.aov <- anova_test(
  data = dat_MH, dv = jyodoushi, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 7.932 0.002     * 0.242
## 2             task   1  32 6.988 0.013     * 0.072
## 3 proficiency:task   2  32 0.242 0.786       0.005
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency, 
                 response = dat_MH$jyodoushi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

3.2 Heiritsu

正規分布に従わなかった。

bxp <- ggboxplot(
  dat_MH, x = "task", y = "heiritsu", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("heiritsu")

3.2.1 Check assumptions ——-

dat_MH %>%
  group_by(task, proficiency) %>%
  identify_outliers(heiritsu)
## # A tibble: 8 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 M     middle      3     3       48.2  5       58   114      8     11         3
## 2 M     middle      9     9       47.2  3.78    43    72      5      9         4
## 3 M     middle      15    15      44.7  3.4     29    38      4      5         1
## 4 M     middle      33    34      46.9  3.75    62    96      7     12         5
## 5 M     upper       22    22      44.5  4.87    82   164      7     15         8
## 6 H     lower       8     8       48.1  3.71    38    54      6      7         1
## 7 H     lower       20    20      48.4  4.21    63   122     11     14         3
## 8 H     middle      3     3       45.2  5.18    56   126      9     11         2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_MH %>%
  group_by(task, proficiency) %>%
  shapiro_test(heiritsu)
## # A tibble: 6 × 5
##   task  proficiency variable statistic          p
##   <ord> <ord>       <chr>        <dbl>      <dbl>
## 1 M     lower       heiritsu     0.879 0.0998    
## 2 M     middle      heiritsu     0.739 0.00205   
## 3 M     upper       heiritsu     0.878 0.0826    
## 4 H     lower       heiritsu     0.504 0.00000169
## 5 H     middle      heiritsu     0.731 0.00172   
## 6 H     upper       heiritsu     0.839 0.0269
ggqqplot(dat_MH, "heiritsu", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_MH %>%
  group_by(task) %>%
  levene_test(heiritsu ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic      p
##   <ord> <int> <int>     <dbl>  <dbl>
## 1 M         2    32     0.905 0.415 
## 2 H         2    32     3.87  0.0312

正規分布に従わない

3.3 kakari

習熟度も認知負荷も有意ではなかった。

bxp <- ggboxplot(
  dat_MH, x = "task", y = "kakari", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakari")

3.3.1 Check assumptions ——-

dat_MH %>%
  group_by(task, proficiency) %>%
  identify_outliers(kakari)
## # A tibble: 3 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 M     lower       20    20      45.7  5.25    45    92      7      8         1
## 2 M     lower       30    31      46.1  3.5     46    76      8     10         2
## 3 H     middle      3     3       45.2  5.18    56   126      9     11         2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_MH %>%
  group_by(task, proficiency) %>%
  shapiro_test(kakari)
## # A tibble: 6 × 5
##   task  proficiency variable statistic     p
##   <ord> <ord>       <chr>        <dbl> <dbl>
## 1 M     lower       kakari       0.948 0.619
## 2 M     middle      kakari       0.915 0.247
## 3 M     upper       kakari       0.938 0.470
## 4 H     lower       kakari       0.954 0.702
## 5 H     middle      kakari       0.903 0.172
## 6 H     upper       kakari       0.990 1.00
ggqqplot(dat_MH, "kakari", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_MH %>%
  group_by(task) %>%
  levene_test(kakari ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic      p
##   <ord> <int> <int>     <dbl>  <dbl>
## 1 M         2    32     3.04  0.0618
## 2 H         2    32     0.163 0.850

3.3.2 Computation ——-

res.aov <- anova_test(
  data = dat_MH, dv = kakari, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 0.427 0.656       0.021
## 2             task   1  32 1.456 0.236       0.009
## 3 proficiency:task   2  32 0.316 0.731       0.004
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency, 
                 response = dat_MH$kakari, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

3.4 setsuzokujyoshi

習熟度も認知負荷も有意であった。

bxp <- ggboxplot(
  dat_MH, x = "task", y = "setsuzokujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsuzokujyoshi")

