1 Brief explanation

Every boxplot means a monitoring point (Ponto de monitoramento (or PM) in portuguese). My goal here is to analyze the evolution between decades of each water quality parameter that compounds the Water Quality Index (WQI).

The river flows in the east-west direction as shown in the image below.

The logic behind the sorting in the boxplots is because of 2 main reasons:

  1. The original monitoring point isn’t easy to understand (8 digits, like 87409900)
  2. Changing the original nomenclature to PM1, PM2 (…) makes it easier to understand that the last point has water contributions of every other point upstream.

Some features that I want to add:

  • If the parameter is x, then use x’s classes (with its own classes background color plotted)

  • Define the timescale, should act just like a filter

# plan_wide_19902020 %>%
#   filter(ano_coleta > "1990" &
#          ano_coleta <= "2000")

2 Anotações de coisas por fazer:

  • Descobrir como colocar as estações no sentido correto montante -> jusante nos sumários

87398500, 87398980, 87398900, 87398950, 87405500, 87406900, 87409900

  • Aprender a segmentar o meu dataset por períodos
  • aprender a criar uma nova coluna com a segmentação dos períodos
  • maybe use ~facet.grid
  • aprender a colocar a legenda dentro do gráfico
    • reduzir o tamanho da legenda
  • corrigir os valores 0 de IQA pra NA
  • descobrir como conseguir a equação do lm
  • aprender a pivotar o sumário -> meu sumário do google docs ta batendo direitinho com o do R
  • descobrir se há outros TCCs com disponibilização de códigos
  • Namon tá com com casa decimal "," e ptot tá com "."
  • correlação forte entre condutividade e Namon/Ptot/DBO
1990-2000 2000-2010 2010-2020
1990-2000 2000-2010 2010-2020

3 Instalar os pacotes

# install.packages(tidyverse)

3.1 acessar os pacotes

pacman::p_load(readr, rmarkdown, readxl, janitor,
               pillar, dplyr, tidyverse,
               knitr, kableExtra, see,
               gridExtra, #modelsummary, 
               gtsummary, ggplot2,
               ggbeeswarm, GGally, ggtext, cowplot,
               report)
# pacman::p_load(tibbletime)
# cite_packages()
knitr::knit_hooks$set(time_it = local({
   now <- NULL
   function(before, options) {
      if (before) {
         # record the current time before each chunk
         now <<- Sys.time()
      } else {
         # calculate the time difference after a chunk
         res <- difftime(Sys.time(), now)
         # return a character string to show the time
         paste("Tempo para esse code chunk ser rodado:", round(res, digits = 2), "s")
      }
   }
}))

knitr::opts_chunk$set(time_it = TRUE)

3.1.1 referenciando os pacotes

version$version.string
## [1] "R version 4.2.2 (2022-10-31 ucrt)"
# citation(package = "tidyverse")

Tempo para esse code chunk ser rodado: 0.01 s

3.2 importando a planilha

Tempo para esse code chunk ser rodado: 0.97 s

Tempo para esse code chunk ser rodado: 0.48 s

4 data wrangling

Como há dados faltantes, no cálculo entre o produto das colunas, o R acaba interpretando como se fosse zero, mas na verdade é NA.

plan_wide_19902020 <- plan_wide_19902020 %>% 
   mutate(iqa = ifelse(iqa == 0, NA, iqa))

parametros_IQA <- plan_wide_19902020 %>%
  select(
    codigo,
    ponto_monitoramento,
    pH,
    oxigenio_dissolvido,
    dbo,
    fosforo_total,
    escherichia_coli,
    nitrogenio_amoniacal,
    nitrogenio_kjeldahl,
    nitrogenio_total,
    turbidez,
    temperatura_agua,
    solidos_totais,
    condutividade,
    ano_coleta
  )

write.csv(parametros_IQA,
          "./parametros_IQA.csv",
          row.names = FALSE)

