The following analysis will evaluate neural net, logistic regression, and decision tree models, to predict top 1000 users likely to switch from freemium to premium.

#Loading high note dataset
setwd("/Users/sayemnasher/Desktop/module 2/data mining in r")
high_note_data <- read_csv("HN_data_PostModule.csv", col_types = "fnfnnnnnnnnnnnfnnnnnnnnnnff")

#Replacing NA factors with UNK
high_note_data  <- high_note_data %>%
  mutate(net_user = as.character(net_user)) %>%
  mutate(net_user = as.factor(recode(net_user, "NA" = "UNK")) )%>%
  mutate(male = as.character(male)) %>%
  mutate(male = as.factor(recode(male, "NA" = "UNK"))) %>%
  mutate(adopter = as.character(adopter)) %>%
  mutate(adopter = as.factor(recode(adopter, "NA" = "UNK"))) %>%
  mutate(good_country = as.character(good_country)) %>%
  mutate(good_country = as.factor(recode(good_country, "NA" = "UNK"))) %>%
  mutate(delta1_good_country = as.character(delta1_good_country)) %>%
  mutate(delta1_good_country = as.factor(recode(delta1_good_country, "NA" = "UNK")))

#process data (changing na number data to mean/median)
high_note_data <- high_note_data %>%
    group_by(male) %>%
  mutate(age = ifelse(is.na(age), mean(age, na.rm = TRUE), age)) %>%
  mutate(friend_cnt = ifelse(is.na(friend_cnt), median(friend_cnt, na.rm = TRUE), friend_cnt)) %>%
  mutate(avg_friend_age = ifelse(is.na(avg_friend_age), mean(avg_friend_age, na.rm = TRUE), avg_friend_age)) %>%
  mutate(avg_friend_male = ifelse(is.na(avg_friend_male), mean(avg_friend_male, na.rm = TRUE), avg_friend_male)) %>%
  mutate(friend_country_cnt = ifelse(is.na(friend_country_cnt), median(friend_country_cnt, na.rm = TRUE), friend_country_cnt)) %>%
  mutate(subscriber_friend_cnt = ifelse(is.na(subscriber_friend_cnt), median(subscriber_friend_cnt, na.rm = TRUE), subscriber_friend_cnt)) %>%
  mutate(songsListened = ifelse(is.na(songsListened), median(songsListened, na.rm = TRUE), songsListened)) %>%
  mutate(lovedTracks = ifelse(is.na(lovedTracks), median(lovedTracks, na.rm = TRUE), lovedTracks)) %>%
  mutate(posts = ifelse(is.na(posts), median(posts, na.rm = TRUE), posts)) %>%
  mutate(playlists = ifelse(is.na(playlists), median(playlists, na.rm = TRUE), playlists)) %>%
  mutate(shouts = ifelse(is.na(shouts), median(shouts, na.rm = TRUE), shouts)) %>%
  mutate(tenure = ifelse(is.na(tenure), mean(tenure, na.rm = TRUE), tenure)) %>%
  
  mutate(delta1_friend_cnt = ifelse(is.na(delta1_friend_cnt), median(delta1_friend_cnt, na.rm = TRUE), delta1_friend_cnt)) %>%
  mutate(delta1_avg_friend_age = ifelse(is.na(delta1_avg_friend_age), mean(delta1_avg_friend_age, na.rm = TRUE), delta1_avg_friend_age)) %>%
  mutate(delta1_avg_friend_male = ifelse(is.na(delta1_avg_friend_male), mean(delta1_avg_friend_male, na.rm = TRUE), delta1_avg_friend_male)) %>%
  mutate(delta1_friend_country_cnt = ifelse(is.na(delta1_friend_country_cnt), median(delta1_friend_country_cnt, na.rm = TRUE), delta1_friend_country_cnt)) %>%
  mutate(delta1_subscriber_friend_cnt = ifelse(is.na(delta1_subscriber_friend_cnt), median(delta1_subscriber_friend_cnt, na.rm = TRUE), delta1_subscriber_friend_cnt)) %>%
  mutate(delta1_songsListened = ifelse(is.na(delta1_songsListened), median(delta1_songsListened, na.rm = TRUE), delta1_songsListened)) %>%
  mutate(delta1_lovedTracks = ifelse(is.na(delta1_lovedTracks), median(delta1_lovedTracks, na.rm = TRUE), delta1_lovedTracks)) %>%
  mutate(delta1_posts = ifelse(is.na(delta1_posts), median(delta1_posts, na.rm = TRUE), delta1_posts)) %>%
  mutate(delta1_playlists = ifelse(is.na(delta1_playlists), median(delta1_playlists, na.rm = TRUE), delta1_playlists)) %>%
  mutate(delta1_shouts = ifelse(is.na(delta1_shouts), median(delta1_shouts, na.rm = TRUE), delta1_shouts)) %>%

  ungroup()

#log transforming
high_note_data$friend_cnt<-log(high_note_data$friend_cnt+1)
high_note_data$playlists<-log(high_note_data$playlists+1)
high_note_data$posts<-log(high_note_data$posts+1)
high_note_data$songsListened<-log(high_note_data$songsListened+1)
#normalize data for models 

normalize<-function(vec){
  if (is.numeric(vec)) {
    vec = (vec - min(vec)) / (max(vec) - min(vec)) }
  return (vec)
}
   
high_note_data <- as.data.frame(lapply(high_note_data, normalize))
skim(high_note_data)
Data summary
Name high_note_data
Number of rows 107213
Number of columns 27
_______________________
Column type frequency:
factor 5
numeric 22
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
net_user 0 1.00 FALSE 107205 #NA: 9, : 1, : 1, ___: 1
male 38950 0.64 FALSE 2 1: 42548, 0: 25715
good_country 39155 0.63 FALSE 2 0: 43025, 1: 25033
delta1_good_country 39393 0.63 FALSE 3 0: 67728, 1: 57, -1: 35
adopter 0 1.00 FALSE 2 0: 100000, 1: 7213

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 0.23 0.07 0 0.20 0.24 0.24 1 ▃▇▁▁▁
friend_cnt 0 1 0.19 0.14 0 0.08 0.16 0.28 1 ▇▅▁▁▁
avg_friend_age 0 1 0.24 0.07 0 0.19 0.23 0.25 1 ▃▇▁▁▁
avg_friend_male 0 1 0.63 0.33 0 0.50 0.66 1.00 1 ▃▂▃▇▇
friend_country_cnt 0 1 0.02 0.04 0 0.01 0.01 0.02 1 ▇▁▁▁▁
subscriber_friend_cnt 0 1 0.00 0.01 0 0.00 0.00 0.00 1 ▇▁▁▁▁
songsListened 0 1 0.54 0.21 0 0.44 0.59 0.69 1 ▂▂▆▇▁
lovedTracks 0 1 0.00 0.01 0 0.00 0.00 0.00 1 ▇▁▁▁▁
posts 0 1 0.02 0.08 0 0.00 0.00 0.00 1 ▇▁▁▁▁
playlists 0 1 0.04 0.05 0 0.00 0.00 0.09 1 ▇▁▁▁▁
shouts 0 1 0.00 0.00 0 0.00 0.00 0.00 1 ▇▁▁▁▁
tenure 0 1 0.36 0.17 0 0.22 0.34 0.49 1 ▅▇▆▂▁
delta1_friend_cnt 0 1 0.48 0.01 0 0.48 0.48 0.48 1 ▁▁▇▁▁
delta1_avg_friend_age 0 1 0.72 0.01 0 0.72 0.72 0.72 1 ▁▁▁▇▁
delta1_avg_friend_male 0 1 0.50 0.02 0 0.50 0.50 0.50 1 ▁▁▇▁▁
delta1_friend_country_cnt 0 1 0.63 0.01 0 0.63 0.63 0.63 1 ▁▁▁▇▁
delta1_subscriber_friend_cnt 0 1 0.35 0.01 0 0.35 0.35 0.35 1 ▁▇▁▁▁
delta1_songsListened 0 1 0.42 0.01 0 0.42 0.42 0.42 1 ▁▁▇▁▁
delta1_lovedTracks 0 1 0.44 0.01 0 0.44 0.44 0.44 1 ▁▁▇▁▁
delta1_posts 0 1 0.00 0.00 0 0.00 0.00 0.00 1 ▇▁▁▁▁
delta1_playlists 0 1 0.06 0.00 0 0.06 0.06 0.06 1 ▇▁▁▁▁
delta1_shouts 0 1 0.09 0.00 0 0.09 0.09 0.09 1 ▇▁▁▁▁
#create data frames
high_note_data_past <- high_note_data[,c('net_user', 'age',  'male', 'tenure',   'delta1_friend_cnt','delta1_avg_friend_age',    'delta1_avg_friend_male','delta1_friend_country_cnt', 'delta1_subscriber_friend_cnt', 'delta1_songsListened', 'delta1_lovedTracks',   'delta1_posts', 'delta1_playlists', 'delta1_shouts', 'delta1_good_country','adopter')]

high_note_data_past_y = high_note_data %>% pull("adopter")
high_note_data_y = high_note_data %>% pull("adopter")

high_note_data_past_x = high_note_data_past %>% select(-c("adopter"))
high_note_data_x = high_note_data %>% select(-c("adopter"))