3.4.1 Check assumptions ——-

dat_MH %>%
  group_by(task, proficiency) %>%
  identify_outliers(setsuzokujyoshi)
## # A tibble: 1 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 H     lower       30    31      42.7  3.89    44    82      7      9         2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_MH %>%
  group_by(task, proficiency) %>%
  shapiro_test(setsuzokujyoshi)
## # A tibble: 6 × 5
##   task  proficiency variable        statistic       p
##   <ord> <ord>       <chr>               <dbl>   <dbl>
## 1 M     lower       setsuzokujyoshi     0.905 0.210  
## 2 M     middle      setsuzokujyoshi     0.965 0.849  
## 3 M     upper       setsuzokujyoshi     0.932 0.397  
## 4 H     lower       setsuzokujyoshi     0.786 0.00624
## 5 H     middle      setsuzokujyoshi     0.938 0.475  
## 6 H     upper       setsuzokujyoshi     0.910 0.215
ggqqplot(dat_MH, "setsuzokujyoshi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_MH %>%
  group_by(task) %>%
  levene_test(setsuzokujyoshi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic      p
##   <ord> <int> <int>     <dbl>  <dbl>
## 1 M         2    32     2.67  0.0849
## 2 H         2    32     0.287 0.752

3.4.2 Computation ——-

res.aov <- anova_test(
  data = dat_MH, dv = setsuzokujyoshi, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 8.463 0.001     * 0.288
## 2             task   1  32 6.541 0.015     * 0.046
## 3 proficiency:task   2  32 0.090 0.914       0.001
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency, 
                 response = dat_MH$setsuzokujyoshi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

3.5 kakujyoshi

bxp <- ggboxplot(
  dat_MH, x = "task", y = "kakujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakujyoshi")

3.5.1 Check assumptions ——-

dat_MH_2 <- dat_MH %>% filter(!(trueid == "24"))
dat_MH_2 <- dat_MH_2 %>% filter(!(trueid == "3"))



dat_MH_2 %>%
  group_by(task, proficiency) %>%
  identify_outliers(kakujyoshi)
##  [1] task                   proficiency            id                    
##  [4] trueid                 ld                     ld2                   
##  [7] koto                   nobe                   asunit                
## [10] clause                 jyuzokuclause          jyuzokuclauseperasunit
## [13] clauseperasunit        wariai                 wariai2               
## [16] jyodoushi              heiritsu               kakari                
## [19] fukujyoshi             ka                     setsuzokujyoshi       
## [22] kakujyoshi             syujyoshi              rentai                
## [25] hijiritsu              setsubimeishi          setsubidoushi         
## [28] setsubikeiyoushi       is.outlier             is.extreme            
## <0 rows> (or 0-length row.names)
dat_MH_2 %>%
  group_by(task, proficiency) %>%
  shapiro_test(kakujyoshi)
## # A tibble: 6 × 5
##   task  proficiency variable   statistic     p
##   <ord> <ord>       <chr>          <dbl> <dbl>
## 1 M     lower       kakujyoshi     0.902 0.197
## 2 M     middle      kakujyoshi     0.942 0.573
## 3 M     upper       kakujyoshi     0.937 0.457
## 4 H     lower       kakujyoshi     0.948 0.619
## 5 H     middle      kakujyoshi     0.929 0.438
## 6 H     upper       kakujyoshi     0.935 0.435
ggqqplot(dat_MH_2, "kakujyoshi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_MH_2 %>%
  group_by(task) %>%
  levene_test(kakujyoshi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic     p
##   <ord> <int> <int>     <dbl> <dbl>
## 1 M         2    30    1.15   0.331
## 2 H         2    30    0.0615 0.940

3.5.2 Computation ——-

res.aov <- anova_test(
  data = dat_MH_2, dv = kakujyoshi, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  30 6.713 0.004     * 0.241
## 2             task   1  30 0.548 0.465       0.005
## 3 proficiency:task   2  30 2.929 0.069       0.054
interaction.plot(x.factor = dat_MH_2$task, trace.factor = dat_MH_2$proficiency, 
                 response = dat_MH_2$kakujyoshi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

