Question #1

Use the nycflights13 package and the flights data frame to answer the following questions: a.What month had the highest proportion of cancelled flights? b.What month had the lowest?

library(nycflights13)
flights_cancelled <- flights %>%
  group_by(month) %>%
  summarize(cancelled =  sum(is.na(arr_delay)),
            total = n(),
            prop_cancelled = cancelled/total) %>%
  arrange(desc(prop_cancelled)) 

flights_cancelled
## # A tibble: 12 × 4
##    month cancelled total prop_cancelled
##    <int>     <int> <int>          <dbl>
##  1     2      1340 24951        0.0537 
##  2     6      1168 28243        0.0414 
##  3    12      1115 28135        0.0396 
##  4     7      1132 29425        0.0385 
##  5     3       932 28834        0.0323 
##  6     4       766 28330        0.0270 
##  7     5       668 28796        0.0232 
##  8     1       606 27004        0.0224 
##  9     9       564 27574        0.0205 
## 10     8       571 29327        0.0195 
## 11    11       297 27268        0.0109 
## 12    10       271 28889        0.00938

February has highest cancelled flights October has low cancellations

Question #2

Consider the following pipeline:

library(tidyverse)
mtcars %>%
  group_by(cyl) %>%
  summarize(avg_mpg = mean(mpg)) %>%
  filter(am == 1)

What is the problem with this pipeline?

The issue with this pipeline is that the filter operation (am == 1) is placed last. This is problematic because the previous group_by and summarize operations have altered the structure of the data frame, leaving only the cyl and avg_mpg columns. As a result, there is no am column to be filtered on. To correct this, the filter operation should be placed before the group_by and summarize, like this: mtcars %>% filter(am == 1) %>% group_by(cyl) %>% summarize(avg_mpg = mean(mpg))

library(tidyverse)

mtcars %>%
  filter(am == 1) %>%
  group_by(cyl) %>%
  summarize(avg_mpg = mean(mpg))

Question #3

Define two new variables in the Teams data frame in the pkg Lahman() package.

  1. batting average (BA). Batting average is the ratio of hits (H) to at-bats (AB)

  2. slugging percentage (SLG). Slugging percentage is total bases divided by at-bats (AB). To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
Team <- Teams
Team <- mutate(Team, BA = H / AB)
Team <- mutate(Team, SLG = (H + 2 * X2B + 3 * X3B + 4 * HR) / AB)

head(Team, 5)
##   yearID lgID teamID franchID divID Rank  G Ghome  W  L DivWin WCWin LgWin
## 1   1871   NA    BS1      BNA  <NA>    3 31    NA 20 10   <NA>  <NA>     N
## 2   1871   NA    CH1      CNA  <NA>    2 28    NA 19  9   <NA>  <NA>     N
## 3   1871   NA    CL1      CFC  <NA>    8 29    NA 10 19   <NA>  <NA>     N
## 4   1871   NA    FW1      KEK  <NA>    7 19    NA  7 12   <NA>  <NA>     N
## 5   1871   NA    NY2      NNA  <NA>    5 33    NA 16 17   <NA>  <NA>     N
##   WSWin   R   AB   H X2B X3B HR BB SO SB CS HBP SF  RA  ER  ERA CG SHO SV
## 1  <NA> 401 1372 426  70  37  3 60 19 73 16  NA NA 303 109 3.55 22   1  3
## 2  <NA> 302 1196 323  52  21 10 60 22 69 21  NA NA 241  77 2.76 25   0  1
## 3  <NA> 249 1186 328  35  40  7 26 25 18  8  NA NA 341 116 4.11 23   0  0
## 4  <NA> 137  746 178  19   8  2 33  9 16  4  NA NA 243  97 5.17 19   1  0
## 5  <NA> 302 1404 403  43  21  1 33 15 46 15  NA NA 313 121 3.72 32   1  0
##   IPouts  HA HRA BBA SOA   E DP    FP                    name
## 1    828 367   2  42  23 243 24 0.834    Boston Red Stockings
## 2    753 308   6  28  22 229 16 0.829 Chicago White Stockings
## 3    762 346  13  53  34 234 15 0.818  Cleveland Forest Citys
## 4    507 261   5  21  17 163  8 0.803    Fort Wayne Kekiongas
## 5    879 373   7  42  22 235 14 0.840        New York Mutuals
##                           park attendance BPF PPF teamIDBR teamIDlahman45
## 1          South End Grounds I         NA 103  98      BOS            BS1
## 2      Union Base-Ball Grounds         NA 104 102      CHI            CH1
## 3 National Association Grounds         NA  96 100      CLE            CL1
## 4               Hamilton Field         NA 101 107      KEK            FW1
## 5     Union Grounds (Brooklyn)         NA  90  88      NYU            NY2
##   teamIDretro        BA       SLG
## 1         BS1 0.3104956 0.5021866
## 2         CH1 0.2700669 0.4431438
## 3         CL1 0.2765599 0.4603710
## 4         FW1 0.2386059 0.3324397
## 5         NY2 0.2870370 0.3960114