HN_data_past_X_id<-high_note_data_past_x %>% select(c("net_user"))
HN_data_X_id<-high_note_data_x %>% select(c("net_user"))


high_note_data_past_x<-high_note_data_past_x %>% select(-c("net_user"))
high_note_data_x<-high_note_data_x %>% select(-c("net_user"))
#split the data
smp_size <- floor(.75 *nrow(high_note_data_past_x))

set.seed(12345)
train_ind <- sample(seq_len(nrow(high_note_data_past_x)), size = smp_size)

#create test and training for x
hn_data_train_past_x <- high_note_data_past_x[train_ind, ]
hn_data_train_x <- high_note_data_x [train_ind, ]

hn_data_test_past_x <- high_note_data_past_x[-train_ind, ]
hn_data_test_x <- high_note_data_x[-train_ind, ]

hn_data_train_past_y <- high_note_data_past_y[train_ind]
hn_data_train_y <- high_note_data_y[train_ind]

hn_data_test_past_y <- high_note_data_past_y[-train_ind]
hn_data_test_y <- high_note_data_y[-train_ind]
#additional libraries required
install.packages("https://cran.r-project.org/src/contrib/Archive/DMwR/DMwR_0.4.1.tar.gz", repos=NULL, type = "source")
library(DMwR)
#full training set x and y 
set.seed(1234)

hn_data_train_past <- cbind(hn_data_train_past_x, hn_data_train_past_y)
hn_data_train <- cbind(hn_data_train_x, hn_data_train_y)

#SMOTE (assigning equal probabilities for 0 and 1)
balanced_hn_train_past <- SMOTE(hn_data_train_past_y ~ ., data.frame(hn_data_train_past), perc.over = 100, perc.under = 200)
balanced_hn_train <- SMOTE(hn_data_train_y ~., data.frame(hn_data_train), perc.over = 100, perc.under = 200)
#remove y column and store it
hn_data_train_past_x <- balanced_hn_train_past %>% select(-hn_data_train_past_y)
hn_data_train_x <- balanced_hn_train %>% select(-hn_data_train_y)

hn_data_train_past_y <- balanced_hn_train_past %>% pull(hn_data_train_past_y) %>% as.factor()
hn_data_train_y <- balanced_hn_train %>% pull (hn_data_train_y) %>% as.factor()
#creating a data frame for cost benefit analysis

clf_results <- data.frame(matrix(ncol = 5, nrow = 0))
names(clf_results) <- c("Model", "Accuracy", "Precision", "Recall", "F1")

#store TP,TN,FP,FN
cost_benefit_df <- data.frame(matrix(ncol = 5, nrow = 0))
names(cost_benefit_df) <- c("Model", "TP", "FN", "FP", "TN")
#LOGISTIC REGRESSION PAST DATA ONLY
yyy_fit <- train(hn_data_train_past_x,
                 hn_data_train_past_y, 
                 method = "glm",
                 family = "binomial",
                 preProc = c("center", "scale"))

##predict on test
yyy_predict <- predict(yyy_fit, newdata = hn_data_test_past_x, positive="1" )
glm_prob <- predict(yyy_fit, newdata = hn_data_test_past_x, type = "prob")



## Add into clf_results dataframe
x1 <- confusionMatrix(yyy_predict, hn_data_test_past_y )[["overall"]]
y1 <- confusionMatrix(yyy_predict, hn_data_test_past_y)[["byClass"]]

clf_results[nrow(clf_results) + 1,] <-  list(Model = "Log Regression Past", 
                                             Accuracy = round (x1[["Accuracy"]],3), 
                                            Precision = round (y1[["Precision"]],3), 
                                            Recall = round (y1[["Recall"]],3), 
                                            F1 = round (y1[["F1"]],3))

## Add into cost_benefit_df dataframe 
a1 <- confusionMatrix(yyy_predict, hn_data_test_past_y)

cost_benefit_df[nrow(cost_benefit_df) + 1,] <-  list(Model = "Log Regression Past", 
                                             TP = a1[["table"]][4], 
                                             FN = a1[["table"]][3], 
                                             FP = a1[["table"]][2], 
                                             TN = a1[["table"]][1])
print(yyy_fit)
## Generalized Linear Model 
## 
## 21468 samples
##    14 predictor
##     2 classes: '0', '1' 
## 
## Pre-processing: centered (12), scaled (12), ignore (2) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 21468, 21468, 21468, 21468, 21468, 21468, ... 
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.6323881  0.2702951
#running log reg on all data
yyy_fit_2 <- train(hn_data_train_x,
                 hn_data_train_y, 
                 method = "glm",
                 family = "binomial",
                 preProc = c("center", "scale"))

##predict test data
yyy_predict_2 <- predict(yyy_fit_2, newdata = hn_data_test_x, positive="1" )
glm_prob_2 <- predict(yyy_fit_2, newdata = hn_data_test_x, type = "prob")

## Add results into clf_results dataframe
xa <- confusionMatrix(yyy_predict_2, hn_data_test_y )[["overall"]]
ya <- confusionMatrix(yyy_predict_2, hn_data_test_y)[["byClass"]]

clf_results[nrow(clf_results) + 1,] <-  list(Model = "Log Regression all", 
                                             Accuracy = round (xa[["Accuracy"]],3), 
                                            Precision = round (ya[["Precision"]],3), 
                                            Recall = round (ya[["Recall"]],3), 
                                            F1 = round (ya[["F1"]],3))

## Add results into cost_benefit_df dataframe 
aa <- confusionMatrix(yyy_predict_2, hn_data_test_y )

cost_benefit_df[nrow(cost_benefit_df) + 1,] <-  list(Model = "Log Regression all", 
                                             TP = aa[["table"]][4], 
                                             FN = aa[["table"]][3], 
                                             FP = aa[["table"]][2], 
                                             TN = aa[["table"]][1])
print(yyy_fit_2)
## Generalized Linear Model 
## 
## 21468 samples
##    25 predictor
##     2 classes: '0', '1' 
## 
## Pre-processing: centered (22), scaled (22), ignore (3) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 21468, 21468, 21468, 21468, 21468, 21468, ... 
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.7203991  0.4409425
#Neural Net boost for past data
my.grid <- expand.grid(.decay = c(0.5, 0.1), .size = c(5, 7))

nn_clf_fit <- train(hn_data_train_past_x, 
                    hn_data_train_past_y,
                    method = "nnet",
                    trace = F,
                    tuneGrid = my.grid,
                    linout = 0,
                    stepmax = 100,
                    threshold = 0.01 )

## Plot Neural Network 
plotnet(nn_clf_fit$finalModel, y_names = "adopter")

print(nn_clf_fit)
## Neural Network 
## 
## 21468 samples
##    14 predictor
##     2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 21468, 21468, 21468, 21468, 21468, 21468, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  Accuracy   Kappa    
##   0.1    5     0.6650791  0.3287331
##   0.1    7     0.6661859  0.3307394
##   0.5    5     0.6522559  0.3024155
##   0.5    7     0.6525476  0.3030672
## 
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were size = 7 and decay = 0.1.
#predict neural net on test data
nn_clf_predict <- predict(nn_clf_fit,hn_data_test_past_x, positive = "1")

NN_prob <- predict(nn_clf_fit, newdata = hn_data_test_past_x, type = "prob")



## Add into clf_results dataframe
x4 <- confusionMatrix(nn_clf_predict,hn_data_test_past_y)[["overall"]]
y4 <- confusionMatrix(nn_clf_predict,hn_data_test_past_y)[["byClass"]]

clf_results[nrow(clf_results) + 1,] <-  list(Model = "Neural Network Past", 
                                             Accuracy = round (x4[["Accuracy"]],3), 
                                            Precision = round (y4[["Precision"]],3), 
                                            Recall = round (y4[["Recall"]],3), 
                                            F1 = round (y4[["F1"]],3))

