Preparing for data submission

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5     ✓ purrr   0.3.4
## ✓ tibble  3.1.4     ✓ dplyr   1.0.7
## ✓ tidyr   1.1.4     ✓ stringr 1.4.0
## ✓ readr   2.0.2     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr)
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
PID <- read.csv("~//Downloads/PIDinfo_long_2021-2022_Sam_autoentry_Special_Characters_Changed.csv")

GUID = read.csv("~/Downloads/Pseudo_GUIDs_6_22.csv")
GUID = GUID %>% 
  rename(PID = ID) 

# Replace blank entries for gender with "NR" (Not reported)
GUID$SEX <- sub("^$", "NR", GUID$SEX)

# We need the raw data from qualtrics which includes participant survey completion dates

# Fall 2021 Prefrosh

prefrosh_raw = read.csv("~/Downloads/Stanford Communities Project - Prefrosh 2021-2022_June 20, 2022_15.30.csv")
prefrosh = read.csv("~/Google Drive/Shared drives/Stanford Communities Project/2021-2022/MASTER/Prefrosh_survey/Fall 2021/df.prefrosh2021.csv")

# Fall 2021 Networks

networks_raw = rawDataChar <- read.csv("~/Downloads/Stanford Communities Project - Network+Trait Fall 2021_June 27, 2022_18.55.csv")
networks = read.csv("~/Google Drive/Shared drives/Stanford Communities Project/2021-2022/MASTER/Networks_survey/Fall 2021/df.trait_fa21.csv")
# De-ID the raw prefrosh data and add startdate

PID = PID %>% 
  distinct(email, .keep_all = TRUE)

prefrosh_raw = prefrosh_raw %>% 
  rename(email = RecipientEmail) %>% 
  left_join(PID, by = "email") %>% 
  select(-email) %>% 
  select(PID, StartDate) %>% 
  distinct(PID, .keep_all = TRUE)

prefrosh = prefrosh %>% 
  left_join(prefrosh_raw, by = "PID")

# Putting our start dates in the correct format requested by the NIH (m/d/y)
prefrosh$StartDate = as.POSIXct(prefrosh$StartDate, format = "%Y-%m-%d %H:%M:%OS")
prefrosh$StartDate = format(prefrosh$StartDate, "%m/%d/%Y")

# Removing any NA's dates
prefrosh = prefrosh[!is.na(prefrosh$StartDate), ]

# Joining with our GUID list

prefrosh = prefrosh %>% 
  left_join(GUID, by = "PID") %>% 
  mutate(Age = "18+")

# Removing rows with NA's
PID = PID %>% 
  distinct(email, .keep_all = TRUE)

networks_raw = networks_raw %>% 
  rename(email = RecipientEmail) %>% 
  left_join(PID, by = "email") %>% 
  select(-email) %>% 
  select(PID, StartDate) %>% 
  distinct(PID, .keep_all = TRUE)

networks = networks %>% 
  left_join(networks_raw, by = "PID")

# Putting our start dates in the correct format requested by the NIH (m/d/y)
networks$StartDate <- as.POSIXct(networks$StartDate, format = "%Y-%m-%d %H:%M:%OS")
networks$StartDate <- format(networks$StartDate, "%m/%d/%Y")

networks = networks[!is.na(networks$StartDate), ]

networks = networks %>% 
  left_join(GUID, by = "PID")

networks = networks %>% 
  mutate(Age = Age*12) %>% 
  filter(Age < 1000)

#Brief Fear of Negative Evaluation

bfnes = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, NegativeWellBeing_8, NegativeWellBeing_7)

bfnes = bfnes %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX) %>% 
  rename(bfnes_2 = NegativeWellBeing_8) %>% 
  rename(bfnes_4 = NegativeWellBeing_7) %>% 
  mutate(bfnes_score = 999)

bfnes = bfnes %>% 
  drop_na()

