Term Info1 Info2 Freq id
3 たい 助動詞 * 1 1
4 だ 助動詞 * 10 1
5 ない 助動詞 * 3 1
6 と 助詞 並立助詞 5 1
7 は 助詞 係助詞 8 1
8 も 助詞 係助詞 5 1
[1] “助動詞” “助詞” “動詞” “名詞” “接続詞” “その他” “接頭詞” “フィラー” [9] “形容詞”
[1] “*” “並立助詞” “係助詞”
[4] “副助詞” “副助詞/並立助詞/終助詞” “接続助詞”
[7] “格助詞” “終助詞” “連体化”
[10] “接尾” “非自立” “間投”
[13] “副詞化” “名詞接続” “特殊”
[1] “助動詞” “助詞” “動詞” “名詞” “感動詞” “接続詞” “接頭詞” “フィラー” [9] “形容詞”
[1] “*” “並立助詞” “係助詞”
[4] “副助詞” “副助詞/並立助詞/終助詞” “接続助詞”
[7] “格助詞” “終助詞” “連体化”
[10] “非自立” “接尾” “名詞接続”
[13] “副詞化”
“助動詞” “助詞” “動詞” “名詞” “接続詞” “接頭詞” “フィラー”
[1] “*” “並立助詞” “係助詞”
[4] “副助詞” “副助詞/並立助詞/終助詞” “接続助詞”
[7] “格助詞” “終助詞” “連体化”
[10] “非自立” “接尾” “名詞接続”
[13] “副詞化”
です、ます、たい
並立助詞 と
係助詞 は
副助詞 かも、じゃ
副助詞/並立助詞/終助詞 か
接続助詞 から、ので、けど
格助詞 が、で
終助詞 ね、よ
連体化 の
副詞化 に(極めて少ない)
接尾 的、さん
接尾 れる
接尾 っぽい
ん(極めて少ない)
ということで、
助動詞、
並立助詞、
係助詞、
副助詞、
副助詞/並立助詞/終助詞、
接続助詞、
格助詞、
終助詞、
連体化、
非自立動詞、
名詞接尾
を分析する。
library(tidyverse)## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 1.0.0
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.2.1 ✔ stringr 1.5.0
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(ggpubr)
library(rstatix)##
## Attaching package: 'rstatix'
##
## The following object is masked from 'package:stats':
##
## filter
library(readxl)
dat <- read_excel("/Users/riku/Documents/goimitsudo_0123.xlsx")
dat$id <- as.factor(dat$id)
dat$trueid <- as.factor(dat$trueid)
dat$task <- ordered(dat$task, levels=c("L","M","H"))
dat$proficiency <- as.factor(dat$proficiency)
dat$proficiency <- ordered(dat$proficiency, levels=c("lower","middle","upper"))bxp <- ggboxplot(
dat, x = "task", y = "jyodoushi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("jyodoushi")bxp <- ggboxplot(
dat, x = "task", y = "heiritsu", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("heiritsu")bxp <- ggboxplot(
dat, x = "task", y = "kakari", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakari")bxp <- ggboxplot(
dat, x = "task", y = "fukujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("fukujyoshi")bxp <- ggboxplot(
dat, x = "task", y = "ka", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("ka")bxp <- ggboxplot(
dat, x = "task", y = "setsuzokujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsuzokujyoshi")bxp <- ggboxplot(
dat, x = "task", y = "kakujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakujyoshi")bxp <- ggboxplot(
dat, x = "task", y = "syujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("syujyoshi")bxp <- ggboxplot(
dat, x = "task", y = "rentai", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("rentai")bxp <- ggboxplot(
dat, x = "task", y = "hijiritsu", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("hijiritsu")bxp <- ggboxplot(
dat, x = "task", y = "setsubimeishi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubimeishi")bxp <- ggboxplot(
dat, x = "task", y = "setsubidoushi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubidoushi")bxp <- ggboxplot(
dat, x = "task", y = "setsubikeiyoushi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubikeiyoushi")dat_MH <- dat %>% filter(task == "M"| task == "H")
dat_MH$task <- ordered(dat_MH$task, levels=c("M","H"))習熟度と認知負荷が有意であった。
bxp <- ggboxplot(
dat_MH, x = "task", y = "jyodoushi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("jyodoushi")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(jyodoushi)## # A tibble: 1 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 H upper 10 10 38.3 4.9 64 128 8 10 2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(jyodoushi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower jyodoushi 0.974 0.926
## 2 M middle jyodoushi 0.889 0.116
## 3 M upper jyodoushi 0.879 0.0851
## 4 H lower jyodoushi 0.868 0.0738
## 5 H middle jyodoushi 0.967 0.878
## 6 H upper jyodoushi 0.954 0.696
ggqqplot(dat_MH, "jyodoushi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_MH %>%
group_by(task) %>%
levene_test(jyodoushi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 0.775 0.469