## Add results into cost_benefit_df dataframe 
a4 <- confusionMatrix(nn_clf_predict,hn_data_test_past_y)

cost_benefit_df[nrow(cost_benefit_df) + 1,] <-  list(Model = "Neural Network Past", 
                                             TP = a4[["table"]][4], 
                                             FN = a4[["table"]][3], 
                                             FP = a4[["table"]][2], 
                                             TN = a4[["table"]][1])
#neural net for all data
my.grid <- expand.grid(.decay = c(0.5, 0.1), .size = c(5, 7))

nn_clf_fit_2 <- train(hn_data_train_x, 
                    hn_data_train_y,
                    method = "nnet",
                    trace = F,
                    tuneGrid = my.grid,
                    linout = 0,
                    stepmax = 100,
                    threshold = 0.01 )
print(nn_clf_fit_2)
## Neural Network 
## 
## 21468 samples
##    25 predictor
##     2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 21468, 21468, 21468, 21468, 21468, 21468, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  Accuracy   Kappa    
##   0.1    5     0.7399401  0.4797283
##   0.1    7     0.7390476  0.4779258
##   0.5    5     0.7230901  0.4457859
##   0.5    7     0.7249462  0.4495021
## 
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were size = 5 and decay = 0.1.
plotnet(nn_clf_fit_2$finalModel, y_names = "adopter")

#predit NN all on test data
nn_clf_predict_2 <- predict(nn_clf_fit_2,hn_data_test_x, positive = "1")

NN_prob_2 <- predict(nn_clf_fit_2, newdata = hn_data_test_x, type = "prob")


## Add results into clf_results dataframe
xd <- confusionMatrix(nn_clf_predict_2,hn_data_test_y)[["overall"]]
yd <- confusionMatrix(nn_clf_predict_2,hn_data_test_y)[["byClass"]]

clf_results[nrow(clf_results) + 1,] <-  list(Model = "Neural Network All", 
                                             Accuracy = round (xd[["Accuracy"]],3), 
                                            Precision = round (yd[["Precision"]],3), 
                                            Recall = round (yd[["Recall"]],3), 
                                            F1 = round (yd[["F1"]],3))

## Add results into cost_benefit_df dataframe 
ad <- confusionMatrix(nn_clf_predict_2,hn_data_test_y)

cost_benefit_df[nrow(cost_benefit_df) + 1,] <-  list(Model = "Neural Network All", 
                                             TP = ad[["table"]][4], 
                                             FN = ad[["table"]][3], 
                                             FP = ad[["table"]][2], 
                                             TN = ad[["table"]][1])
#decison tree on past data
cross_validation <- trainControl(## 10-fold CV
                                method = "repeatedcv",
                                number = 10,
                                ## repeated three times
                                repeats = 3)

Param_Grid <-  expand.grid(maxdepth = 4)

dtree_fit <- train(hn_data_train_past_x,
                   hn_data_train_past_y, 
                   method = "rpart2",
                   # split - criteria to split nodes
                   parms = list(split = "gini"),
                  tuneGrid = Param_Grid,
                   trControl = cross_validation,
                  # preProc -  perform listed pre-processing to predictor dataframe
                   preProc = c("center", "scale"))


## Predict on test data
dtree_predict <- predict(dtree_fit, newdata = hn_data_test_past_x)

dtree_prob <- predict(dtree_fit, newdata = hn_data_test_past_x, type = "prob")


## Add results into clf_results dataframe
x6 <- confusionMatrix(dtree_predict,  hn_data_test_past_y )[["overall"]]
y6 <- confusionMatrix(dtree_predict,  hn_data_test_past_y )[["byClass"]]

clf_results[nrow(clf_results) + 1,] <-  list(Model = "Decision Tree Past", 
                                             Accuracy = round (x6[["Accuracy"]],3), 
                                            Precision = round (y6[["Precision"]],3), 
                                            Recall = round (y6[["Recall"]],3), 
                                            F1 = round (y6[["F1"]],3))

a6 <- confusionMatrix(dtree_predict,  hn_data_test_past_y )

cost_benefit_df[nrow(cost_benefit_df) + 1,] <-  list(Model = "Decision Tree Past", 
                                             TP = a6[["table"]][4], 
                                             FN = a6[["table"]][3], 
                                             FP = a6[["table"]][2], 
                                             TN = a6[["table"]][1])
print(dtree_fit)
## CART 
## 
## 21468 samples
##    14 predictor
##     2 classes: '0', '1' 
## 
## Pre-processing: centered (12), scaled (12), ignore (2) 
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 19321, 19321, 19322, 19320, 19321, 19322, ... 
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.7526707  0.5053419
## 
## Tuning parameter 'maxdepth' was held constant at a value of 4
#using decision tree on all data
cross_validation <- trainControl(## 10-fold CV
                                method = "repeatedcv",
                                number = 10,
                                ## repeated three times
                                repeats = 3)

Param_Grid <-  expand.grid(maxdepth = 4)

dtree_fit_2 <- train(hn_data_train_x,
                   hn_data_train_y, 
                   method = "rpart2",
                   # split - criteria to split nodes
                   parms = list(split = "gini"),
                  tuneGrid = Param_Grid,
                   trControl = cross_validation,
                  # preProc -  perform listed pre-processing to predictor dataframe
                   preProc = c("center", "scale"))




## Predict on test data
dtree_predict_2 <- predict(dtree_fit_2, newdata = hn_data_test_x)
dtree_prob_2 <- predict(dtree_fit_2, newdata = hn_data_test_x, type = "prob")



## Add results into clf_results dataframe
xg <- confusionMatrix(dtree_predict_2,  hn_data_test_y )[["overall"]]
yg <- confusionMatrix(dtree_predict_2,  hn_data_test_y )[["byClass"]]

clf_results[nrow(clf_results) + 1,] <-  list(Model = "Decision Tree All", 
                                             Accuracy = round (xg[["Accuracy"]],3), 
                                            Precision = round (yg[["Precision"]],3), 
                                            Recall = round (yg[["Recall"]],3), 
                                            F1 = round (yg[["F1"]],3))
ag <- confusionMatrix(dtree_predict_2,  hn_data_test_y  )

cost_benefit_df[nrow(cost_benefit_df) + 1,] <-  list(Model = "Decision Tree All", 
                                             TP = ag[["table"]][4], 
                                             FN = ag[["table"]][3], 
                                             FP = ag[["table"]][2], 
                                             TN = ag[["table"]][1])
print(dtree_fit_2)
## CART 
## 
## 21468 samples
##    25 predictor
##     2 classes: '0', '1' 
## 
## Pre-processing: centered (22), scaled (22), ignore (3) 
## Resampling: Cross-Validated (10 fold, repeated 3 times) 
## Summary of sample sizes: 19320, 19322, 19321, 19320, 19322, 19322, ... 
## Resampling results:
## 
##   Accuracy   Kappa    
##   0.7775922  0.5551849
## 
## Tuning parameter 'maxdepth' was held constant at a value of 4
#summary
print(cost_benefit_df)
##                 Model   TP  FN   FP    TN
## 1 Log Regression Past  713 497 3964 10104
## 2  Log Regression all  787 423 3817 10251
## 3 Neural Network Past  793 417 5286  8782
## 4  Neural Network All  841 369 3977 10091
## 5  Decision Tree Past 1161 685 6820 18138
## 6   Decision Tree All 1028 818 4916 20042
#summary
print(clf_results)
##                 Model Accuracy Precision Recall    F1
## 1 Log Regression Past    0.708     0.953  0.718 0.819
## 2  Log Regression all    0.722     0.960  0.729 0.829
## 3 Neural Network Past    0.627     0.955  0.624 0.755
## 4  Neural Network All    0.716     0.965  0.717 0.823
## 5  Decision Tree Past    0.720     0.964  0.727 0.829
## 6   Decision Tree All    0.786     0.961  0.803 0.875
ggplot(clf_results[1:6,] %>% arrange(desc(Accuracy)) %>%
       mutate(Model=factor(Model, levels=Model) ), 
       aes(x = Model, y = Accuracy)) +
  geom_bar(stat = "identity" , width=0.3, fill="steelblue") + 
  coord_cartesian(ylim = c(0.2, 1)) +
  geom_hline(aes(yintercept = mean(Accuracy)),
             colour = "green",linetype="dashed") +
  ggtitle("Compare Accuracy for all Models") +
  theme(plot.title = element_text(color="black", size=10, hjust = 0.5),axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))

#compare f1 scores
ggplot(clf_results[1:6,] %>% arrange(desc(F1)) %>%
       mutate(Model=factor(Model, levels=Model) ), 
       aes(x = Model, y = F1)) +
  geom_bar(stat = "identity" , width=0.3, fill="steelblue") + 
  coord_cartesian(ylim = c(0.2, 1)) +
  geom_hline(aes(yintercept = mean(F1)),
             colour = "green",linetype="dashed") +
  ggtitle("Compare F1 Score for all Models") +
  theme(plot.title = element_text(color="black", size=10, hjust = 0.5),
        axis.text.x=element_text(angle=90,hjust=1,vjust=0.5))