Perceived Stress Scale

pss = networks %>% 
  mutate(respondent = "Self") %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, respondent, PSS_1, PSS_2R, PSS_3R, PSS_4)

pss = pss %>% 
  rename(pss2 = PSS_1) %>% 
  mutate(PSS_2 = 6 - PSS_2R,
         PSS_3 = 6 - PSS_3R) %>% 
  select(-(c("PSS_2R", "PSS_3R"))) %>% 
  rename(pss4 = PSS_2) %>% 
  rename(pss5 = PSS_3) %>% 
  rename(pss10 = PSS_4) %>% 
  select(PSEUDO.GUID:pss2, pss4, pss5, pss10) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) 
  
pss = pss %>% 
  drop_na()

IRI

IRI_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, IRI_1, IRI_2, IRI_3, IRI_4, IRI_5, IRI_6, IRI_7, Empathy_8, Empathy_13, Empathy_7, Empathy_11, Empathy_9)

IRI_networks = IRI_networks %>% 
  rename(emergency_apprehension = IRI_1) %>% 
  rename(tense_emotional = IRI_2) %>% 
  rename(unfairly_pity = IRI_3) %>% 
  rename(describe_soft_hearted = IRI_4) %>%
  rename(emergencies_lose_control = IRI_5) %>%
  rename(upset_try_shoes = IRI_6) %>%
  rename(help_go_to_pieces = IRI_7) %>%
  rename(tender_feelings = Empathy_8) %>%
  rename(all_sides_disagreement = Empathy_13) %>%
  rename(protective = Empathy_7) %>%
  rename(before_criticizing = Empathy_11) %>%
  rename(other_perspective = Empathy_9) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)


# Prefrosh 

IRI_prefrosh = prefrosh %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, IRI_1, IRI_2, Empathy_7, Empathy_6.1, IRI_3, IRI_4, IRI_5, IRI_6, IRI_7, IRI_8, IRI_9, Empathy_4)

IRI_prefrosh = IRI_prefrosh %>% 
  rename(emergency_apprehension = IRI_2) %>% 
  rename(tense_emotional = IRI_4) %>% 
  rename(unfairly_pity = IRI_5) %>% 
  rename(describe_soft_hearted = IRI_6) %>%
  rename(emergencies_lose_control = IRI_7) %>%
  rename(upset_try_shoes = IRI_8) %>%
  rename(help_go_to_pieces = IRI_9) %>%
  rename(tender_feelings = IRI_1) %>%
  rename(all_sides_disagreement = Empathy_7) %>%
  rename(protective = Empathy_6.1) %>%
  rename(before_criticizing = Empathy_4) %>%
  rename(other_perspective = IRI_3) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)


# Binding 

IRI_prefrosh = IRI_prefrosh %>% 
  mutate(duplicate = ifelse((src_subject_id %in% IRI_networks$src_subject_id), "yes", "no"))

IRI_networks = IRI_networks %>% 
  mutate(duplicate = "no")

IRI = rbind(IRI_networks, IRI_prefrosh)
IRI = IRI %>% 
  filter(duplicate == "no") %>% 
  select(-(duplicate))

IRI = IRI %>% 
  drop_na()

CESD

CESD_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, CESD_1, CESD_2, NegativeWellBeing_1, CESD_3, CESD_4R, NegativeWellBeing_10, CESD_6R, CESD_7, CESD_8)

CESD_networks = CESD_networks %>% 
  rename(bothered_by_things = CESD_1) %>% 
  rename(trouble_keeping_mind = CESD_2) %>%
  rename(felt_depressed = NegativeWellBeing_1) %>%
  rename(everything_effort = CESD_3) %>%
  rename(hopeful_future = CESD_4R) %>%
  rename(fearful = NegativeWellBeing_10) %>%
  #rename(sleep_restless = CESD_5) %>%
  rename(happy = CESD_6R) %>%
  rename(felt_lonely = CESD_7) %>%
  rename(couldnt_get_going = CESD_8) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

# Prefrosh

CESD_prefrosh = prefrosh %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, CESD_1, CESD_2, NegativeWellBeing_1, CESD_3, CESD_4R, NegativeWellBeing_10, CESD_6R, CESD_7, CESD_8)

CESD_prefrosh = CESD_prefrosh %>% 
  rename(bothered_by_things = CESD_1) %>% 
  rename(trouble_keeping_mind = CESD_2) %>%
  rename(felt_depressed = NegativeWellBeing_1) %>%
  rename(everything_effort = CESD_3) %>%
  rename(hopeful_future = CESD_4R) %>%
  rename(fearful = NegativeWellBeing_10) %>%
  rename(happy = CESD_6R) %>%
  rename(felt_lonely = CESD_7) %>%
  rename(couldnt_get_going = CESD_8) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX) %>% 
  # mutate(sleep_restless = "") %>% 
  select(subjectkey:fearful, happy:couldnt_get_going)