## 2 H 2 32 0.371 0.693
res.aov <- anova_test(
data = dat_MH, dv = jyodoushi, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 7.932 0.002 * 0.242
## 2 task 1 32 6.988 0.013 * 0.072
## 3 proficiency:task 2 32 0.242 0.786 0.005
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$jyodoushi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")正規分布に従わなかった。
bxp <- ggboxplot(
dat_MH, x = "task", y = "heiritsu", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("heiritsu")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(heiritsu)## # A tibble: 8 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 M middle 3 3 48.2 5 58 114 8 11 3
## 2 M middle 9 9 47.2 3.78 43 72 5 9 4
## 3 M middle 15 15 44.7 3.4 29 38 4 5 1
## 4 M middle 33 34 46.9 3.75 62 96 7 12 5
## 5 M upper 22 22 44.5 4.87 82 164 7 15 8
## 6 H lower 8 8 48.1 3.71 38 54 6 7 1
## 7 H lower 20 20 48.4 4.21 63 122 11 14 3
## 8 H middle 3 3 45.2 5.18 56 126 9 11 2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(heiritsu)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower heiritsu 0.879 0.0998
## 2 M middle heiritsu 0.739 0.00205
## 3 M upper heiritsu 0.878 0.0826
## 4 H lower heiritsu 0.504 0.00000169
## 5 H middle heiritsu 0.731 0.00172
## 6 H upper heiritsu 0.839 0.0269
ggqqplot(dat_MH, "heiritsu", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_MH %>%
group_by(task) %>%
levene_test(heiritsu ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 0.905 0.415
## 2 H 2 32 3.87 0.0312
正規分布に従わない
習熟度も認知負荷も有意ではなかった。
bxp <- ggboxplot(
dat_MH, x = "task", y = "kakari", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakari")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(kakari)## # A tibble: 3 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 M lower 20 20 45.7 5.25 45 92 7 8 1
## 2 M lower 30 31 46.1 3.5 46 76 8 10 2
## 3 H middle 3 3 45.2 5.18 56 126 9 11 2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(kakari)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower kakari 0.948 0.619
## 2 M middle kakari 0.915 0.247
## 3 M upper kakari 0.938 0.470
## 4 H lower kakari 0.954 0.702
## 5 H middle kakari 0.903 0.172
## 6 H upper kakari 0.990 1.00
ggqqplot(dat_MH, "kakari", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_MH %>%
group_by(task) %>%
levene_test(kakari ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 3.04 0.0618
## 2 H 2 32 0.163 0.850
res.aov <- anova_test(
data = dat_MH, dv = kakari, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.427 0.656 0.021
## 2 task 1 32 1.456 0.236 0.009
## 3 proficiency:task 2 32 0.316 0.731 0.004
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$kakari, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")習熟度も認知負荷も有意であった。
bxp <- ggboxplot(
dat_MH, x = "task", y = "setsuzokujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsuzokujyoshi")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(setsuzokujyoshi)## # A tibble: 1 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 H lower 30 31 42.7 3.89 44 82 7 9 2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(setsuzokujyoshi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower setsuzokujyoshi 0.905 0.210
## 2 M middle setsuzokujyoshi 0.965 0.849
## 3 M upper setsuzokujyoshi 0.932 0.397
## 4 H lower setsuzokujyoshi 0.786 0.00624
## 5 H middle setsuzokujyoshi 0.938 0.475
## 6 H upper setsuzokujyoshi 0.910 0.215
ggqqplot(dat_MH, "setsuzokujyoshi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_MH %>%
group_by(task) %>%
levene_test(setsuzokujyoshi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 2.67 0.0849
## 2 H 2 32 0.287 0.752
res.aov <- anova_test(
data = dat_MH, dv = setsuzokujyoshi, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 8.463 0.001 * 0.288
## 2 task 1 32 6.541 0.015 * 0.046
## 3 proficiency:task 2 32 0.090 0.914 0.001
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$setsuzokujyoshi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")bxp <- ggboxplot(