#After comparing accuracy, F1 scores, and AUC, Neural Net proves to be the best performing model. Now I will go back to the data, filter out free users and deploy the model.
#filter out free users
HN_data_free_users<-high_note_data%>% filter(adopter==0)
HN_data_free_users_test<-HN_data_free_users %>% select(-c("net_user","adopter"))
HN_data_free_users_id<-HN_data_free_users %>% select(c("net_user"))
predict_adopting_probability<- predict(nn_clf_fit_2, newdata = HN_data_free_users_test, type = "prob")
probability_of_adopting<-predict_adopting_probability[,2]

#adding id to the table
adopters_list<-cbind(HN_data_free_users_id, probability_of_adopting)
summary(adopters_list)
##            net_user     probability_of_adopting
##  #NAME?        :    9   Min.   :0.00           
##  ____foursticks:    1   1st Qu.:0.15           
##  ____mih       :    1   Median :0.34           
##  ___8          :    1   Mean   :0.35           
##  ___ashley_    :    1   3rd Qu.:0.52           
##  ___cake       :    1   Max.   :1.00           
##  (Other)       :99986   NA's   :43106
top_1000 <-head(adopters_list[order(-adopters_list$probability_of_adopting), ],1000)
summary(top_1000)
##        net_user   probability_of_adopting
##  _domin_   :  1   Min.   :0.8331         
##  _faceless_:  1   1st Qu.:0.8563         
##  _www_     :  1   Median :0.8877         
##  -aceton-  :  1   Mean   :0.8966         
##  1manguy   :  1   3rd Qu.:0.9281         
##  a_luv     :  1   Max.   :1.0000         
##  (Other)   :994
print(top_1000)
##              net_user probability_of_adopting
## 52943 jonatancerradam               1.0000000
## 81035    pjackson1966               1.0000000
## 2935   uterpendragon1               0.9999994
## 69930         miniloq               0.9999994
## 89370 screamadelicate               0.9999587
## 39958   franzilinchen               0.9999344
## 26275          coanta               0.9999289
## 99098    theremingirl               0.9998710
## 24922         chiefin               0.9998507
## 48921        irena245               0.9997824
## 46075         himu666               0.9996803
## 32868     donvitalone               0.9996142
## 6437    wrathfulseven               0.9993887
## 92868         smurf72               0.9993450
## 56483     khsargenius               0.9991964
## 83161      qwertytale               0.9991470
## 77743       oracool43               0.9988486
## 69554   mikeinchnails               0.9987175
## 73215    mysickburden               0.9984148
## 72691 murasaki_midori               0.9983052
## 68392      mellemusic               0.9981523
## 60846   leroyusbanker               0.9977611
## 28178          d1kaja               0.9975225
## 43381    greenvillepa               0.9973916
## 78017           oukay               0.9973853
## 19305 big_electro_cat               0.9970058
## 95466           stu_b               0.9966493
## 79875  perfectionhate               0.9965746
## 78504        palblues               0.9965118
## 64181            m909               0.9955900
## 33977      dunkelblow               0.9953592
## 32138       djflanger               0.9953277
## 84442   rebekasamyrra               0.9951835
## 52055       jjoossee1               0.9949379
## 87555         s_and_q               0.9949366
## 44896     hasantayyar               0.9945922
## 22677      cabeshpash               0.9944904
## 94692    staytuned101               0.9944459
## 72495         mtmusic               0.9944097
## 31870  discotequedude               0.9932320
## 7332         xpehope3               0.9929914
## 54923     kalpamantra               0.9926826
## 99259   theviperchick               0.9920622
## 90903   shiroyamachou               0.9915619
## 77456   omnilrenegade               0.9915271
## 31420     diegohatake               0.9915252
## 91420         silea85               0.9912005
## 6593        wynterkat               0.9909041
## 12286      alegouveia               0.9905779
## 56904         kingbea               0.9899713
## 51573          jesst7               0.9894493
## 45781          hetsku               0.9894205
## 70857       mnisdthcr               0.9893861
## 48824  invisiblewings               0.9889894
## 21435        brentill               0.9879722
## 25131       chochewee               0.9877978
## 70289     missganjita               0.9874922
## 35496      elitortosa               0.9870774
## 62979      love_puppy               0.9868348
## 95450        stryjek4               0.9863471
## 91965   sixbarrels123               0.9861792
## 6342      woolymammal               0.9860499
## 91414     silasrjones               0.9852342
## 76256        novi_sad               0.9850363
## 56922        kingflov               0.9846886
## 52079     jkarlsonsrv               0.9845497
## 63550      luismoranm               0.9843429
## 40188      freijzer-2               0.9842668
## 29209     dariomorfeo               0.9829097
## 54878     kalevkodzis               0.9823732
## 30156     deannaelise               0.9822625
## 78172           ozacr               0.9817098
## 847            topa2a               0.9808060
## 62645    lord_doguero               0.9805748
## 31545 digitalxsunrise               0.9798585
## 48511           inequ               0.9798507
## 12176        albidude               0.9796625
## 82878          qba132               0.9789233
## 34653         edmonia               0.9785534
## 8304       yoquese666               0.9783248
## 18768         benm_87               0.9782525
## 73298        mzflossy               0.9780148
## 79211      pattysauce               0.9779990
## 56224         kerarus               0.9775708
## 1971          tvickie               0.9763859
## 94852 stelmaria_roars               0.9762956
## 99608     thrishul093               0.9759500
## 76652    o_ghost_girl               0.9755163
## 31933         ditrixa               0.9755134
## 73774           narku               0.9754874
## 92851        smp4life               0.9752675
## 42408      glamgirl74               0.9745765
## 6004       winstonbox               0.9745647
## 70701       mktinchen               0.9741322
## 97437      tattooolli               0.9739346
## 35590         elliedi               0.9734894
## 68490   memoryman1964               0.9733653
## 16105      asanamats8               0.9730337
## 98410        the_karo               0.9729614
## 89958        septacle               0.9720531
## 66936       masteredd               0.9719230
## 61793   liquidcruelty               0.9716325
## 11275       aeris_bru               0.9715687
## 28625        damscray               0.9703431
## 77701     operabouffe               0.9686821
## 91740        sinedd17               0.9686596
## 63917        luvradio               0.9679237
## 45922        hi_black               0.9678678
## 76347         nsuziey               0.9674013
## 40364  frontman_exkpi               0.9664773
## 88994        schavira               0.9662184
## 56469           khons               0.9658602
## 46653         hotgal2               0.9657443
## 80906      pirozhok12               0.9653068
## 70080        mirksuhh               0.9647169
## 78410        pafurada               0.9645615
## 46466      homie20078               0.9644708
## 81060           pk-pk               0.9642354
## 92542  slippershuffle               0.9641271
## 55171      karenbetts               0.9640726
## 82058    princesskhym               0.9640200
## 44693     hapciumadam               0.9636527
## 22401  bustedmarauder               0.9634856
## 79458          pawoko               0.9633350
## 27647      cryohazmat               0.9630178
## 19710         bizoniy               0.9626569
## 47847          iinaki               0.9617704
## 6370  worldmusicwoman               0.9615935
## 62684       lorddream               0.9612691
## 50404       jannika89               0.9607338
## 15519      arcangelic               0.9602644
## 23052     camiloindie               0.9599802
## 68459     meltone9750               0.9597438
## 60844   leroyinchains               0.9593804
## 47170      i-sabotage               0.9592845
## 97030 takingbacksarah               0.9588937
## 74521        neologyc               0.9577485
## 9379            zkish               0.9572716
## 23902     cautiouzman               0.9570607
## 60139        lawr3nce               0.9567907
## 43974    guptakaran11               0.9563849
## 56155      kenkentaka               0.9560317
## 16684       auntsugar               0.9559899
## 47263           iambh               0.9559059
## 11307          afader               0.9554679
## 41554    geew-bu-raah               0.9551241
## 94224          spumco               0.9549745
## 13652        amore_tu               0.9546410
## 17165           b3n1h               0.9543944
## 90348  shadowdemonxyx               0.9542059
## 40278     frigginalex               0.9540181
## 10937          adamf3               0.9539476
## 81040          pjbird               0.9539413
## 91577    simcommander               0.9537164
## 81614        popazuda               0.9536070
## 9009          zegblog               0.9529490
## 40681    funkybigband               0.9529183
## 45163      heartscore               0.9527921
## 63088    lowtunedgirl               0.9524355
## 65453         manek07               0.9524165
## 85991     robertoszym               0.9521891
## 40661   funkmasterb55               0.9520876
## 35197       eldiablos               0.9509371
## 49220       ispytatel               0.9507490
## 69363    mightykendar               0.9504956
## 58884          kwagua               0.9504757
## 87933          saloti               0.9501484
## 47262     iambentobox               0.9500366
## 79459     pawy_vedder               0.9493758
## 69316      midorichan               0.9492998
## 47774   ihafkenschiel               0.9490029
## 23524   carol_eulalio               0.9489285
## 4368    vitormusachio               0.9488456
## 38136          faun28               0.9487963
## 