# Binding

CESD_prefrosh = CESD_prefrosh %>% 
  mutate(duplicate = ifelse((src_subject_id %in% CESD_networks$src_subject_id), "yes", "no"))

CESD_networks = CESD_networks %>% 
  mutate(duplicate = "no")

CESD = rbind(CESD_networks, CESD_prefrosh)
CESD = CESD %>% 
  filter(duplicate == "no") %>% 
  select(-(duplicate))
  
CESD = CESD %>% 
  drop_na()

TAI

# Networks

TAI_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, TAI_1R, TAI_2, TAI_3R, TAI_4, NegativeWellBeing_3, TAI_5R, TAI_6R, TAI_7, TAI_8, TAI_9R, TAI_10, TAI_11, TAI_12R, TAI_13R, NegativeWellBeing_3.1, TAI_14R, TAI_15, TAI_16, TAI_17R, TAI_18)

TAI_networks = TAI_networks %>% 
  mutate(TAI_1 = 5 - TAI_1R) %>% 
  select(-(TAI_1R)) %>% 
  rename(stait1 = TAI_1) %>% 
  rename(stait2 = TAI_2) %>% 
  mutate(TAI_3 = 5 - TAI_3R) %>% 
  select(-(TAI_3R)) %>%
  rename(stait3 = TAI_3) %>% 
  rename(stait4 = TAI_4) %>% 
  rename(stait5 = NegativeWellBeing_3) %>% 
  mutate(TAI_5 = 5 - TAI_5R) %>% 
  select(-(TAI_5R)) %>% 
  rename(stait6 = TAI_5) %>% 
  mutate(TAI_6 = 5 - TAI_6R) %>% 
  select(-(TAI_6R)) %>%  
  rename(stait7 = TAI_6) %>% 
  rename(stait8 = TAI_7) %>% 
  rename(stait9 = TAI_8) %>% 
  mutate(TAI_9 = 5 - TAI_9R) %>% 
  select(-(TAI_9R)) %>% 
  rename(stait10 = TAI_9) %>% 
  rename(stait11 = TAI_10) %>% 
  rename(stait12 = TAI_11) %>% 
  mutate(TAI_12 = 5 - TAI_12R) %>% 
  select(-(TAI_12R)) %>% 
  rename(stait13 = TAI_12) %>% 
  mutate(TAI_13 = 5 - TAI_13R) %>% 
  select(-(TAI_13R)) %>% 
  rename(stait14 = TAI_13) %>% 
  rename(stait15 = NegativeWellBeing_3.1) %>% 
  mutate(TAI_14 = 5 - TAI_14R) %>% 
  select(-(TAI_14R)) %>% 
  rename(stait16 = TAI_14) %>% 
  rename(stait17 = TAI_15) %>% 
  rename(stait18 = TAI_16) %>% 
  mutate(TAI_17 = 5 - TAI_17R) %>% 
  select(-(TAI_17R)) %>% 
  rename(stait19 = TAI_17) %>% 
  rename(stait20 = TAI_18) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)
  


# Prefrosh

TAI_prefrosh = prefrosh %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, TAI_1R, TAI_2, TAI_3R, TAI_4, NegativeWellBeing_3, TAI_5R, TAI_6R, TAI_7, TAI_8, TAI_9R, TAI_10, TAI_11, TAI_12R, TAI_13R, NegativeWellBeing_3.1, TAI_14R, TAI_15, TAI_16, TAI_17R, TAI_18)

