To understand the environmental conditions in the NY, we use environmental dataset inbuilt in R. The data comes from the New York City during 05-09, 1973.
Original Source of data: Bruntz, S. M., W. S. Cleveland, B. Kleiner, and J. L. Warner. (1974). The Dependence of Ambient Ozone on Solar Radiation, Wind, Temperature, and Mixing Height. In Symposium on Atmospheric Diffusion and Air Pollution, pages 125–128. American Meterological Society, Boston.
library(lattice)
data(environmental)
str(environmental)
## 'data.frame': 111 obs. of 4 variables:
## $ ozone : num 41 36 12 18 23 19 8 16 11 14 ...
## $ radiation : num 190 118 149 313 299 99 19 256 290 274 ...
## $ temperature: num 67 72 74 62 65 59 61 69 66 68 ...
## $ wind : num 7.4 8 12.6 11.5 8.6 13.8 20.1 9.7 9.2 10.9 ...
summary(environmental)
## ozone radiation temperature wind
## Min. : 1.0 Min. : 7.0 Min. :57.00 Min. : 2.300
## 1st Qu.: 18.0 1st Qu.:113.5 1st Qu.:71.00 1st Qu.: 7.400
## Median : 31.0 Median :207.0 Median :79.00 Median : 9.700
## Mean : 42.1 Mean :184.8 Mean :77.79 Mean : 9.939
## 3rd Qu.: 62.0 3rd Qu.:255.5 3rd Qu.:84.50 3rd Qu.:11.500
## Max. :168.0 Max. :334.0 Max. :97.00 Max. :20.700
There are 111 observations, 0 missing values and the following 4 variables:
ozone: Average ozone concentration (of hourly measurements) of in ppb.
radiation: Solar radiation (from 08:00 to 12:00) in langleys.
temperature: Maximum daily temperature in degree F.
wind: Average wind speed (at 07:00 and 10:00) in mph.
This description is based on Picostat Website (2022): click here
The variables will be useful to understand how ozone concentration is affected by radiations and how it inturn changes our atmospheric temperature.
tab1(environmental$temperature, cum.percent = TRUE)
## environmental$temperature :
## Frequency Percent Cum. percent
## 57 1 0.9 0.9
## 58 1 0.9 1.8
## 59 2 1.8 3.6
## 61 3 2.7 6.3
## 62 2 1.8 8.1
## 63 1 0.9 9.0
## 64 2 1.8 10.8
## 65 2 1.8 12.6
## 66 2 1.8 14.4
## 67 3 2.7 17.1
## 68 4 3.6 20.7
## 69 2 1.8 22.5
## 70 1 0.9 23.4
## 71 3 2.7 26.1
## 72 3 2.7 28.8
## 73 4 3.6 32.4
## 74 2 1.8 34.2
## 75 2 1.8 36.0
## 76 6 5.4 41.4
## 77 4 3.6 45.0
## 78 4 3.6 48.6
## 79 3 2.7 51.4
## 80 3 2.7 54.1
## 81 10 9.0 63.1
## 82 7 6.3 69.4
## 83 3 2.7 72.1
## 84 3 2.7 74.8
## 85 3 2.7 77.5
## 86 5 4.5 82.0
## 87 3 2.7 84.7
## 88 2 1.8 86.5
## 89 2 1.8 88.3
## 90 3 2.7 91.0
## 91 1 0.9 91.9
## 92 3 2.7 94.6
## 93 2 1.8 96.4
## 94 2 1.8 98.2
## 96 1 0.9 99.1
## 97 1 0.9 100.0
## Total 111 100.0 100.0
library(MASS)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:epiDisplay':
##
## alpha
plot(environmental$radiation, environmental$ozone,
main = "Ozone vs Solar Radiation",
xlab = "Solar Radiation (in langleys)",
ylab = "Ozone Concentration (in ppb)")
abline(lm(environmental$ozone ~ environmental$radiation), col = "red")
plot(environmental$radiation, environmental$temperature,
main = "Temperature vs Solar Radiation",
xlab = "Solar Radiation (in langleys)",
ylab = "Maximum Atmospheric Temperature (degree F)")
abline(lm(environmental$temperature ~ environmental$radiation), col = "blue")
library("ggpubr")
corr <- cor(environmental$ozone, environmental$temperature, method = "pearson")
With the increase in solar radiation from 8-12 AM, the average ozone concentration increases which also increases the NY City maximum daily temperature. The pearson correlation between ozone and temperature is also positive (0.6985414), which suggests that they increase together.