if (!require(haven)){install.packages("haven", dependencies =TRUE)require(haven)}
Loading required package: haven
afex
Convenience functions for analyzing factorial experiments using ANOVA or mixed models. aov_ez(), aov_car(), and aov_4() allow specification of between, within (i.e., repeated-measures), or mixed (i.e., split-plot) ANOVAs for data in long format (i.e., one observation per row), automatically aggregating multiple observations per individual and cell of the design. mixed() fits mixed models using lme4::lmer() and computes p-values for all fixed effects using either Kenward-Roger or Satterthwaite approximation for degrees of freedom (LMM only), parametric bootstrap (LMMs and GLMMs), or likelihood ratio tests (LMMs and GLMMs). afex_plot() provides a high-level interface for interaction or one-way plots using ggplot2, combining raw data and model estimates.
if (!require(afex)){install.packages("afex", dependencies =TRUE)require(afex)}
Loading required package: afex
Loading required package: lme4
Loading required package: Matrix
Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':
expand, pack, unpack
************
Welcome to afex. For support visit: http://afex.singmann.science/
- Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
- Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
- 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
- NEWS: emmeans() for ANOVA models now uses model = 'multivariate' as default.
- Get and set global package options with: afex_options()
- Set orthogonal sum-to-zero contrasts globally: set_sum_contrasts()
- For example analyses see: browseVignettes("afex")
************
Attaching package: 'afex'
The following object is masked from 'package:lme4':
lmer
summarytools
summarytools provides users with functions to neatly and quickly summarize numerical and categorical data.