# Effect of group at each time point
one.way <- dat_MH_2 %>%
  group_by(task) %>%
  anova_test(dv = kakujyoshi, wid = trueid, between = proficiency) %>%
  get_anova_table() %>%
  adjust_pvalue(method = "bonferroni")
one.way
## # A tibble: 2 × 9
##   task  Effect        DFn   DFd     F        p `p<.05`   ges   p.adj
##   <ord> <chr>       <dbl> <dbl> <dbl>    <dbl> <chr>   <dbl>   <dbl>
## 1 M     proficiency     2    30  9.61 0.000596 "*"     0.39  0.00119
## 2 H     proficiency     2    30  1.87 0.172    ""      0.111 0.344
pwc <- dat_MH_2 %>%
  group_by(task) %>%
  pairwise_t_test(kakujyoshi ~ proficiency, p.adjust.method = "bonferroni")
pwc
## # A tibble: 6 × 10
##   task  .y.        group1 group2    n1    n2        p p.signif   p.adj p.adj.s…¹
## * <ord> <chr>      <chr>  <chr>  <int> <int>    <dbl> <chr>      <dbl> <chr>    
## 1 M     kakujyoshi lower  middle    11    10 0.843    ns       1       ns       
## 2 M     kakujyoshi lower  upper     11    12 0.000872 ***      0.00262 **       
## 3 M     kakujyoshi middle upper     10    12 0.000646 ***      0.00194 **       
## 4 H     kakujyoshi lower  middle    11    10 0.421    ns       1       ns       
## 5 H     kakujyoshi lower  upper     11    12 0.274    ns       0.823   ns       
## 6 H     kakujyoshi middle upper     10    12 0.0647   ns       0.194   ns       
## # … with abbreviated variable name ¹​p.adj.signif
# Visualization: boxplots with p-values
pwc <- pwc %>% add_xy_position(x = "task")
pwc.filtered <- pwc %>% filter(task != "H")
bxp + 
  stat_pvalue_manual(pwc.filtered, tip.length = 0, hide.ns = TRUE) +
  labs(
    subtitle = get_test_label(res.aov, detailed = TRUE),
    caption = get_pwc_label(pwc)
  )

交互作用は有意傾向であった。

Mだけでは、上位群が中位群、下位群より高かった。

3.6 rentai

正規分布に従わなかった。

bxp <- ggboxplot(
  dat_MH, x = "task", y = "rentai", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("rentai")

3.6.1 Check assumptions ——-

dat_MH %>%
  group_by(task, proficiency) %>%
  identify_outliers(rentai)
## # A tibble: 2 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 M     upper       23    23      45.5  4.67    74   154      8     15         7
## 2 H     upper       23    23      46.5  4.92    65   127      7     12         5
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_MH %>%
  group_by(task, proficiency) %>%
  shapiro_test(rentai)
## # A tibble: 6 × 5
##   task  proficiency variable statistic        p
##   <ord> <ord>       <chr>        <dbl>    <dbl>
## 1 M     lower       rentai       0.881 0.107   
## 2 M     middle      rentai       0.920 0.288   
## 3 M     upper       rentai       0.855 0.0428  
## 4 H     lower       rentai       0.689 0.000334
## 5 H     middle      rentai       0.854 0.0412  
## 6 H     upper       rentai       0.810 0.0123
ggqqplot(dat_MH, "rentai", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_MH %>%
  group_by(task) %>%
  levene_test(rentai ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic       p
##   <ord> <int> <int>     <dbl>   <dbl>
## 1 M         2    32     0.486 0.619  
## 2 H         2    32     5.93  0.00644

3.6.2 Computation ——-

res.aov <- anova_test(
  data = dat_MH, dv = rentai, wid = id,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05      ges
## 1      proficiency   2  32 0.849 0.437       0.038000
## 2             task   1  32 0.048 0.828       0.000387
## 3 proficiency:task   2  32 1.544 0.229       0.024000
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency, 
                 response = dat_MH$rentai, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

3.7 setsubimeishi

認知負荷が有意であった。

bxp <- ggboxplot(
  dat_MH, x = "task", y = "setsubimeishi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubimeishi")