28353         daemith               0.9487021
## 8787        zakkthorn               0.9487020
## 89148       schriklog               0.9485466
## 2554      un-cassette               0.9481697
## 49691       j_nothing               0.9479134
## 37639 fabiananemerodr               0.9478770
## 5003            war25               0.9474034
## 35460   elisagismondi               0.9470258
## 38728    figinimigini               0.9468183
## 22814   caiotribbiani               0.9465503
## 23381   carlacoutinho               0.9464695
## 88001    samar_saeedi               0.9460136
## 36992       ethnojazz               0.9458228
## 80117         petrouu               0.9457599
## 94995     stevenbobby               0.9447785
## 45218       heavytony               0.9442734
## 32890   dookiemonkey7               0.9441154
## 24548        charsier               0.9441108
## 5386  wendersonaguiar               0.9436429
## 6621          x-boy84               0.9430852
## 32781      doney60_12               0.9428681
## 69938     minimax1965               0.9426053
## 3326      vaniorsioli               0.9424138
## 72580        mugen_92               0.9418519
## 74832  nextsaturday86               0.9413761
## 17001      aylinslkgl               0.9413253
## 19249       bicibebek               0.9404574
## 73143  mymusicmydivas               0.9404292
## 44032  gustavodrigues               0.9403811
## 22234      bumble-boy               0.9399875
## 86837          rozart               0.9396686
## 72158        mrmario1               0.9394069
## 56216           keoos               0.9390996
## 1843            tunch               0.9382021
## 14288      andyisdead               0.9381588
## 60095       laurisvrm               0.9380444
## 73895      natasa_bdm               0.9378000
## 88073      sammckeetd               0.9373176
## 75761  no-false-saint               0.9370174
## 40212 frequencyfather               0.9367130
## 25736      cinemababe               0.9364407
## 6083          witchiz               0.9363441
## 5717       wickeda_sd               0.9362652
## 71966          mraben               0.9360879
## 91122          shtuka               0.9359155
## 83660     rainbowshoe               0.9355985
## 66030     marianarosa               0.9355787
## 23810       cataploft               0.9353480
## 39022        fkrispin               0.9346985
## 37945          fanour               0.9340960
## 36452           eppos               0.9337843
## 78613       pand0ra23               0.9336784
## 63056 lovesnobigtruth               0.9335416
## 97151       tamtamdam               0.9334570
## 28423     daialvarado               0.9330935
## 11305        af7017ax               0.9329261
## 77642         onur666               0.9328877
## 76002     nooneastern               0.9319374
## 26329        cocoroco               0.9318554
## 1833    tumbling-down               0.9315609
## 27862        curryser               0.9313735
## 82122       pro100pro               0.9313582
## 27509     criticalcat               0.9309973
## 9394          zloiman               0.9309874
## 50019       jaimewinn               0.9309372
## 18582      belindaj_1               0.9309264
## 85170           rhamw               0.9299235
## 97130       tamihania               0.9297293
## 76838 odysseyandoracl               0.9296684
## 61061         lfluffy               0.9296510
## 17563         balynah               0.9293999
## 62251     lo_re_da_na               0.9288882
## 53259 josephalanfears               0.9288592
## 17158        b1ackd0g               0.9283073
## 63716       lulitaeme               0.9281920
## 91039    shortbeatnik               0.9280803
## 3517   veiledsongbird               0.9280604
## 6774           xatise               0.9280274
## 48686          inrigo               0.9277600
## 13881  anaryaeledhwen               0.9277218
## 15080     antoaneta_p               0.9274767
## 21685      brokenfist               0.9274151
## 78557   pame_agostini               0.9272420
## 17829  barrettszipper               0.9267817
## 48829       inzaratha               0.9264881
## 17823  baronvontito18               0.9262970
## 74025   nattysnlove21               0.9261467
## 81673      poratliron               0.9260563
## 96911           tadix               0.9259457
## 73063 mycatisnotavirg               0.9257862
## 30626         demol88               0.9257508
## 27525        crlcan81               0.9255873
## 99833     tijuanalady               0.9254271
## 75183       niewiasta               0.9250584
## 28249           d_rox               0.9249782
## 30459           deh__               0.9249288
## 56300    keturahkhaos               0.9243915
## 83235     r_kohakusui               0.9243117
## 29779    davidmills71               0.9241472
## 26339      codamarine               0.9241123
## 39604 foreignconcepts               0.9240616
## 38050        fast4321               0.9240406
## 62728       lore-sima               0.9238201
## 34788        eerika23               0.9237445
## 94649        stassino               0.9236484
## 38225     feblackmore               0.9235632
## 36333       enrico111               0.9229807
## 22093         buddhaa               0.9226147
## 28457     daisygraves               0.9224368
## 53523   jrencarnacion               0.9223600
## 10670       abstract2               0.9223349
## 89920         sentoul               0.9221524
## 39347     floydsounds               0.9218584
## 27274 crazy_nightmare               0.9217789
## 84678   refuse-resist               0.9211388
## 84512       redbarn23               0.9208888
## 54007   juliantorrado               0.9207539
## 93602     sosiambrisa               0.9207428
## 1987         twan313d               0.9206835
## 46871       hughesrjl               0.9206735
## 65187        malcolmv               0.9202856
## 66675       marty_key               0.9201863
## 60609         lemelek               0.9192868
## 12461 alexander_allen               0.9189281
## 70360    misspinkeyes               0.9187947
## 29900      dazzle1452               0.9186769
## 74701         netzach               0.9183905
## 81811       powpawpow               0.9182627
## 25739       cinemarae               0.9180820
## 32705         domiwie               0.9180641
## 2435       ulfhedhnar               0.9179208
## 81736        postdawn               0.9176764
## 39228        flixxxer               0.9172977
## 54119       julzianaz               0.9171387
## 67951         mdenisa               0.9169369
## 29233      dark_admin               0.9169047
## 39178          flfl10               0.9168863
## 33647          drudru               0.9166496
## 36834        eskimofo               0.9160796
## 48523        inewhite               0.9158786
## 47584  idealholokaust               0.9156848
## 22833     caitrin1985               0.9154400
## 46969    hungry_helen               0.9153920
## 40485         fubuki_               0.9151525
## 23546      carolina48               0.9149972
## 81509         polskam               0.9147821
## 97509         tayotaz               0.9146360
## 4213   violent_phlegm               0.9146140
## 48200       imcarenas               0.9145730
## 51534      jessicalux               0.9143175
## 17964   bastetmeister               0.9141425
## 4534            voddi               0.9141232
## 34252          e-lisa               0.9140694
## 48970       irka_rump               0.9134939
## 30586      dem_oloart               0.9133588
## 69841         mimidel               0.9132366
## 21932         bryan94               0.9131157
## 41637 general_picasso               0.9130487
## 88504       sarap00jp               0.9126461
## 12726          ali824               0.9125182
## 42329         giugiu9               0.9123563
## 6175          wo_olfy               0.9122644
## 73584      nalurebell               0.9117235
## 66045   mariannaychev               0.9111280
## 5251      webspiderus               0.9110505
## 63032   lovemaximumfm               0.9110246
## 4338      vitali_teen               0.9109855
## 8901          zarubec               0.9109705
## 88348 santiago-davila               0.9106734
## 38789        filmclip               0.9105876
## 26565    combatcircus               0.9103764
## 82882          qbayne               0.9099184
## 86816       roy_cakes               0.9096364
## 99333     thiagoceles               0.9093486
## 71184       monday6am               0.9093010
## 88169       samuryi00               0.9092643
## 10373           a_luv               0.9089863
## 69725        milenuts               0.9085158
## 95790  sumiyakani1get               0.9084678
## 5906   willowbear1228               0.9083242
## 42943     goosiak1990               0.9082757
## 96822          t9rzyk               0.9081077
## 73098      mygodchris               0.9079659
## 28094      czarrocker               0.9077726
## 31247         di_west               0.9077437
## 7945           yarwan               0.9075432
## 7318     xoxkarijoxox               0.9073080
## 56446       khareen17               0.9070597
## 8696          zabusia               0.9068969
## 61419          lilhan               0.9068669
## 41328         garyloo               0.9067603
## 72562      mufasa2008               0.9063683
## 60751  leonardo_freak               0.9062504
## 26602      comparedto               0.9061884
## 67391 mauricesnabilie               0.9061067
## 30297      decibel120               0.9058808
## 72369        ms_creep               0.9057096
## 3044       vacuiforme               0.9056436
## 23263       captainfe               0.9055507
## 27093        cozynite               0.9053668
## 38376        felipinx               0.9053118
## 70204  miss0nitro0zoe               0.9050364
## 95468  stuart_davis15               0.9050171
## 61702      linkntinks               0.9049398
## 97040     takunisdope               0.9048448
## 62212         lm_link               0.9042145
## 71101           moljo               