dat_MH, x = "task", y = "kakujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakujyoshi")dat_MH_2 <- dat_MH %>% filter(!(trueid == "24"))
dat_MH_2 <- dat_MH_2 %>% filter(!(trueid == "3"))
dat_MH_2 %>%
group_by(task, proficiency) %>%
identify_outliers(kakujyoshi)## [1] task proficiency id
## [4] trueid ld ld2
## [7] koto nobe asunit
## [10] clause jyuzokuclause jyuzokuclauseperasunit
## [13] clauseperasunit wariai wariai2
## [16] jyodoushi heiritsu kakari
## [19] fukujyoshi ka setsuzokujyoshi
## [22] kakujyoshi syujyoshi rentai
## [25] hijiritsu setsubimeishi setsubidoushi
## [28] setsubikeiyoushi is.outlier is.extreme
## <0 rows> (or 0-length row.names)
dat_MH_2 %>%
group_by(task, proficiency) %>%
shapiro_test(kakujyoshi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower kakujyoshi 0.902 0.197
## 2 M middle kakujyoshi 0.942 0.573
## 3 M upper kakujyoshi 0.937 0.457
## 4 H lower kakujyoshi 0.948 0.619
## 5 H middle kakujyoshi 0.929 0.438
## 6 H upper kakujyoshi 0.935 0.435
ggqqplot(dat_MH_2, "kakujyoshi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_MH_2 %>%
group_by(task) %>%
levene_test(kakujyoshi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 30 1.15 0.331
## 2 H 2 30 0.0615 0.940
res.aov <- anova_test(
data = dat_MH_2, dv = kakujyoshi, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 30 6.713 0.004 * 0.241
## 2 task 1 30 0.548 0.465 0.005
## 3 proficiency:task 2 30 2.929 0.069 0.054
interaction.plot(x.factor = dat_MH_2$task, trace.factor = dat_MH_2$proficiency,
response = dat_MH_2$kakujyoshi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")# Effect of group at each time point
one.way <- dat_MH_2 %>%
group_by(task) %>%
anova_test(dv = kakujyoshi, wid = trueid, between = proficiency) %>%
get_anova_table() %>%
adjust_pvalue(method = "bonferroni")
one.way## # A tibble: 2 × 9
## task Effect DFn DFd F p `p<.05` ges p.adj
## <ord> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 M proficiency 2 30 9.61 0.000596 "*" 0.39 0.00119
## 2 H proficiency 2 30 1.87 0.172 "" 0.111 0.344
pwc <- dat_MH_2 %>%
group_by(task) %>%
pairwise_t_test(kakujyoshi ~ proficiency, p.adjust.method = "bonferroni")
pwc## # A tibble: 6 × 10
## task .y. group1 group2 n1 n2 p p.signif p.adj p.adj.s…¹
## * <ord> <chr> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <chr>
## 1 M kakujyoshi lower middle 11 10 0.843 ns 1 ns
## 2 M kakujyoshi lower upper 11 12 0.000872 *** 0.00262 **
## 3 M kakujyoshi middle upper 10 12 0.000646 *** 0.00194 **
## 4 H kakujyoshi lower middle 11 10 0.421 ns 1 ns
## 5 H kakujyoshi lower upper 11 12 0.274 ns 0.823 ns
## 6 H kakujyoshi middle upper 10 12 0.0647 ns 0.194 ns
## # … with abbreviated variable name ¹p.adj.signif
# Visualization: boxplots with p-values
pwc <- pwc %>% add_xy_position(x = "task")
pwc.filtered <- pwc %>% filter(task != "H")
bxp +
stat_pvalue_manual(pwc.filtered, tip.length = 0, hide.ns = TRUE) +
labs(
subtitle = get_test_label(res.aov, detailed = TRUE),
caption = get_pwc_label(pwc)
)交互作用は有意傾向であった。
Mだけでは、上位群が中位群、下位群より高かった。
正規分布に従わなかった。
bxp <- ggboxplot(
dat_MH, x = "task", y = "rentai", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("rentai")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(rentai)## # A tibble: 2 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 M upper 23 23 45.5 4.67 74 154 8 15 7
## 2 H upper 23 23 46.5 4.92 65 127 7 12 5
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(rentai)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower rentai 0.881 0.107
## 2 M middle rentai 0.920 0.288
## 3 M upper rentai 0.855 0.0428
## 4 H lower rentai 0.689 0.000334
## 5 H middle rentai 0.854 0.0412
## 6 H upper rentai 0.810 0.0123
ggqqplot(dat_MH, "rentai", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_MH %>%
group_by(task) %>%
