Shige
library(reshape2)
library(plyr)
library(ggplot2)
library(Zelig)
library(memisc)
We will be using the “turnout” data that come with the Zelig package
data(turnout)
summary(turnout)
race age educate income
others: 292 Min. :17.0 Min. : 0.0 Min. : 0.00
white :1708 1st Qu.:31.0 1st Qu.:10.0 1st Qu.: 1.74
Median :42.0 Median :12.0 Median : 3.35
Mean :45.3 Mean :12.1 Mean : 3.89
3rd Qu.:59.0 3rd Qu.:14.0 3rd Qu.: 5.23
Max. :95.0 Max. :19.0 Max. :14.93
vote
Min. :0.000
1st Qu.:0.000
Median :1.000
Mean :0.746
3rd Qu.:1.000
Max. :1.000
summary(turnout$age)
Min. 1st Qu. Median Mean 3rd Qu. Max.
17.0 31.0 42.0 45.3 59.0 95.0
or
summary(turnout[2])
age
Min. :17.0
1st Qu.:31.0
Median :42.0
Mean :45.3
3rd Qu.:59.0
Max. :95.0
attach(turnout)
summary(age)
Min. 1st Qu. Median Mean 3rd Qu. Max.
17.0 31.0 42.0 45.3 59.0 95.0
detach(turnout)
change <- c(age="Age", race="Race", educate="Educate", income="Income")
turnout <- rename(turnout, change)
names(turnout)
[1] "Race" "Age" "Educate" "Income" "vote"
Or using the “memisc” package:
turnout <- rename(turnout,
Age = "var_age",
Race = "var_race")
names(turnout)
[1] "var_race" "var_age" "Educate" "Income" "vote"
turnout$school <- turnout$Educate
names(turnout)
[1] "var_race" "var_age" "Educate" "Income" "vote" "school"
table(turnout$school)
0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 3 3 1 16 17 26 35 50 157 71 123 87 685 106 218 43 204
17 19
47 99
library(memisc)
table(turnout$school)
0 0.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 3 3 1 16 17 26 35 50 157 71 123 87 685 106 218 43 204
17 19
47 99
turnout$school <- recode(turnout$Educate, 0 <- 0:0.5,
1 <- 1:9,
2 <- 10:14,
3 <- 15:19)
table(turnout$school)
0 1 2 3
9 376 1219 393
new_turnout <- subset(turnout, select=c(school, vote))
names(new_turnout)
[1] "school" "vote"
hist(turnout$var_age)
young_people <- subset(turnout, var_age<40)
hist(young_people$var_age)
library(Hmisc)
label(turnout$var_race) <- "Race and ethnicity"
label(turnout$var_age) <- "Age of respondent"
table(turnout$school)
0 1 2 3
9 376 1219 393
turnout$school <- factor(
turnout$school,
levels=c(0, 1, 2, 3),
labels=c("No schooling", "Elementary school", "High school", "College")
)
table(turnout$school)
No schooling Elementary school High school College
9 376 1219 393
** TO BE ADDED **
** TO BE ADDED **