0.9041675
## 16458     asylumjesus               0.9039820
## 90447       shamansir               0.9039222
## 91409   sil_marillion               0.9038979
## 36891   essereinutile               0.9035762
## 25490        chserena               0.9033905
## 5715   wicked_one_777               0.9033352
## 22758    caffeinateme               0.9032409
## 69858         mina188               0.9031212
## 8249          yogotox               0.9028971
## 50247 jamierobertward               0.9028313
## 29184         dargard               0.9026820
## 73817       nastazjaf               0.9025998
## 30427        defk3000               0.9025763
## 22711     cactusvoice               0.9025374
## 31509          digeme               0.9024940
## 26252           cmudp               0.9024353
## 71056        mojito76               0.9024288
## 91383      sihayakara               0.9020361
## 49022           iroqk               0.9020176
## 53772     jucaazevedo               0.9019597
## 81881        praleila               0.9018618
## 16578      atreyu1982               0.9018523
## 48460     indieprince               0.9015286
## 86183      rockinbird               0.9014044
## 74302         nefrete               0.9011624
## 74911          nicast               0.9010335
## 35418         elify76               0.9009418
## 54804 kaizers0maestra               0.9007263
## 74716     neurolepsia               0.9007125
## 79031     passpassive               0.9006679
## 15481        arashisu               0.9005620
## 29101         dantyrr               0.9004478
## 82651     punkybi0tch               0.9003165
## 27468        crisrocs               0.9001372
## 43337  greendevotchka               0.8996108
## 2013       twenty-ten               0.8995143
## 48452     indiehearts               0.8994258
## 56297          ketsuk               0.8989245
## 60842   leroidusoleil               0.8989098
## 28463         dajahns               0.8988608
## 57339 klaudiakaminska               0.8987888
## 89490      seamstress               0.8987505
## 23364 carinilumpyhead               0.8987338
## 43524        grimyaku               0.8985566
## 60084     lauriette91               0.8984906
## 43147        grabhorn               0.8984294
## 89529       seanmoser               0.8982312
## 18116        bboudoux               0.8982144
## 88790        sawa1383               0.8981377
## 41290      garmanator               0.8981093
## 2418         uksteveh               0.8980010
## 1017       toulouselr               0.8979216
## 41459       gberryman               0.8977066
## 41453           gba91               0.8976058
## 876        tor_wilson               0.8976038
## 79166       patron-24               0.8975070
## 21397     breezesquad               0.8975029
## 15645      arhaeopter               0.8971468
## 83060  quetzallimusic               0.8971340
## 74062      nava_blues               0.8970449
## 20875    boogieman981               0.8968515
## 25109       chloeflux               0.8967507
## 99495    thomasjgreen               0.8965957
## 64236        maaaiden               0.8965335
## 4465         vladan88               0.8964053
## 76467    nuotarefiume               0.8963282
## 16759  autumnsweater5               0.8959181
## 55686     katvonpberg               0.8957009
## 11908         akasuna               0.8956386
## 27871    cursedzephyr               0.8956354
## 70319    missluciferr               0.8952487
## 82240   protey-corrax               0.8952454
## 46542 hootchi_cootchi               0.8948865
## 46303       hodracirk               0.8948197
## 75452         nimhead               0.8948086
## 49793       jackcosta               0.8947547
## 26467    colgatewhite               0.8947513
## 32623     dolcesangue               0.8947124
## 76523     nuttyxander               0.8945210
## 82038     princegarth               0.8941429
## 79025  passionofknife               0.8941006
## 95846        sunjazz2               0.8939684
## 15715        arka-fon               0.8936030
## 55318     karolxmmmmm               0.8933866
## 83849   randolfcarter               0.8932962
## 89964 sepulturero_666               0.8932634
## 85008    restythestar               0.8930886
## 60940   letsfocusonme               0.8930215
## 5554           wheelq               0.8928076
## 76238         novacat               0.8926832
## 91371        sigridur               0.8923535
## 79118    patquinnchin               0.8920550
## 29712        david_14               0.8920425
## 46842          hudgie               0.8915906
## 41600          gelpie               0.8915742
## 59525  lamariposaazul               0.8914897
## 6607         wysteria               0.8914249
## 60462 leftofleftfield               0.8911622
## 64056           lyrio               0.8908739
## 33613           drpop               0.8908609
## 25571    chunky_bacon               0.8907758
## 19866   blackdragon90               0.8904792
## 41871         getup14               0.8904759
## 49062        isabel86               0.8902329
## 88782      savoy-wang               0.8901451
## 79132   patriciapaiva               0.8900512
## 29228   dark-skyliner               0.8897127
## 72457          mstfcn               0.8895455
## 39131    flaviorafael               0.8891697
## 51157        jegraphy               0.8890535
## 54039   julienegunner               0.8889685
## 48765     interozitor               0.8888088
## 69558          mikel-               0.8888015
## 61474          lillek               0.8887262
## 35082        el_boris               0.8885865
## 33435         dressed               0.8885484
## 60276          leadae               0.8881638
## 84224       razmosis2               0.8879986
## 39349           floyt               0.8877097
## 97272      tar-morgul               0.8876436
## 24178        ceravene               0.8871020
## 27961    cyberaktif08               0.8870485
## 70403         missyas               0.8868359
## 90820     shimmerrose               0.8867151
## 98401 the_heathen1991               0.8864080
## 6886     xdepriiivedx               0.8861568
## 40967          gabirp               0.8861433
## 79834 peppermintdream               0.8858250
## 28304      dacevedo86               0.8857106
## 97187        tanguyvd               0.8856172
## 99064        theransu               0.8855252
## 42412        glamoour               0.8854497
## 62239        lnkjuice               0.8853962
## 34145         dylan05               0.8850125
## 38380        felix-wf               0.8848269
## 43964 guns-of-brixton               0.8847658
## 24992 chillwithschill               0.8846444
## 10177      _faceless_               0.8845225
## 23102   cancatalyurek               0.8840326
## 72015           mrc68               0.8839558
## 59235      ladodoclem               0.8839503
## 81082          pkzlck               0.8837968
## 31833      disarm1979               0.8837557
## 70324      missmalice               0.8836902
## 90978         shnur58               0.8835862
## 7175           xknutx               0.8834502
## 21856    bruno_avilar               0.8834026
## 39045          flakoo               0.8833428
## 74299      nefer-tari               0.8832994
## 80979        piveskid               0.8832957
## 10284           a---a               0.8832478
## 15084        antolele               0.8832002
## 88306           sankt               0.8831545
## 22761        cage2005               0.8829925
## 56410         kfjotek               0.8827704
## 56235        keridven               0.8825636
## 44156     gyorffymate               0.8825066
## 71599          moriax               0.8822898
## 30729        denizm75               0.8822787
## 45805  hexenmeisterin               0.8821714
## 76872        offinkaa               0.8820519
## 70864          mnlpdr               0.8820444
## 13688           amshu               0.8816458
## 18428          beek56               0.8816415
## 41817     gerryhectic               0.8813953
## 9263  zielonykrolik22               0.8812632
## 53982     julianapena               0.8806042
## 63952          lvgame               0.8803717
## 5137       wavebyebye               0.8800781
## 64750      magda_arch               0.8797625
## 48703      insanity35               0.8794621
## 86855        rpalstra               0.8793053
## 41419         gawrosz               0.8792939
## 14446   angelinasouza               0.8792723
## 2966            uuree               0.8791964
## 24938        chiiii88               0.8791737
## 14015         andosis               0.8791643
## 17184    b_nourbakhsh               0.8791267
## 79001         pasha89               0.8788395
## 48171       imagining               0.8788044
## 27714         csumler               0.8787924
## 54700        kafcamus               0.8787771
## 28613       damonf888               0.8786329
## 80101       petramode               0.8785423
## 56338   kevinesqueche               0.8783207
## 20314     blue-desert               0.8782883
## 36968 eternalsilence-               0.8782048
## 95956   superegoistic               0.8780361
## 12563     alexisanima               0.8780198
## 27258  crazy-4ertenok               0.8779341
## 77196         olegkor               0.8779043
## 55386        kasiatek               0.8778256
## 24455          chapal               0.8778048
## 74187          ne-fer               0.8776829
## 30911     derschrader               0.8776819
## 67601        maxx_500               0.8774896
## 45115            he6o               0.8774507
## 51079      jefersombh               0.8774382
## 22190          bulcas               0.8769836
## 36141         emreg00               0.8769426
## 17403       badquanta               0.8765746
## 13659      amortencja               0.8761507
## 69030   mia_wallace92               0.8760512
## 92883            smzi               0.8760312
## 77217       olesjafan               0.8758699
## 53605       jsiminski               0.8758534
## 