3.7.1 Check assumptions ——-

dat_MH %>%
  group_by(task, proficiency) %>%
  identify_outliers(setsubimeishi)
## # A tibble: 4 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 M     upper       6     6       43.8  3.83    53   105      8     12         4
## 2 M     upper       23    23      45.5  4.67    74   154      8     15         7
## 3 H     lower       19    19      57.3  4.27    43    82      9     11         2
## 4 H     upper       10    10      38.3  4.9     64   128      8     10         2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_MH %>%
  group_by(task, proficiency) %>%
  shapiro_test(setsubimeishi)
## # A tibble: 6 × 5
##   task  proficiency variable      statistic       p
##   <ord> <ord>       <chr>             <dbl>   <dbl>
## 1 M     lower       setsubimeishi     0.913 0.263  
## 2 M     middle      setsubimeishi     0.860 0.0494 
## 3 M     upper       setsubimeishi     0.800 0.00949
## 4 H     lower       setsubimeishi     0.866 0.0680 
## 5 H     middle      setsubimeishi     0.891 0.120  
## 6 H     upper       setsubimeishi     0.809 0.0119
ggqqplot(dat_MH, "setsubimeishi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_MH %>%
  group_by(task) %>%
  levene_test(setsubimeishi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic     p
##   <ord> <int> <int>     <dbl> <dbl>
## 1 M         2    32     0.180 0.836
## 2 H         2    32     1.26  0.299

3.7.2 Computation ——-

res.aov <- anova_test(
  data = dat_MH, dv = setsubimeishi, wid = id,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 0.137 0.873       0.007
## 2             task   1  32 4.829 0.035     * 0.029
## 3 proficiency:task   2  32 0.835 0.443       0.010
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency, 
                 response = dat_MH$setsubimeishi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

4 Comparison between L and M ——-

dat_LM <- dat %>% filter(task == "L"| task == "M")
dat_LM$task <- ordered(dat_LM$task, levels=c("L","M"))

4.1 Jyodoushi LM ——-

習熟度は有意であった。

4.1.1 Box plot ———–

bxp <- ggboxplot(
  dat_LM, x = "task", y = "jyodoushi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("jyodoushi")

4.1.2 Check assumptions ——-

dat_LM %>%
  group_by(task, proficiency) %>%
  identify_outliers(jyodoushi)
## # A tibble: 3 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 L     middle      12    12      47.1   3.2    23    34      4      5         1
## 2 L     middle      16    16      41.9   4.5    79   172      9     16         7
## 3 L     upper       10    10      39.0   5.5    68   141      7     10         3
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_LM %>%
  group_by(task, proficiency) %>%
  shapiro_test(jyodoushi)
## # A tibble: 6 × 5
##   task  proficiency variable  statistic      p
##   <ord> <ord>       <chr>         <dbl>  <dbl>
## 1 L     lower       jyodoushi     0.944 0.567 
## 2 L     middle      jyodoushi     0.903 0.172 
## 3 L     upper       jyodoushi     0.891 0.122 
## 4 M     lower       jyodoushi     0.974 0.926 
## 5 M     middle      jyodoushi     0.889 0.116 
## 6 M     upper       jyodoushi     0.879 0.0851
ggqqplot(dat_LM, "jyodoushi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_LM %>%
  group_by(task) %>%
  levene_test(jyodoushi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic     p
##   <ord> <int> <int>     <dbl> <dbl>
## 1 L         2    32     1.23  0.305
## 2 M         2    32     0.775 0.469

4.1.3 Computation ——-

res.aov <- anova_test(
  data = dat_LM, dv = jyodoushi, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05      ges
## 1      proficiency   2  32 6.571 0.004     * 2.34e-01
## 2             task   1  32 0.009 0.923       7.54e-05
## 3 proficiency:task   2  32 0.469 0.630       7.00e-03
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency, 
                 response = dat_LM$jyodoushi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

4.2 Heiritsu

正規分布に従わなかった。

bxp <- ggboxplot(
  dat_LM, x = "task", y = "heiritsu", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("heiritsu")