levene_test(rentai ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 0.486 0.619
## 2 H 2 32 5.93 0.00644
res.aov <- anova_test(
data = dat_MH, dv = rentai, wid = id,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.849 0.437 0.038000
## 2 task 1 32 0.048 0.828 0.000387
## 3 proficiency:task 2 32 1.544 0.229 0.024000
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$rentai, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")認知負荷が有意であった。
bxp <- ggboxplot(
dat_MH, x = "task", y = "setsubimeishi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubimeishi")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(setsubimeishi)## # A tibble: 4 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 M upper 6 6 43.8 3.83 53 105 8 12 4
## 2 M upper 23 23 45.5 4.67 74 154 8 15 7
## 3 H lower 19 19 57.3 4.27 43 82 9 11 2
## 4 H upper 10 10 38.3 4.9 64 128 8 10 2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(setsubimeishi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower setsubimeishi 0.913 0.263
## 2 M middle setsubimeishi 0.860 0.0494
## 3 M upper setsubimeishi 0.800 0.00949
## 4 H lower setsubimeishi 0.866 0.0680
## 5 H middle setsubimeishi 0.891 0.120
## 6 H upper setsubimeishi 0.809 0.0119
ggqqplot(dat_MH, "setsubimeishi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_MH %>%
group_by(task) %>%
levene_test(setsubimeishi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 0.180 0.836
## 2 H 2 32 1.26 0.299
res.aov <- anova_test(
data = dat_MH, dv = setsubimeishi, wid = id,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.137 0.873 0.007
## 2 task 1 32 4.829 0.035 * 0.029
## 3 proficiency:task 2 32 0.835 0.443 0.010
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$setsubimeishi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")dat_LM <- dat %>% filter(task == "L"| task == "M")
dat_LM$task <- ordered(dat_LM$task, levels=c("L","M"))習熟度は有意であった。
bxp <- ggboxplot(
dat_LM, x = "task", y = "jyodoushi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("jyodoushi")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(jyodoushi)## # A tibble: 3 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L middle 12 12 47.1 3.2 23 34 4 5 1
## 2 L middle 16 16 41.9 4.5 79 172 9 16 7
## 3 L upper 10 10 39.0 5.5 68 141 7 10 3
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(jyodoushi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower jyodoushi 0.944 0.567
## 2 L middle jyodoushi 0.903 0.172
## 3 L upper jyodoushi 0.891 0.122
## 4 M lower jyodoushi 0.974 0.926
## 5 M middle jyodoushi 0.889 0.116
## 6 M upper jyodoushi 0.879 0.0851
ggqqplot(dat_LM, "jyodoushi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_LM %>%
group_by(task) %>%
levene_test(jyodoushi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 1.23 0.305
## 2 M 2 32 0.775 0.469
res.aov <- anova_test(
data = dat_LM, dv = jyodoushi, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 6.571 0.004 * 2.34e-01
## 2 task 1 32 0.009 0.923 7.54e-05
## 3 proficiency:task 2 32 0.469 0.630 7.00e-03
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$jyodoushi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")正規分布に従わなかった。
bxp <- ggboxplot(
dat_LM, x = "task", y = "heiritsu", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("heiritsu")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(heiritsu)## # A tibble: 7 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L lower 8 8 50 5 60 90 5 9 4
## 2 L lower 19 19 56.5 3.69 44 85 9 13 4
## 3 M middle 3 3 48.2 5 58 114 8 11 3
## 4 M middle 9 9 47.2 3.78 43 72 5 9 4
## 5 M middle 15 15 44.7 3.4 29 38 4 5 1
## 6 M middle 33 34 46.9 3.75 62 96 7 12 5
## 7 M upper 22 22 44.5 4.87 82 164 7 15 8
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(heiritsu)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower heiritsu 0.822 0.0184