92005        sjhur724               0.8757165
## 61618   lind_l_tailor               0.8749665
## 99408  thinwhitedukem               0.8748818
## 7877     yamillevegan               0.8748795
## 12724          ali3n0               0.8748534
## 76073      noriko-san               0.8747191
## 55270 karmakiller_hxc               0.8745344
## 71429        mooncoma               0.8743867
## 85984    roberto_cups               0.8743611
## 63200         lu_sonn               0.8741595
## 87460           rytep               0.8740365
## 13672          amperx               0.8739193
## 79055         pataglu               0.8737785
## 44605    hanlonconnor               0.8736789
## 37704          fabsya               0.8736462
## 1839           tumsik               0.8736207
## 71476        mooondek               0.8736159
## 35789      emac7dawgs               0.8735538
## 72172      mrmojoking               0.8734702
## 96189           suzej               0.8734326
## 56210   kenyikissarmy               0.8734163
## 86724     rossshannon               0.8733209
## 43978         gurenka               0.8730994
## 16651   audreycharlot               0.8726275
## 54715       kage_enma               0.8725870
## 85520        rihouibo               0.8725269
## 83370    radiantlotus               0.8725163
## 35974      eminpascha               0.8724105
## 5903          willone               0.8722775
## 91515       silver_28               0.8721302
## 97680     technoankan               0.8716169
## 28298          dabu22               0.8715660
## 68327     melcavalera               0.8715539
## 88771    savesomeface               0.8715483
## 79794            pep3               0.8715054
## 74681     netjer-deru               0.8714030
## 98972         thennil               0.8713784
## 75652         nivagio               0.8712253
## 65744   marcelaospina               0.8711284
## 74625         nerwowy               0.8711204
## 50475          jaras1               0.8709512
## 47669       ifeelneon               0.8708699
## 59299 ladygrnningsoul               0.8707235
## 35543         ellalla               0.8706364
## 2359         ugomonio               0.8706328
## 58319     kristi_gail               0.8706093
## 2788  up_the_sounders               0.8705886
## 96178    suviheikkila               0.8705321
## 69405  mihaela_cookie               0.8705129
## 95720   suicidal_mood               0.8704602
## 59626       langsuirx               0.8703750
## 38350   felipedupeixe               0.8702747
## 4050        vilamelka               0.8700460
## 84598   redrabbitmoon               0.8699108
## 62185         llittle               0.8698984
## 17955      bast-imret               0.8694709
## 23253     captain_rum               0.8694478
## 51620   jesusvillalba               0.8693335
## 36166       emwu4real               0.8692882
## 69981        minoreth               0.8688501
## 4003      viicmiranda               0.8687376
## 99172 theskunkcatcher               0.8687266
## 50098          jakubc               0.8687111
## 36945           eszra               0.8686317
## 93080         snuffix               0.8682311
## 49972         jaguuar               0.8679383
## 41154   gallegherplus               0.8679361
## 14675          ankism               0.8677110
## 75219  nightfalldeath               0.8676641
## 73794        nasaja16               0.8676338
## 77285     olivierdv13               0.8674237
## 26199    clubsilenzio               0.8668686
## 95258      stoopidity               0.8668618
## 55292       karol_fox               0.8667115
## 41666  genevievedesro               0.8664078
## 21103      boxcar_cbu               0.8661395
## 28504       dalilines               0.8660100
## 59995      lauracat93               0.8659090
## 12983   allenhigh2000               0.8656613
## 33632     drstrange22               0.8656209
## 20618        bobububo               0.8655527
## 59814 laska_z_pol-ska               0.8654211
## 65379     manatheminx               0.8653147
## 62696   lordmeatsword               0.8652334
## 53413 jovenmisterioso               0.8652236
## 19400      bigkajamma               0.8651998
## 33181   dracovolantus               0.8650023
## 56257          kerrio               0.8649797
## 12246          ale_av               0.8647592
## 23897      cause_time               0.8646511
## 80192         pgeuder               0.8644332
## 19885  blackheartbree               0.8643795
## 99350        thiagosj               0.8642219
## 96127        susemiez               0.8639924
## 25943      clamaresan               0.8638639
## 28503   dalilaboechat               0.8637908
## 5961        wind_rose               0.8636575
## 15349      appl3jelly               0.8634014
## 91741       sinefil77               0.8633590
## 79263     paulaelenah               0.8632322
## 50553     jasmin66613               0.8629461
## 64022          lyndin               0.8629383
## 80806        pioglfr2               0.8629234
## 74767  neverwherekate               0.8629103
## 21068          bouree               0.8626445
## 10278           _www_               0.8625234
## 96280         svirach               0.8622743
## 90114         servial               0.8622289
## 64660         madulaa               0.8620754
## 74583       nerdgirl1               0.8620464
## 21104        boxcodax               0.8620122
## 43462        gretchyn               0.8619937
## 77728          opsica               0.8619744
## 16028        artstorm               0.8618069
## 96871       tabbyface               0.8616015
## 44994       havoc8282               0.8615987
## 89654   secretspicy15               0.8615521
## 38605          fewald               0.8612938
## 58403         krol4ik               0.8612166
## 81665         popture               0.8611114
## 40429   fruitcakemofo               0.8609117
## 9777         -aceton-               0.8608598
## 27614   crunchyfrog31               0.8607222
## 22734       cadubione               0.8606878
## 54708       kafrancis               0.8606772
## 59819         lasonea               0.8606450
## 99539          thomvr               0.8606266
## 24553     chaschperli               0.8604337
## 12373     alessandrod               0.8602609
## 60719     leodinosaur               0.8593988
## 86012       robin-bad               0.8593836
## 2941      utilizatori               0.8593429
## 14904       annygahan               0.8593135
## 37580    f-uckfashion               0.8592573
## 47659            ieve               0.8591222
## 15051       antikrbic               0.8590381
## 12033     akutenshi13               0.8589606
## 53277       josevitor               0.8588245
## 33729         ds_mary               0.8586262
## 38448         fenring               0.8586038
## 2444          ulippka               0.8585109
## 21848 brunitxinhaleal               0.8584892
## 92112          skazia               0.8584022
## 71390        monument               0.8582606
## 97768       teh_moose               0.8582063
## 59738 larisa_shepitko               0.8581682
## 79793        peosmirr               0.8581359
## 41056      gabycancun               0.8579894
## 34106     dwittenberg               0.8579026
## 86118         rock-fm               0.8578167
## 64781   magependragon               0.8577747
## 19579  bingocrepuscle               0.8575858
## 30725  denizborulcesi               0.8574904
## 59307      ladykekeee               0.8571336
## 6548            wutya               0.8571211
## 34891   egotripping44               0.8570645
## 78307    pabloalvarez               0.8570515
## 36884          ess093               0.8569109
## 36403         eolienn               0.8568634
## 45791       hevinalle               0.8568135
## 11598      ahelixkate               0.8567974
## 94141       spolastre               0.8567763
## 13283      alvin-hang               0.8563749
## 9403         zmajchek               0.8561561
## 35434         elimmar               0.8559672
## 64801        maggotka               0.8559375
## 13582        amiegeek               0.8556841
## 24301      chach27592               0.8554462
## 94102     spittingcat               0.8553709
## 33130       dpxamarok               0.8552854
## 58539 ksenia_kundenko               0.8552225
## 68084      medieval86               0.8548970
## 44435     hallamainen               0.8547968
## 21370        breather               0.8547826
## 61180          lichit               0.8546512
## 45105     hdumbledore               0.8545709
## 18844          bequem               0.8543890
## 93879      spartah3ad               0.8542767
## 77610         onlysau               0.8542513
## 42573          gnatho               0.8541160
## 17897      base_tripp               0.8538843
## 86672   rosebud_rouge               0.8536027
## 41901       ggiannini               0.8535953
## 7773          xzisten               0.8535608
## 78895    paranoidbird               0.8535493
## 80316   philipesteiff               0.8534155
## 89083 schnattchen1973               0.8534028
## 40343   frogman_needy               0.8533580
## 39980    frauausathen               0.8533469
## 1751       tualatin14               0.8532748
## 4403         vivazwei               0.8531850
## 51924   jimmorrison71               0.8531622
## 81820  pozitivno_luda               0.8528327
## 81275           pluym               0.8522746
## 4296      virus_pedro               0.8519651
## 51487         jespomo               0.8517198
## 55648 katrin_kutepova               0.8516277
## 44739     harchibaldo               0.8516063
## 50138    jamardracken               0.8515510
## 10163         _domin_               0.8513587
## 69758           milkl               0.8512385
## 39593    forbidden667               0.8511969
## 39380          fluke_               0.8511148
## 83502    rafaelfroner               0.8510115
## 95404         striges               0.8510049
## 35154        elbarbon               0.8508627
## 88389         