TAI_prefrosh = TAI_prefrosh %>% 
  mutate(TAI_1 = 5 - TAI_1R) %>% 
  select(-(TAI_1R)) %>% 
  rename(stait1 = TAI_1) %>% 
  rename(stait2 = TAI_2) %>% 
  mutate(TAI_3 = 5 - TAI_3R) %>% 
  select(-(TAI_3R)) %>%
  rename(stait3 = TAI_3) %>% 
  rename(stait4 = TAI_4) %>% 
  rename(stait5 = NegativeWellBeing_3) %>% 
  mutate(TAI_5 = 5 - TAI_5R) %>% 
  select(-(TAI_5R)) %>% 
  rename(stait6 = TAI_5) %>% 
  mutate(TAI_6 = 5 - TAI_6R) %>% 
  select(-(TAI_6R)) %>%  
  rename(stait7 = TAI_6) %>% 
  rename(stait8 = TAI_7) %>% 
  rename(stait9 = TAI_8) %>% 
  mutate(TAI_9 = 5 - TAI_9R) %>% 
  select(-(TAI_9R)) %>% 
  rename(stait10 = TAI_9) %>% 
  rename(stait11 = TAI_10) %>% 
  rename(stait12 = TAI_11) %>% 
  mutate(TAI_12 = 5 - TAI_12R) %>% 
  select(-(TAI_12R)) %>% 
  rename(stait13 = TAI_12) %>% 
  mutate(TAI_13 = 5 - TAI_13R) %>% 
  select(-(TAI_13R)) %>% 
  rename(stait14 = TAI_13) %>% 
  rename(stait15 = NegativeWellBeing_3.1) %>% 
  mutate(TAI_14 = 5 - TAI_14R) %>% 
  select(-(TAI_14R)) %>% 
  rename(stait16 = TAI_14) %>% 
  rename(stait17 = TAI_15) %>% 
  rename(stait18 = TAI_16) %>% 
  mutate(TAI_17 = 5 - TAI_17R) %>% 
  select(-(TAI_17R)) %>% 
  rename(stait19 = TAI_17) %>% 
  rename(stait20 = TAI_18) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)
  


# Binding

TAI_prefrosh = TAI_prefrosh %>% 
  mutate(duplicate = ifelse((src_subject_id %in% CESD_networks$src_subject_id), "yes", "no"))

TAI_networks = TAI_networks %>% 
  mutate(duplicate = "no")

TAI = rbind(TAI_networks, TAI_prefrosh)
TAI = TAI %>% 
  filter(duplicate == "no") %>% 
  select(-(duplicate))

TAI = TAI %>% 
  drop_na()

UCLA

UCLA_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, loneliness_1, loneliness_2, loneliness_3R, loneliness_4, loneliness_5, loneliness_6R, loneliness_8, loneliness_7)

UCLA_networks = UCLA_networks %>% 
  rename(uclals4 = loneliness_1) %>% 
  rename(uclals7 = loneliness_2) %>% 
  mutate(outgoing = 5 - loneliness_3R) %>% 
  select(-(loneliness_3R)) %>% 
  rename(uclals10 = loneliness_4) %>% 
  rename(uclals16 = loneliness_5) %>% 
  mutate(uls15 = 5 - loneliness_6R) %>% 
  select(-(loneliness_6R)) %>% 
  rename(uclals20 = loneliness_8) %>% 
  rename(uclals17 = loneliness_7) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

# Prefrosh

UCLA_prefrosh = prefrosh %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, loneliness_1, loneliness_2, loneliness_3R, loneliness_4, loneliness_5, loneliness_6R, loneliness_8, loneliness_7)

UCLA_prefrosh = UCLA_prefrosh %>% 
  rename(uclals4 = loneliness_1) %>% 
  rename(uclals7 = loneliness_2) %>% 
  mutate(outgoing = 5 - loneliness_3R) %>% 
  select(-(loneliness_3R)) %>% 
  rename(uclals10 = loneliness_4) %>% 
  rename(uclals16 = loneliness_5) %>% 
  mutate(uls15 = 5 - loneliness_6R) %>% 
  select(-(loneliness_6R)) %>% 
  rename(uclals20 = loneliness_8) %>% 
  rename(uclals17 = loneliness_7) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)


# Binding

UCLA_prefrosh = UCLA_prefrosh %>% 
  mutate(duplicate = ifelse((src_subject_id %in% UCLA_networks$src_subject_id), "yes", "no"))

UCLA_networks = UCLA_networks %>% 
  mutate(duplicate = "no")

UCLA = rbind(UCLA_networks, UCLA_prefrosh)
UCLA = UCLA %>% 
  filter(duplicate == "no") %>% 
  select(-(duplicate))

