ANOVA for response latency
getwd()
## [1] "C:/Users/manne_000/Desktop"
setwd("C:\\Users\\manne_000\\Desktop\\mannerist")
res.anova <- read.csv("res_anova.csv")
head(res.anova)
## d.type i.type ratio
## 1 attitude attitude 0.020100503
## 2 attitude attitude 0.032258065
## 3 attitude attitude 0.025423729
## 4 attitude attitude 0.011461318
## 5 attitude factual 0.072847682
## 6 attitude factual 0.009370817
res.a1 <- aov(ratio ~ d.type + i.type, data=res.anova)
summary(res.a1)
## Df Sum Sq Mean Sq F value Pr(>F)
## d.type 1 0.00038 0.000383 0.139 0.713
## i.type 1 0.00370 0.003698 1.340 0.259
## Residuals 23 0.06349 0.002761
res.lm <- lm(ratio ~ d.type + i.type, data=res.anova)
summary(res.lm)
##
## Call:
## lm(formula = ratio ~ d.type + i.type, data = res.anova)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.06748 -0.02718 -0.01093 0.01829 0.17749
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.052327 0.015351 3.409 0.00241 **
## d.typefactual -0.008502 0.021187 -0.401 0.69190
## i.typefactual 0.024522 0.021187 1.157 0.25898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05254 on 23 degrees of freedom
## Multiple R-squared: 0.06039, Adjusted R-squared: -0.02131
## F-statistic: 0.7392 on 2 and 23 DF, p-value: 0.4885
errorbar plot for response latency
setwd("C:\\Users\\manne_000\\Desktop\\mannerist")
eb <- read.csv("errorbar.csv")
eb
## type avr sd n se
## 1 태도-태도 0.0430 0.0281 10 0.0089
## 2 태도-사실관계 0.0924 0.0907 6 0.0370
## 3 사실관계-태도 0.0594 0.0333 6 0.0136
## 4 사실관계-사실관계 0.0450 0.0354 4 0.0177
library(ggplot2)
ggplot(eb, aes(x=type, y=avr)) + geom_point(size=4) +
geom_errorbar(aes(ymax = avr + se*1.98, ymin = avr - se*1.98), width=.2) +
theme(axis.text=element_text(size=15),
axis.title=element_text(size=16,face="bold"))