sapuara               0.8508538
## 88920   scarletbright               0.8508288
## 17995   bathory191919               0.8508176
## 45709        herome87               0.8507022
## 87603           saaur               0.8506837
## 14876    annita_blake               0.8506144
## 74388     nekrofelia_               0.8505925
## 33312       drbankman               0.8505908
## 37068   euronymous_pl               0.8504388
## 57716          koki4a               0.8504131
## 81016    pixievondust               0.8502970
## 59002          kyodes               0.8502574
## 61775         liperox               0.8498678
## 750    tonightstheday               0.8498356
## 62412   loldokwadratu               0.8497610
## 93159     sodium_haze               0.8497120
## 11204            aduy               0.8495589
## 11540           agu_g               0.8495290
## 61863        lisishin               0.8495200
## 51661        jexblade               0.8494850
## 98232    thanatos2380               0.8494332
## 84620       redtalula               0.8492147
## 81570         pony999               0.8491413
## 56671   kill_da_queen               0.8491407
## 45551     hennebrecht               0.8487682
## 28794     daniel-aqwa               0.8485775
## 76704  obiwankenobi73               0.8485222
## 48048  illstreetbluez               0.8484823
## 26106    clevercarrot               0.8484368
## 8752       zagadeczka               0.8483318
## 71614     morkervasen               0.8482717
## 18087          bb_128               0.8482410
## 43222    grand_denial               0.8481872
## 2758    unsteadypuppy               0.8481390
## 29580        datadata               0.8481170
## 73725    napalm-death               0.8481032
## 56040 kelikandzer1626               0.8480777
## 39579       for-w-art               0.8480568
## 36201      encore_mad               0.8480188
## 35216       electoral               0.8478739
## 96766        szumekmm               0.8478739
## 21197   bragilmassoud               0.8476972
## 38323       felasriff               0.8476894
## 1782           tuere7               0.8476781
## 76142     noshelflife               0.8474445
## 24730        chen-jie               0.8474016
## 80531     piekarz1997               0.8473991
## 34347          eartle               0.8471646
## 25054    chipchopchip               0.8467827
## 20620        boby-kun               0.8466851
## 38865       finomosec               0.8463513
## 93647    soulicitrock               0.8462476
## 16939     axeminister               0.8461729
## 5879         williamt               0.8460856
## 99358        thiarles               0.8459568
## 53592       jseppanen               0.8459499
## 47934        iksnaics               0.8459197
## 28355        daemnian               0.8458483
## 55987      keitadaigo               0.8457514
## 23506     carnizalove               0.8455901
## 22752        cafeacto               0.8455789
## 7911     yankokitanov               0.8455127
## 80222      phalanx595               0.8455103
## 2196      typicalgirl               0.8453661
## 8341         yositosi               0.8453576
## 13835   anamnetikbl3v               0.8452262
## 92866    smultronsylt               0.8452205
## 13686          amromo               0.8452066
## 59285      ladybuggin               0.8451955
## 18293    beau_de_jour               0.8451456
## 15118    antonshangin               0.8450692
## 62842       lostkaeto               0.8450260
## 2416     ukrbrutaller               0.8448753
## 34130          dydimo               0.8448398
## 24845       chezzabot               0.8447564
## 56749     killme_kate               0.8447513
## 56714   killerclown58               0.8447233
## 19827    black_sister               0.8446994
## 84196   rays-in-space               0.8446827
## 79453     pawliczenko               0.8446407
## 72436       mspaiige1               0.8445902
## 67712    mazokunomiko               0.8444733
## 90124          sesler               0.8444205
## 34045         dustx85               0.8443793
## 85778        rjdejong               0.8443409
## 12948   alla-in-music               0.8443078
## 99231     thetrousers               0.8440830
## 37998        faridab8               0.8440351
## 83620           raiat               0.8439062
## 37786         failaz2               0.8438367
## 42328        giugiu88               0.8437188
## 84669   refikcaglayan               0.8436842
## 47505     icexqueen_k               0.8435303
## 90822           shimn               0.8433768
## 62817  lost_lullabies               0.8432979
## 75621           nita_               0.8432130
## 10733 accidentalchoic               0.8431850
## 34866        eggrole1               0.8430402
## 53151       jordanf92               0.8430161
## 68346       melidagor               0.8429359
## 32811       donnaloia               0.8428339
## 58378       krki_krki               0.8427884
## 44339        haindede               0.8427358
## 63951          lverth               0.8427186
## 69169       michalz82               0.8426221
## 29591       datenkind               0.8426181
## 48024      ill_eyggro               0.8424409
## 31370      didymos234               0.8423781
## 80708      pingumusic               0.8423335
## 75672    niyamaimirin               0.8423044
## 19599         bio-tex               0.8422399
## 73797   nasedil_genio               0.8422132
## 23346      cardiolock               0.8421019
## 20316      blue-green               0.8418475
## 87207        ruscvorn               0.8414360
## 33225      dragonkite               0.8414049
## 70856           mnilu               0.8413268
## 20799     bonequinha_               0.8413208
## 43367   greenoutsider               0.8412738
## 9933          1manguy               0.8412340
## 46970    hungryzombie               0.8407700
## 18231       bearberni               0.8406797
## 93666        soulshow               0.8405037
## 48815     invert_girl               0.8403590
## 74237       necmettin               0.8401993
## 89635      seclusion3               0.8401859
## 32597      doitbetter               0.8400836
## 43848      guilakatos               0.8400512
## 68607        merduk89               0.8399397
## 99166 thesincommittee               0.8397503
## 19281      biestblut1               0.8397162
## 61551       lilyfears               0.8396597
## 77947     ostategrl08               0.8396577
## 33215     dragonfliye               0.8395940
## 98567       thebranka               0.8395724
## 21407        brelsnok               0.8393933
## 90816        shimetsu               0.8393398
## 45260    heeeeeeeeeey               0.8392379
## 96206         svaerke               0.8390389
## 71963       mr_whirly               0.8389221
## 87757   sagan-indiana               0.8388851
## 71076    mokapantages               0.8386915
## 53741        juanmasg               0.8386654
## 47152       hyzzteria               0.8386539
## 65262        malkor84               0.8384967
## 18361        beckettt               0.8381083
## 4981  wangle-mcdangle               0.8380936
## 88151      samulbusuk               0.8380834
## 53300   joshdelarocha               0.8380791
## 61216     lienonrhine               0.8380719
## 88700         satschi               0.8380410
## 6810         xblaster               0.8380171
## 73071 mycodenameissid               0.8380029
## 54072       julioenge               0.8379758
## 5495       wezarscrew               0.8379756
## 43583       grooovism               0.8377735
## 53665        jtfaster               0.8376811
## 71628     morninghalo               0.8376216
## 77370           omant               0.8375943
## 68643       merostica               0.8375887
## 30232 deathvallyqueen               0.8374823
## 8970           zebool               0.8374315
## 57794          kondri               0.8374258
## 81006       pixieguts               0.8373156
## 86468         romankr               0.8372686
## 86795 roxanamaravilla               0.8371326
## 36233  endorphin_rush               0.8371264
## 98399    the_goddess4               0.8370125
## 58267       kringle20               0.8369168
## 255           tlr1920               0.8368548
## 93256     solar_smile               0.8368166
## 38034          farzer               0.8367158
## 30437         deft-ru               0.8366567
## 10851          acotam               0.8366022
## 28028 cynic_liegelord               0.8364864
## 42592        gnlpf666               0.8363741
## 26274        coalhoof               0.8363445
## 53856 juicyjuicyjuice               0.8363337
## 74504        neoblaze               0.8362693
## 48472    indigoeyes57               0.8360975
## 66850         mashadk               0.8360656
## 79388    pauluk_dunaj               0.8360345
## 8009         yazdankm               0.8358810
## 85478        ridurand               0.8356733
## 68794 metallindustrie               0.8356015
## 75913       nokon74kk               0.8355201
## 37868       fallenlui               0.8354963
## 86533    ronaldvdstad               0.8354889
## 8138         yevetteo               0.8353607
## 62252           loach               0.8349976
## 22169        buhender               0.8349500
## 13225         alterna               0.8349065
## 58869        kvazar13               0.8348022
## 38188     fdelrosario               0.8347409
## 15052   antikrist9090               0.8341475
## 43488        gribo4ok               0.8340309
## 54490         k-ndela               0.8340063
## 96668      systema714               0.8339780
## 1140      tradycyjnie               0.8339054
## 70987   moeysplaylist               0.8338729
## 68384         mell0ww               0.8337611
## 77085         okkibox               0.8336364
## 79673      peetee1979               0.8334892
## 36178           en1m4               0.8334521
## 2319          uenzdei               0.8332688
## 75788         no_surp               0.8331291
## 48256   immolationind               0.8331071