UCLA = UCLA %>% 
  drop_na()

Satisfaction with Life

# Networks

SWL_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, LifeSatisfaction_3, LifeSatisfaction_4, LifeSatisfaction_1, LifeSatisfaction_6, LifeSatisfaction_9)

SWL_networks = SWL_networks %>% 
  rename(swl1 = LifeSatisfaction_3) %>% 
  rename(swl2 = LifeSatisfaction_4) %>% 
  rename(swl3 = LifeSatisfaction_1) %>% 
  rename(swl4 = LifeSatisfaction_6) %>% 
  rename(swl5 = LifeSatisfaction_9) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

# Prefrosh

SWL_prefrosh = prefrosh %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, LifeSatisfaction_3, LifeSatisfaction_4, LifeSatisfaction_1, LifeSatisfaction_6, LifeSatisfaction_9)

SWL_prefrosh = SWL_prefrosh %>% 
  rename(swl1 = LifeSatisfaction_3) %>% 
  rename(swl2 = LifeSatisfaction_4) %>% 
  rename(swl3 = LifeSatisfaction_1) %>% 
  rename(swl4 = LifeSatisfaction_6) %>% 
  rename(swl5 = LifeSatisfaction_9) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)


# Binding

SWL_prefrosh = SWL_prefrosh %>% 
  mutate(duplicate = ifelse((src_subject_id %in% SWL_networks$src_subject_id), "yes", "no"))

SWL_networks = SWL_networks %>% 
  mutate(duplicate = "no")

SWL = rbind(SWL_networks, SWL_prefrosh)
SWL = SWL %>% 
  filter(duplicate == "no") %>% 
  select(-(duplicate))

SWL = SWL %>% 
  drop_na()

Connor Davidson Resilience Scale

# Networks

CDRS_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, CD.RISC_1, CD.RISC_2)


CDRS = CDRS_networks %>% 
  rename(cdrs1 = CD.RISC_1) %>% 
  rename(cdrs2 = CD.RISC_2) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

CDRS = CDRS %>% 
  drop_na()

Social Phobia

# Networks

SPAI_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, socialPhobia_1, socialPhobia_2, socialPhobia_3)


SPAI = SPAI_networks %>% 
  rename(sp6 = socialPhobia_1) %>% 
  rename(sp9 = socialPhobia_2) %>% 
  rename(sp15 = socialPhobia_3) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

SPAI = SPAI %>% 
  drop_na()

Need to belong

# Networks

NTB_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, NTB_single)

NTB_networks = NTB_networks %>% 
  rename(ntbs8 = NTB_single) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

# Prefrosh

NTB_prefrosh = prefrosh %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, NTB_single)

NTB_prefrosh = NTB_prefrosh %>% 
  rename(ntbs8 = NTB_single) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

# Binding

NTB_prefrosh = NTB_prefrosh %>% 
  mutate(duplicate = ifelse((src_subject_id %in% NTB_networks$src_subject_id), "yes", "no"))

NTB_networks = NTB_networks %>% 
  mutate(duplicate = "no")

NTB = rbind(NTB_networks, NTB_prefrosh)
NTB = NTB %>% 
  filter(duplicate == "no") %>% 
  select(-(duplicate))

NTB = NTB %>% 
  drop_na()

GAD

# Networks

GAD_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, GAD_1, GAD_2, GAD_3, GAD_4, GAD_5, GAD_6, GAD_7)


GAD = GAD_networks %>% 
  rename(gad7_1 = GAD_1) %>% 
  rename(gad7_2 = GAD_2) %>% 
  rename(gad7_3 = GAD_3) %>% 
  rename(gad7_4 = GAD_4) %>% 
  rename(gad7_5 = GAD_5) %>% 
  rename(gad7_6 = GAD_6) %>% 
  rename(gad7_7 = GAD_7) %>% 
  mutate(gad7_8 = 1) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

GAD = GAD %>% 
  drop_na()

PHQ

# Networks

PHQ_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, PHQ_1, PHQ_2, PHQ_3, PHQ_4, PHQ_5, PHQ_6, PHQ_7, PHQ_8, PHQ_9)