Question #4

Using the Teams data frame in the pkg Lahman() package. display the top-5 teams ranked in terms of slugging percentage (SLG) in Major League Baseball history. Repeat this using teams since 1969. Slugging percentage is total bases divided by at-bats.To compute total bases, you get 1 for a single, 2 for a double, 3 for a triple, and 4 for a home run.

library(Lahman)
Top5 <- arrange(Team, desc(SLG)) %>%
  select(yearID,teamID,SLG)
head(Top5, 5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320
library(Lahman)
Top5_since1969 <- arrange(Team, desc(SLG)) %>%
  select(yearID,teamID,SLG) %>%
  filter(yearID >= 1969)
head(Top5_since1969, 5)
##   yearID teamID       SLG
## 1   2019    HOU 0.6092998
## 2   2019    MIN 0.6071179
## 3   2003    BOS 0.6033975
## 4   2019    NYA 0.5996776
## 5   2020    ATL 0.5964320

Question #5

Use the Batting, Pitching, and People tables in the pkg Lahman() package to answer the following questions.

a.Name every player in baseball history who has accumulated at least 300 home runs (HR) and at least 300 stolen bases (SB). You can find the first and last name of the player in the Master data frame. Join this to your result along with the total home runs and total bases stolen for each of these elite players.

  1. Similarly, name every pitcher in baseball history who has accumulated at least 300 wins (W) and at least 3,000 strikeouts (SO).

  2. Identify the name and year of every player who has hit at least 50 home runs in a single season. Which player had the lowest batting average in that season?

library(Lahman)
Batting %>%
  group_by(playerID) %>%
  summarize(totalHR = sum(HR), totalSB = sum(SB)) %>%
  filter(totalHR >= 300 & totalSB >= 300) %>%
  inner_join(People, by = c('playerID' = 'playerID')) %>%
  select(nameFirst, nameLast, totalHR, totalSB)
## # A tibble: 8 × 4
##   nameFirst nameLast  totalHR totalSB
##   <chr>     <chr>       <int>   <int>
## 1 Carlos    Beltran       435     312
## 2 Barry     Bonds         762     514
## 3 Bobby     Bonds         332     461
## 4 Andre     Dawson        438     314
## 5 Steve     Finley        304     320
## 6 Willie    Mays          660     338
## 7 Alex      Rodriguez     696     329
## 8 Reggie    Sanders       305     304
library(Lahman)
Pitching %>%
  group_by(playerID) %>%
  summarize(totalW = sum(W), totalSO = sum(SO)) %>%
  filter(totalW >= 300 & totalSO >= 3000) %>%
  inner_join(People, by = c('playerID' = 'playerID')) %>%
  select(nameFirst, nameLast, totalW, totalSO)
## # A tibble: 10 × 4
##    nameFirst nameLast totalW totalSO
##    <chr>     <chr>     <int>   <int>
##  1 Steve     Carlton     329    4136
##  2 Roger     Clemens     354    4672
##  3 Randy     Johnson     303    4875
##  4 Walter    Johnson     417    3509
##  5 Greg      Maddux      355    3371
##  6 Phil      Niekro      318    3342
##  7 Gaylord   Perry       314    3534
##  8 Nolan     Ryan        324    5714
##  9 Tom       Seaver      311    3640
## 10 Don       Sutton      324    3574
library(Lahman)
Batting %>%
  group_by(playerID, yearID) %>%
  summarize(totalHR = sum(HR), BA = sum(H)/sum(AB)) %>%
  filter(totalHR >= 50) %>%
  inner_join(People, by = c('playerID' = 'playerID')) %>%
  select(nameFirst, nameLast, yearID, totalHR, BA) %>%
  ungroup() %>%
  arrange(BA)
## # A tibble: 46 × 6
##    playerID  nameFirst nameLast yearID totalHR    BA
##    <chr>     <chr>     <chr>     <int>   <int> <dbl>
##  1 alonspe01 Pete      Alonso     2019      53 0.260
##  2 bautijo02 Jose      Bautista   2010      54 0.260
##  3 jonesan01 Andruw    Jones      2005      51 0.263
##  4 marisro01 Roger     Maris      1961      61 0.269
##  5 vaughgr01 Greg      Vaughn     1998      50 0.272
##  6 mcgwima01 Mark      McGwire    1997      58 0.274
##  7 fieldce01 Cecil     Fielder    1990      51 0.277
##  8 mcgwima01 Mark      McGwire    1999      65 0.278
##  9 stantmi03 Giancarlo Stanton    2017      59 0.281
## 10 judgeaa01 Aaron     Judge      2017      52 0.284
## # … with 36 more rows