## 2 L middle heiritsu 0.787 0.00663
## 3 L upper heiritsu 0.894 0.133
## 4 M lower heiritsu 0.879 0.0998
## 5 M middle heiritsu 0.739 0.00205
## 6 M upper heiritsu 0.878 0.0826
ggqqplot(dat_LM, "heiritsu", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_LM %>%
group_by(task) %>%
levene_test(heiritsu ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 2.51 0.0975
## 2 M 2 32 0.905 0.415
bxp <- ggboxplot(
dat_LM, x = "task", y = "kakari", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakari")習熟度も認知負荷も有意ではなかった。
dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(kakari)## # A tibble: 2 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 M lower 20 20 45.7 5.25 45 92 7 8 1
## 2 M lower 30 31 46.1 3.5 46 76 8 10 2
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(kakari)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower kakari 0.905 0.215
## 2 L middle kakari 0.965 0.848
## 3 L upper kakari 0.972 0.928
## 4 M lower kakari 0.948 0.619
## 5 M middle kakari 0.915 0.247
## 6 M upper kakari 0.938 0.470
ggqqplot(dat_LM, "kakari", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_LM %>%
group_by(task) %>%
levene_test(kakari ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 1.10 0.345
## 2 M 2 32 3.04 0.0618
res.aov <- anova_test(
data = dat_LM, dv = kakari, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.057 0.945 0.003
## 2 task 1 32 0.628 0.434 0.005
## 3 proficiency:task 2 32 1.857 0.173 0.028
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$kakari, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")習熟度が有意であった。
bxp <- ggboxplot(
dat_LM, x = "task", y = "setsuzokujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsuzokujyoshi")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(setsuzokujyoshi)## # A tibble: 1 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L middle 16 16 41.9 4.5 79 172 9 16 7
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(setsuzokujyoshi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower setsuzokujyoshi 0.912 0.255
## 2 L middle setsuzokujyoshi 0.844 0.0312
## 3 L upper setsuzokujyoshi 0.952 0.666
## 4 M lower setsuzokujyoshi 0.905 0.210
## 5 M middle setsuzokujyoshi 0.965 0.849
## 6 M upper setsuzokujyoshi 0.932 0.397
ggqqplot(dat_LM, "setsuzokujyoshi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_LM %>%
group_by(task) %>%
levene_test(setsuzokujyoshi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 3.67 0.0368
## 2 M 2 32 2.67 0.0849
res.aov <- anova_test(
data = dat_LM, dv = setsuzokujyoshi, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 7.385 0.002 * 0.248
## 2 task 1 32 0.130 0.721 0.001
## 3 proficiency:task 2 32 1.676 0.203 0.029
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$setsuzokujyoshi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")習熟度も認知負荷も有意であった。
bxp <- ggboxplot(
dat_LM, x = "task", y = "kakujyoshi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("kakujyoshi")dat_LM_2 <- dat_LM
#dat_LM_2 <- dat_LM %>% filter(!(trueid == "24"))
#dat_LM_2 <- dat_LM_2 %>% filter(!(trueid == "3"))
dat_LM_2 %>%
group_by(task, proficiency) %>%
identify_outliers(kakujyoshi)## # A tibble: 2 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L lower 21 21 52.7 5.9 56 112 9 10 1
## 2 M middle 24 24 49.6 5.7 60 115 9 10 1
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_LM_2 %>%
group_by(task, proficiency) %>%
shapiro_test(kakujyoshi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower kakujyoshi 0.894 0.154
## 2 L middle kakujyoshi 0.962 0.813
## 3 L upper kakujyoshi 0.946 0.583
## 4 M lower kakujyoshi 0.902 0.197
## 5 M middle kakujyoshi 0.874 0.0743
## 6 M upper kakujyoshi 0.937 0.457
ggqqplot(dat_LM_2, "kakujyoshi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_LM_2 %>%
group_by(task) %>%
levene_test(kakujyoshi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 0.734 0.488
## 2 M 2 32 0.162 0.851
res.aov <- anova_test(
data = dat_LM_2, dv = kakujyoshi, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 5.301 0.010 * 0.188