4.2.1 Check assumptions ——-

dat_LM %>%
  group_by(task, proficiency) %>%
  identify_outliers(heiritsu)
## # A tibble: 7 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 L     lower       8     8       50    5       60    90      5      9         4
## 2 L     lower       19    19      56.5  3.69    44    85      9     13         4
## 3 M     middle      3     3       48.2  5       58   114      8     11         3
## 4 M     middle      9     9       47.2  3.78    43    72      5      9         4
## 5 M     middle      15    15      44.7  3.4     29    38      4      5         1
## 6 M     middle      33    34      46.9  3.75    62    96      7     12         5
## 7 M     upper       22    22      44.5  4.87    82   164      7     15         8
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_LM %>%
  group_by(task, proficiency) %>%
  shapiro_test(heiritsu)
## # A tibble: 6 × 5
##   task  proficiency variable statistic       p
##   <ord> <ord>       <chr>        <dbl>   <dbl>
## 1 L     lower       heiritsu     0.822 0.0184 
## 2 L     middle      heiritsu     0.787 0.00663
## 3 L     upper       heiritsu     0.894 0.133  
## 4 M     lower       heiritsu     0.879 0.0998 
## 5 M     middle      heiritsu     0.739 0.00205
## 6 M     upper       heiritsu     0.878 0.0826
ggqqplot(dat_LM, "heiritsu", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_LM %>%
  group_by(task) %>%
  levene_test(heiritsu ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic      p
##   <ord> <int> <int>     <dbl>  <dbl>
## 1 L         2    32     2.51  0.0975
## 2 M         2    32     0.905 0.415

4.3 Kakari

bxp <- ggboxplot(
  dat_LM, x = "task", y = "kakari", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakari")

習熟度も認知負荷も有意ではなかった。

4.3.1 Check assumptions ——-

dat_LM %>%
  group_by(task, proficiency) %>%
  identify_outliers(kakari)
## # A tibble: 2 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 M     lower       20    20      45.7  5.25    45    92      7      8         1
## 2 M     lower       30    31      46.1  3.5     46    76      8     10         2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_LM %>%
  group_by(task, proficiency) %>%
  shapiro_test(kakari)
## # A tibble: 6 × 5
##   task  proficiency variable statistic     p
##   <ord> <ord>       <chr>        <dbl> <dbl>
## 1 L     lower       kakari       0.905 0.215
## 2 L     middle      kakari       0.965 0.848
## 3 L     upper       kakari       0.972 0.928
## 4 M     lower       kakari       0.948 0.619
## 5 M     middle      kakari       0.915 0.247
## 6 M     upper       kakari       0.938 0.470
ggqqplot(dat_LM, "kakari", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_LM %>%
  group_by(task) %>%
  levene_test(kakari ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic      p
##   <ord> <int> <int>     <dbl>  <dbl>
## 1 L         2    32      1.10 0.345 
## 2 M         2    32      3.04 0.0618

4.3.2 Computation ——-

res.aov <- anova_test(
  data = dat_LM, dv = kakari, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 0.057 0.945       0.003
## 2             task   1  32 0.628 0.434       0.005
## 3 proficiency:task   2  32 1.857 0.173       0.028
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency, 
                 response = dat_LM$kakari, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

4.4 setsuzokujyoshi

習熟度が有意であった。

bxp <- ggboxplot(
  dat_LM, x = "task", y = "setsuzokujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsuzokujyoshi")

4.4.1 Check assumptions ——-

dat_LM %>%
  group_by(task, proficiency) %>%
  identify_outliers(setsuzokujyoshi)
## # A tibble: 1 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 L     middle      16    16      41.9   4.5    79   172      9     16         7
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_LM %>%
  group_by(task, proficiency) %>%
  shapiro_test(setsuzokujyoshi)
## # A tibble: 6 × 5
##   task  proficiency variable        statistic      p
##   <ord> <ord>       <chr>               <dbl>  <dbl>
## 1 L     lower       setsuzokujyoshi     0.912 0.255 
## 2 L     middle      setsuzokujyoshi     0.844 0.0312
## 3 L     upper       setsuzokujyoshi     0.952 0.666 
## 4 M     lower       setsuzokujyoshi     0.905 0.210 
## 5 M     middle      setsuzokujyoshi     0.965 0.849 
## 6 M     upper       setsuzokujyoshi     0.932 0.397
ggqqplot(dat_LM, "setsuzokujyoshi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_LM %>%
  group_by(task) %>%
  levene_test(setsuzokujyoshi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic      p
##   <ord> <int> <int>     <dbl>  <dbl>
## 1 L         2    32      3.67 0.0368
## 2 M         2    32      2.67 0.0849

