Reverse-score
df.trait_fa22 <- df.trait_fa22 %>%
mutate(LifeSatisfaction_7R = 8 - LifeSatisfaction_7R,
TIPI_Criti_R = 8 - TIPI_Criti_R,
TIPI_Anx_R = 8 - TIPI_Anx_R,
TIPI_Reserv_R = 8 - TIPI_Reserv_R,
TIPI_Disorg_R = 8 - TIPI_Disorg_R,
TIPI_Conven_R = 8 - TIPI_Conven_R,
CESD_4R = 5 - CESD_4R,
CESD_6R = 5 - CESD_6R,
loneliness_3R = 5 - loneliness_3R,
loneliness_6R = 5 - loneliness_6R,
PSS_2R = 6 - PSS_2R,
PSS_3R = 6 - PSS_3R,
selfComp_3R = 8 - selfComp_3R,
selfComp_4R = 8 - selfComp_4R,
selfComp_6R = 8 - selfComp_6R,
)
Create mean scores
df.trait_fa22 <- df.trait_fa22 %>%
rowwise() %>%
mutate(extraversion = mean(c(TIPI_Extra,
TIPI_Reserv_R)),
agreeableness = mean(c(TIPI_Criti_R,
TIPI_Symp)),
conscientiousness = mean(c(TIPI_Depen,
TIPI_Disorg_R)),
emotionalStability = mean(c(TIPI_Anx_R,
TIPI_EmoSta)),
openToExperience = mean(c(TIPI_Open,
TIPI_Conven_R)),
stress = mean(c(Stress_1,
Stress_2)),
TAI_5 = sum(c(TAI_7,
TAI_8,
TAI_15,
TAI_16,
TAI_18)),
EROS = mean(c(EROS1_1,
Empathy_10,
EROS1_6,
EROS1_7,
Empathy_6,
EROS1_9)),
Satwithlife = mean(c(LifeSatisfaction_3,
LifeSatisfaction_4,
LifeSatisfaction_1,
LifeSatisfaction_6,
LifeSatisfaction_9)),
loneliness = mean(c(loneliness_1,
loneliness_2,
loneliness_3R,
loneliness_4,
loneliness_5,
loneliness_6R,
loneliness_7,
loneliness_8)),
CESD = sum(c(CESD_1,
CESD_2,
NegativeWellBeing_1,
CESD_3,
CESD_4R,
NegativeWellBeing_10,
CESD_6R,
CESD_7,
CESD_8)),
ideo = mean(c(PoliIdeology_general,
PoliIdeology_social,
PoliIdeology_economic)),
GAD = sum(c(GAD_1,
GAD_2,
GAD_3,
GAD_4,
GAD_5,
GAD_6,
GAD_7)),
socialphobia = sum(c(socialPhobia_1,
socialPhobia_2,
socialPhobia_3))) %>%
ungroup()
#Add empathy rescaled mean
#Create rescaled empathy items and average empathy score
# data <- df.trait_fa22 %>%
# mutate(Empathy_10 = as.numeric(Empathy_10),
# Empathy_6 = as.numeric(Empathy_6),
# Empathy_8 = as.numeric(Empathy_8),
# Empathy_13 = as.numeric(Empathy_13),
# Empathy_7 = as.numeric(Empathy_7),
# Empathy_9 = as.numeric(Empathy_9),
# Empathy_11 = as.numeric(Empathy_11)) %>%
# mutate(Empathy_10_scaled = (Empathy_10 - 1)/(5 - 1),
# Empathy_10_scaled = (7 - 1)*Empathy_10_scaled + 1,
# Empathy_6_scaled = (Empathy_6 - 1)/(5 - 1),
# Empathy_6_scaled = (7 - 1)*Empathy_6_scaled + 1,
# Empathy_8_scaled = (Empathy_8)/(5 - 1), #don't need to subtract 1 because scale begins at 0
# Empathy_8_scaled = (7 - 1)*Empathy_8_scaled + 1,
# Empathy_13_scaled = (Empathy_13)/(5 - 1),
# Empathy_13_scaled = (7 - 1)*Empathy_13_scaled + 1,
# Empathy_7_scaled = (Empathy_7)/(5 - 1),
# Empathy_7_scaled = (7 - 1)*Empathy_7_scaled + 1,
# Empathy_9_scaled = (Empathy_9)/(5 - 1),
# Empathy_9_scaled = (7 - 1)*Empathy_9_scaled + 1,
# Empathy_11_scaled = (Empathy_11)/(5 - 1),
# Empathy_11_scaled = (7 - 1)*Empathy_11_scaled + 1
# )
#
# #Check
# head(data$Empathy_10)
# head(data$Empathy_10_scaled)
# head(data$Empathy_6)
# head(data$Empathy_6_scaled)
# head(data$Empathy_8)
# head(data$Empathy_8_scaled)
# head(data$Empathy_13)
# head(data$Empathy_13_scaled)
# head(data$Empathy_7)
# head(data$Empathy_7_scaled)
# head(data$Empathy_9)
# head(data$Empathy_9_scaled)
# head(data$Empathy_11)
# head(data$Empathy_11_scaled)
#
# #Average Empathy Score
# spring_data <- data %>%
# mutate(Empathy_10_scaled = as.numeric(Empathy_10_scaled),
# Empathy_6_scaled = as.numeric(Empathy_6_scaled),
# Empathy_8_scaled = as.numeric(Empathy_8_scaled),
# Empathy_13_scaled = as.numeric(Empathy_13_scaled),
# Empathy_7_scaled = as.numeric(Empathy_7_scaled),
# Empathy_9_scaled = as.numeric(Empathy_9_scaled),
# Empathy_11_scaled = as.numeric(Empathy_11_scaled),
# Empathy_12 = as.numeric(Empathy_12)) %>%
# rowwise() %>%
# mutate(Empathy_rescaled_mean = mean(c(Empathy_10_scaled,
# Empathy_6_scaled,
# Empathy_8_scaled,
# Empathy_13_scaled,
# Empathy_7_scaled,
# Empathy_9_scaled,
# Empathy_11_scaled,
# Empathy_12), na.rm = T)) %>%
# ungroup() %>%
# select(-c(Empathy_10_scaled, Empathy_6_scaled,Empathy_8_scaled,Empathy_13_scaled, Empathy_7_scaled, Empathy_9_scaled, Empathy_11_scaled)) #remove rescaled items. Can be added back later, if we want! Just don't want it to be confusing
write csv
#write.csv(df.trait_fa22,"~/Google Drive/Shared drives/Stanford Communities Project/2022-2023/MASTER/Network_survey/Fall 2022/df.trait_fa22.csv",row.names = F)