## 2 task 1 32 5.494 0.025 * 0.049
## 3 proficiency:task 2 32 0.191 0.827 0.004
interaction.plot(x.factor = dat_LM_2$task, trace.factor = dat_LM_2$proficiency,
response = dat_LM_2$kakujyoshi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")習熟度も認知負荷も有意ではなかった。
bxp <- ggboxplot(
dat_LM, x = "task", y = "rentai", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("rentai")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(rentai)## # A tibble: 3 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L lower 30 31 51.8 4.4 47 85 10 10 0
## 2 L middle 3 3 46.0 5.2 62 113 8 10 2
## 3 M upper 23 23 45.5 4.67 74 154 8 15 7
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(rentai)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower rentai 0.814 0.0144
## 2 L middle rentai 0.901 0.164
## 3 L upper rentai 0.829 0.0204
## 4 M lower rentai 0.881 0.107
## 5 M middle rentai 0.920 0.288
## 6 M upper rentai 0.855 0.0428
ggqqplot(dat_LM, "rentai", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_LM %>%
group_by(task) %>%
levene_test(rentai ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 0.0112 0.989
## 2 M 2 32 0.486 0.619
res.aov <- anova_test(
data = dat_LM, dv = rentai, wid = id,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.695 0.506 0.024
## 2 task 1 32 0.325 0.573 0.004
## 3 proficiency:task 2 32 0.378 0.688 0.010
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$rentai, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")まあまあ正規分布に従わなかったが、無理やりやると、認知負荷だけが有意であった。
bxp <- ggboxplot(
dat_LM, x = "task", y = "setsubimeishi", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("setsubimeishi")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(setsubimeishi)## # A tibble: 3 × 30
## task proficiency id trueid ld ld2 koto nobe asunit clause jyuzoku…¹
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 L middle 33 34 44.6 5 72 112 5 10 5
## 2 M upper 6 6 43.8 3.83 53 105 8 12 4
## 3 M upper 23 23 45.5 4.67 74 154 8 15 7
## # … with 19 more variables: jyuzokuclauseperasunit <dbl>,
## # clauseperasunit <dbl>, wariai <dbl>, wariai2 <dbl>, jyodoushi <dbl>,
## # heiritsu <dbl>, kakari <dbl>, fukujyoshi <dbl>, ka <dbl>,
## # setsuzokujyoshi <dbl>, kakujyoshi <dbl>, syujyoshi <dbl>, rentai <dbl>,
## # hijiritsu <dbl>, setsubimeishi <dbl>, setsubidoushi <dbl>,
## # setsubikeiyoushi <dbl>, is.outlier <lgl>, is.extreme <lgl>, and abbreviated
## # variable name ¹jyuzokuclause
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(setsubimeishi)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower setsubimeishi 0.886 0.124
## 2 L middle setsubimeishi 0.836 0.0247
## 3 L upper setsubimeishi 0.881 0.0895
## 4 M lower setsubimeishi 0.913 0.263
## 5 M middle setsubimeishi 0.860 0.0494
## 6 M upper setsubimeishi 0.800 0.00949
ggqqplot(dat_LM, "setsubimeishi", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)## Warning: The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: sample
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
dat_LM %>%
group_by(task) %>%
levene_test(setsubimeishi ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 0.330 0.721
## 2 M 2 32 0.180 0.836
res.aov <- anova_test(
data = dat_LM, dv = setsubimeishi, wid = id,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.166 0.848 8.00e-03
## 2 task 1 32 8.985 0.005 * 6.60e-02
## 3 proficiency:task 2 32 0.002 0.998 3.22e-05
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$setsubimeishi, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")不一致
内在性負荷だけが影響を及ぼす。
習熟度と認知負荷が有意であった。
習熟度は有意であった。
一致
習熟度も認知負荷も有意ではなかった。
習熟度も認知負荷も有意ではなかった。
不一致
内在性負荷だけが影響を及ぼす。
習熟度も認知負荷も有意であった。
習熟度が有意であった。
不一致
上位群は外在性認知負荷があっても、ある程度に維持でき、中位群と下位群を上回っていたが(M条件での話)、内在性負荷が上がると、中位群と下位群と同じレベルになってしまう。
習熟度も認知負交互作用は有意傾向であった (0.069)。 Mだけでは、上位群が中位群、下位群より高かった。
習熟度も認知負荷も有意であった。
ほぼ一致
認知負荷が有意であった。
まあまあ正規分布に従わなかったが、無理やりやると、認知負荷だけが有意であった。