4.4.2 Computation ——-

res.aov <- anova_test(
  data = dat_LM, dv = setsuzokujyoshi, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 7.385 0.002     * 0.248
## 2             task   1  32 0.130 0.721       0.001
## 3 proficiency:task   2  32 1.676 0.203       0.029
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency, 
                 response = dat_LM$setsuzokujyoshi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

4.5 kakujyoshi

習熟度も認知負荷も有意であった。

bxp <- ggboxplot(
  dat_LM, x = "task", y = "kakujyoshi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakujyoshi")

4.5.1 Check assumptions ——-

dat_LM_2 <- dat_LM 
#dat_LM_2 <- dat_LM %>% filter(!(trueid == "24"))
#dat_LM_2 <- dat_LM_2 %>% filter(!(trueid == "3"))



dat_LM_2 %>%
  group_by(task, proficiency) %>%
  identify_outliers(kakujyoshi)
## # A tibble: 2 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 L     lower       21    21      52.7   5.9    56   112      9     10         1
## 2 M     middle      24    24      49.6   5.7    60   115      9     10         1
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_LM_2 %>%
  group_by(task, proficiency) %>%
  shapiro_test(kakujyoshi)
## # A tibble: 6 × 5
##   task  proficiency variable   statistic      p
##   <ord> <ord>       <chr>          <dbl>  <dbl>
## 1 L     lower       kakujyoshi     0.894 0.154 
## 2 L     middle      kakujyoshi     0.962 0.813 
## 3 L     upper       kakujyoshi     0.946 0.583 
## 4 M     lower       kakujyoshi     0.902 0.197 
## 5 M     middle      kakujyoshi     0.874 0.0743
## 6 M     upper       kakujyoshi     0.937 0.457
ggqqplot(dat_LM_2, "kakujyoshi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_LM_2 %>%
  group_by(task) %>%
  levene_test(kakujyoshi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic     p
##   <ord> <int> <int>     <dbl> <dbl>
## 1 L         2    32     0.734 0.488
## 2 M         2    32     0.162 0.851

4.5.2 Computation ——-

res.aov <- anova_test(
  data = dat_LM_2, dv = kakujyoshi, wid = trueid,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 5.301 0.010     * 0.188
## 2             task   1  32 5.494 0.025     * 0.049
## 3 proficiency:task   2  32 0.191 0.827       0.004
interaction.plot(x.factor = dat_LM_2$task, trace.factor = dat_LM_2$proficiency, 
                 response = dat_LM_2$kakujyoshi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

4.6 rentai

習熟度も認知負荷も有意ではなかった。

bxp <- ggboxplot(
  dat_LM, x = "task", y = "rentai", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("rentai")

4.6.1 Check assumptions ——-

dat_LM %>%
  group_by(task, proficiency) %>%
  identify_outliers(rentai)
## # A tibble: 3 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 L     lower       30    31      51.8  4.4     47    85     10     10         0
## 2 L     middle      3     3       46.0  5.2     62   113      8     10         2
## 3 M     upper       23    23      45.5  4.67    74   154      8     15         7
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_LM %>%
  group_by(task, proficiency) %>%
  shapiro_test(rentai)
## # A tibble: 6 × 5
##   task  proficiency variable statistic      p
##   <ord> <ord>       <chr>        <dbl>  <dbl>
## 1 L     lower       rentai       0.814 0.0144
## 2 L     middle      rentai       0.901 0.164 
## 3 L     upper       rentai       0.829 0.0204
## 4 M     lower       rentai       0.881 0.107 
## 5 M     middle      rentai       0.920 0.288 
## 6 M     upper       rentai       0.855 0.0428
ggqqplot(dat_LM, "rentai", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_LM %>%
  group_by(task) %>%
  levene_test(rentai ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic     p
##   <ord> <int> <int>     <dbl> <dbl>
## 1 L         2    32    0.0112 0.989
## 2 M         2    32    0.486  0.619

4.6.2 Computation ——-

res.aov <- anova_test(
  data = dat_LM, dv = rentai, wid = id,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05   ges
## 1      proficiency   2  32 0.695 0.506       0.024
## 2             task   1  32 0.325 0.573       0.004
## 3 proficiency:task   2  32 0.378 0.688       0.010
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency, 
                 response = dat_LM$rentai, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

