POISSON
Suponga que la funciΓ³n de verosimilitud depende de π
parΓ‘metros π’1, π’2, . . . , π’π. Escoja como estimaciones los valores de los parΓ‘metros que maximicen la verosimilitud πΏ (π¦1, π¦2 , β¦ , π¦π|π’1, π’2, β¦ , π’π)
Como la funciΓ³n de probabilidad de Poisson es
P(x,Ξ»)=\(\frac{eβ^\lambda*\lambda^x}{x!}\)
la funciΓ³n de verosimilitud para n datos serΓ‘:
\(L(x1,x2,...,xk,\lambda)=\frac{e^{-\lambda}*\lambda^{x1}}{x!}.\frac{e^{-\lambda}*\lambda^{x2}}{x!}....\frac{e^{-\lambda}*\lambda^{xn}}{x!}\)
FunciΓ³n Log Verosimilitud
\(ln(e^{-\lambda}β \lambda^{x1}β e^{-\lambda}β \lambda^{x2}...e^{-\lambda}β \lambda^{xn})=\)
\(nβ ln(e^{-\lambda})+\Sigma_{i=1}^{k} ln*\lambda^{xi}\)
\(-n\lambda + \lambda n \Sigma_{x=i}^{n}\)
derivamos respecto de \(\lambda\)
\(-n + \frac{\Sigma_{i=1}xi} {\lambda} = 0\)
\(\frac{\Sigma_{i=1}xi} {\lambda} = n\)
\(\lambda= \frac{\Sigma_{x=1}xi} {n} = \overline x\)
library(ggplot2)
L_poisson <- function(n, S){
function(lambda){
exp((- lambda*n) )* lambda^S
}
}
xy <- data.frame(x = 0:1, y = 0:1)
verosimilitud_poisson <- ggplot(xy, aes(x = x, y = y)) +
stat_function(fun = L_poisson(n = 30, S = 20)) +
xlab(expression(lambda)) +
ylab(expression(L(lambda))) +
ggtitle("FunciΓ³n de verosimilitud Exponencial (n=30, S = 20)")
verosimilitud_poissonBERNOULLI
\(π_π(π¦) = π[π = π¦] = π^π¦(1 β π)^{1βπ¦}\) \(πΏ(π¦1, π¦2, β¦ , π¦π|π ) =π^{y1}(1 β π)^{1βy1} β π^{y2}(1 β π)^{1βy2} β― π^{yn}(1 β π)^{1βπ¦n} = πβ^{π¦π}(1 β π)^{πββπ¦i}\) \(ln (πΏ(π¦1, π¦2, β¦ , π¦π|π)) = ln (πβ^{π¦π}(1 β π)^{πββπ¦π}) = βπ¦πln (π)+ (π β βπ¦π)ln (1 β π)\) \([ln (πΏ(π¦1, π¦2, β¦ , π¦π|π ))]β² =\frac{βπ¦π}{π}β\frac{π β βπ¦π}{1 β π}= 0\)\(πΜ=\frac{βyi}{n}\)
L_bernoulli <- function(n, S){
function(theta){
theta ^ S * (1 - theta) ^ (n - S)
}
}
# log-verosimilitud
l_bernoulli <- function(n, S){
function(theta){
S * log(theta) + (n - S) * log(1 - theta)
}
}
xy <- data.frame(x = 0:1, y = 0:1)
verosimilitud_ber <- ggplot(xy, aes(x = x, y = y)) +
stat_function(fun = L_bernoulli(n = 20, S = 12)) +
xlab(expression(theta)) +
ylab(expression(L(theta))) +
ggtitle("FunciΓ³n de verosimilitud Bernoulli (n=20, S = 12)")
log_verosimilitud <- ggplot(xy, aes(x = x, y = y)) +
stat_function(fun = l_bernoulli(n = 20, S = 12))+
xlab(expression(theta)) +
ylab(expression(l(theta))) +
ggtitle("log-verosimilitud (n=20, S = 12)")
verosimilitud_berGeometrica
\(π_π(π¦) = π[π = π¦] = π(1 β π)^π¦, π¦ = 0,1, β―,n\) \(πΏ (π¦1, π¦2, β¦ , π¦π|π ) = π(1 β π)^{π¦1} β π(1 β π)^{π¦2} β― π(1 β π)^{π¦n}= π^π(1 β π)+(π¦1+π¦2+β―+π¦π)\) \(ln (πΏ(π¦1, π¦2, β¦ , π¦π|π)) = ln (π^π(1 β π)^{π¦1+π¦2+β―+π¦π}) = nln(p) +(π¦1 + π¦2 + β― +π¦π)ln (1β π)\) \([ln (πΏ(π¦1, π¦2, β¦ , π¦π|π ))]β² =\frac{π}{π}β\frac{(π¦1 + π¦2 + β― + π¦π)}{1 βπ}= 0\) \(πΜ=\frac{π}{β π¦π + π}=\frac{1}{π₯Μ + 1}\)
L_geom <- function(n, S){
function(lambda){
lambda ^n * (1- lambda)^S
}
}
xy <- data.frame(x = 0:1, y = 0:1)
verosimilitud_geom <- ggplot(xy, aes(x = x, y = y)) +
stat_function(fun = L_geom(n = 20, S = 12)) +
xlab(expression(lambda)) +
ylab(expression(L(lambda))) +
ggtitle("FunciΓ³n de verosimilitud Geometrica (n=20, S = 12)")
verosimilitud_geom EXPONENCIAL
\(π_π(π¦) = π[π = π¦] = ππ^{βπ}\) \(πΏ (π¦1, π¦2, β¦ , π¦π|π ) = ππ^{βππ¦1} β ππ^{βππ¦2} β― ππ^{βππ¦π} = π^ππ^{βπ(π¦1+π¦2+β―+π¦π)}\) \(ln (πΏ(π¦1, π¦2, β¦ , π¦π|π )) = ln (π^ππ^{βπ(π¦1+π¦2+β―+π¦π)}) = πππ(π)β π(π¦1 + π¦2 + β― +π¦π)ln (π)\) \([ln (πΏ(π¦1, π¦2, β¦ , π¦π|π ))]β² =\frac{π}{π}β βπ¦π = 0\) \(πΜ=\frac{π}{β π¦i}\)
L_exp <- function(n, S){
function(lambda){
lambda ^n * exp((- lambda*S) )
}
}
xy <- data.frame(x = 0:1, y = 0:1)
verosimilitud_exp <- ggplot(xy, aes(x = x, y = y)) +
stat_function(fun = L_exp(n = 2, S = 12)) +
xlab(expression(lambda)) +
ylab(expression(L(lambda))) +
ggtitle("FunciΓ³n de verosimilitud Exponencial (n=2, S = 12)")
verosimilitud_exp