PHQ = PHQ_networks %>% 
  rename(phq9_1 = PHQ_1) %>% 
  rename(phq9_2 = PHQ_2) %>% 
  rename(phq9_3 = PHQ_3) %>% 
  rename(phq9_4 = PHQ_4) %>% 
  rename(phq9_5 = PHQ_5) %>% 
  rename(phq9_6 = PHQ_6) %>% 
  rename(phq9_7 = PHQ_7) %>% 
  rename(phq9_8 = PHQ_8) %>% 
  rename(phq9_9 = PHQ_9) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

PHQ = PHQ %>% 
  drop_na()

TIPI

# Networks

TIPI_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, TIPI_Extra, TIPI_Criti_R, TIPI_Depen, TIPI_Anx_R, TIPI_Open, TIPI_Reserv_R, TIPI_Symp, TIPI_Disorg_R, TIPI_EmoSta, TIPI_Conven_R)

TIPI_networks = TIPI_networks %>% 
  rename(extravertenthusiastic = TIPI_Extra) %>% 
  rename(quarrelsome = TIPI_Criti_R) %>% 
  rename(dependable = TIPI_Depen) %>%
  rename(anxiouseasyupset = TIPI_Anx_R) %>% 
  rename(opentonewexperiences = TIPI_Open) %>% 
  rename(reservedquiet = TIPI_Reserv_R) %>% 
  rename(sympatheticwarm = TIPI_Symp) %>% 
  rename(disorganizedcareless = TIPI_Disorg_R) %>% 
  rename(calmemostable = TIPI_EmoSta) %>% 
  rename(uncreative = TIPI_Conven_R) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

# Prefrosh

TIPI_prefrosh = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, TIPI_Extra, TIPI_Criti_R, TIPI_Depen, TIPI_Anx_R, TIPI_Open, TIPI_Reserv_R, TIPI_Symp, TIPI_Disorg_R, TIPI_EmoSta, TIPI_Conven_R)

TIPI_prefrosh = TIPI_prefrosh %>% 
  rename(extravertenthusiastic = TIPI_Extra) %>% 
  rename(quarrelsome = TIPI_Criti_R) %>% 
  rename(dependable = TIPI_Depen) %>%
  rename(anxiouseasyupset = TIPI_Anx_R) %>% 
  rename(opentonewexperiences = TIPI_Open) %>% 
  rename(reservedquiet = TIPI_Reserv_R) %>% 
  rename(sympatheticwarm = TIPI_Symp) %>% 
  rename(disorganizedcareless = TIPI_Disorg_R) %>% 
  rename(calmemostable = TIPI_EmoSta) %>% 
  rename(uncreative = TIPI_Conven_R) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)

# Binding

TIPI_prefrosh = TIPI_prefrosh %>% 
  mutate(duplicate = ifelse((src_subject_id %in% TIPI_networks$src_subject_id), "yes", "no"))

TIPI_networks = TIPI_networks %>% 
  mutate(duplicate = "no")

TIPI = rbind(TIPI_networks, TIPI_prefrosh)
TIPI = TIPI %>% 
  filter(duplicate == "no") %>% 
  select(-(duplicate))

TIPI = TIPI %>% 
  drop_na()

Self Compassion

# Networks

scomp_networks = networks %>% 
  select(PSEUDO.GUID, PID, StartDate, Age, SEX, selfComp_1, selfComp_2, selfComp_3R, selfComp_4R, selfComp_5, selfComp_6R)

selfcom01 = scomp_networks %>% 
  rename(scs_q14_bls = selfComp_1) %>% 
  rename(scs_q12_bls = selfComp_2) %>% 
  rename(scs_q25_bls = selfComp_3R) %>% 
  rename(scs_q2_bls = selfComp_4R) %>% 
  rename(scs_q10_bls = selfComp_5) %>% 
  rename(scs_q1_bls = selfComp_6R) %>% 
  rename(subjectkey = PSEUDO.GUID) %>% 
  rename(src_subject_id = PID) %>% 
  rename(interview_date = StartDate) %>% 
  rename(interview_age = Age) %>% 
  rename(sex = SEX)


selfcom01 = selfcom01 %>% 
  drop_na()

Submission Test

Delete all rows with NA values

Delete rows with ages above 1500