4.7 setsubimeishi

まあまあ正規分布に従わなかったが、無理やりやると、認知負荷だけが有意であった。

bxp <- ggboxplot(
  dat_LM, x = "task", y = "setsubimeishi", add = "jitter",
  color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubimeishi")

4.7.1 Check assumptions ——-

dat_LM %>%
  group_by(task, proficiency) %>%
  identify_outliers(setsubimeishi)
## # A tibble: 3 × 30
##   task  proficiency id    trueid    ld   ld2  koto  nobe asunit clause jyuzoku…¹
##   <ord> <ord>       <fct> <fct>  <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>     <dbl>
## 1 L     middle      33    34      44.6  5       72   112      5     10         5
## 2 M     upper       6     6       43.8  3.83    53   105      8     12         4
## 3 M     upper       23    23      45.5  4.67    74   154      8     15         7
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## #   clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## #   heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## #   setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## #   hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## #   setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## #   variable name ¹​jyuzokuclause
dat_LM %>%
  group_by(task, proficiency) %>%
  shapiro_test(setsubimeishi)
## # A tibble: 6 × 5
##   task  proficiency variable      statistic       p
##   <ord> <ord>       <chr>             <dbl>   <dbl>
## 1 L     lower       setsubimeishi     0.886 0.124  
## 2 L     middle      setsubimeishi     0.836 0.0247 
## 3 L     upper       setsubimeishi     0.881 0.0895 
## 4 M     lower       setsubimeishi     0.913 0.263  
## 5 M     middle      setsubimeishi     0.860 0.0494 
## 6 M     upper       setsubimeishi     0.800 0.00949
ggqqplot(dat_LM, "setsubimeishi", ggtheme = theme_bw()) +
  facet_grid(task ~ proficiency)
## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
##   the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
##   variable into a factor?

dat_LM %>%
  group_by(task) %>%
  levene_test(setsubimeishi ~ proficiency)
## # A tibble: 2 × 5
##   task    df1   df2 statistic     p
##   <ord> <int> <int>     <dbl> <dbl>
## 1 L         2    32     0.330 0.721
## 2 M         2    32     0.180 0.836

4.7.2 Computation ——-

res.aov <- anova_test(
  data = dat_LM, dv = setsubimeishi, wid = id,
  between = proficiency, within = task
)
get_anova_table(res.aov)
## ANOVA Table (type III tests)
## 
##             Effect DFn DFd     F     p p<.05      ges
## 1      proficiency   2  32 0.166 0.848       8.00e-03
## 2             task   1  32 8.985 0.005     * 6.60e-02
## 3 proficiency:task   2  32 0.002 0.998       3.22e-05
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency, 
                 response = dat_LM$setsubimeishi, fun = mean,
                 type = "b", legend = TRUE, trace.label = "TASK")

5 まとめ

5.1 助動詞

不一致

内在性負荷だけが影響を及ぼす。

5.1.1 MH

習熟度と認知負荷が有意であった。

5.1.2 LM

習熟度は有意であった。

5.2 係助詞

一致

5.2.1 MH

習熟度も認知負荷も有意ではなかった。

5.2.2 LM

習熟度も認知負荷も有意ではなかった。

5.3 接続助詞

不一致

内在性負荷だけが影響を及ぼす。

5.3.1 MH

習熟度も認知負荷も有意であった。

5.3.2 LM

習熟度が有意であった。

5.4 格助詞

不一致

上位群は外在性認知負荷があっても、ある程度に維持でき、中位群と下位群を上回っていたが(M条件での話)、内在性負荷が上がると、中位群と下位群と同じレベルになってしまう。

5.4.1 MH

習熟度も認知負交互作用は有意傾向であった (0.069)。 Mだけでは、上位群が中位群、下位群より高かった。

5.4.2 LM

習熟度も認知負荷も有意であった。

5.5 名詞接尾 (的)

ほぼ一致

5.5.1 MH

認知負荷が有意であった。

5.5.2 LM

まあまあ正規分布に従わなかったが、無理やりやると、認知負荷だけが有意であった。