Tempo para esse code chunk ser rodado: 0.16 s

5 setting theme

theme_grafs <- function(bg = "white", 
                        coloracao_letra = "black"){
  theme(
    plot.title = 
      element_text(
        hjust = 0.5,
        color = coloracao_letra,
        size = 19),
    
    axis.title.x = 
      # element_text(
      # color = coloracao_letra,
      # size = 15,
      # angle = 0,),
      element_blank(),
    axis.title.y = element_text(
      color = coloracao_letra,
      size = 15,
      angle = 90),
    
    axis.text.x = element_text(
      color = coloracao_letra,
      size = 17),
    axis.text.y = element_text(
      color = coloracao_letra,
      size = 17,
      angle = 0),
    
    strip.background = element_rect(fill = bg,
                                    linetype = 1,
                                    size = 0.5,
                                    color = "black"),
    strip.text = element_text(size = 17),
    panel.background = element_rect(fill = bg),
    plot.background = element_rect(fill = bg),
    plot.margin = margin(l = 5, r = 10,
                         b = 5, t = 5)
  )
}

Tempo para esse code chunk ser rodado: 0.01 s

6 setting different timescales

plan_wide_19902020 <- plan_wide_19902020 %>% 
  mutate(
    periodo = if_else(
      ano_coleta <= 2000, 
      "1990-2000",
      if_else(
        ano_coleta <= 2010,
        "2000-2010",
        "2010-2020"
      )
    )
  )

Tempo para esse code chunk ser rodado: 0.01 s

7 setting sumaries

Tempo para esse code chunk ser rodado: 0 s

8 Funções

8.1 criando função para gerar boxplots com percentil 20 e 80

f <- function(x) {
  r <- quantile(x, probs = c(0.05, 0.20, 0.50, 0.80, 0.95))
  names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
  return(r)
}

Tempo para esse code chunk ser rodado: 0 s

8.2 Oxigênio Dissolvido

Tempo para esse code chunk ser rodado: 0.01 s

8.3 DBO

Tempo para esse code chunk ser rodado: 0.01 s

8.4 Ptot

Tempo para esse code chunk ser rodado: 0.01 s

8.5 E coli

Tempo para esse code chunk ser rodado: 0.01 s

8.6 Nitrogênio Amoniacal

Tempo para esse code chunk ser rodado: 0.01 s

8.7 Turbidez

Tempo para esse code chunk ser rodado: 0 s

8.8 pH

Tempo para esse code chunk ser rodado: 0.01 s

8.9 Sólidos Totais

Tempo para esse code chunk ser rodado: 0.01 s

8.10 Condutividade

Tempo para esse code chunk ser rodado: 0.01 s

9 Parâmetros físico-químicos

9.0.1 Oxigênio Dissolvido

Oxigênio Dissolvido no período 1990-2020Tempo para esse code chunk ser rodado: 3.68 s

Oxigênio Dissolvido no período 1990-2000Tempo para esse code chunk ser rodado: 1.02 s

Tempo para esse code chunk ser rodado: 1.06 s

Tempo para esse code chunk ser rodado: 0.89 s

ggsave("od.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = od,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("od_p1.png",
       plot = od_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("od_p2.png",
       plot = od_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("od_p3.png",
       plot = od_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 7.05 s

Tempo para esse code chunk ser rodado: 1.28 s

Tempo para esse code chunk ser rodado: 1.53 s

Tempo para esse code chunk ser rodado: 1.29 s

## # A tibble: 9 × 8
##   par       PM1    PM2   PM3   PM4    PM5   PM6    PM7
##   <chr>   <dbl>  <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl>
## 1 max     10.8   10.5  10.3  12.1  19.9   10.2  11.1  
## 2 p95      9.24   9.8   9.16  9.56  8.92   6.45  8.38 
## 3 p80      7.76   8.3   7.52  8.42  6.2    5.5   5.7  
## 4 median   6.4    6.9   5.95  6.3   4.2    2.6   2.9  
## 5 mean     5.99   6.78  5.98  7.01  4.22   2.98  3.60 
## 6 p20      3.84   5.2   4.3   5.72  0.760  0.2   0.8  
## 7 p05      2      4.3   3.14  4.94  0.28   0.1   0.128
## 8 min      0.8    2     2.5   4.2   0.1    0.1   0.1  
## 9 n      101    101    68    30    97     32    65
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500   0.4   3.5   4.9   5.01  6.65  10.9
## 2 87398900   1.9   4     5.5   5.33  6.6   12  
## 3 87398950   1.7   3.2   5.3   5.06  6.18   8.9
## 4 87398980   1.2   3.8   5.6   5.38  6.6    9.2
## 5 87405500   0.2   1.4   2.55  3.28  4     14.2
## 6 87406900   0     1.1   1.9   2.59  3.15  16  
## 7 87409900   0     0.7   2.3   3.12  3.7   10.6
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500  0.38 3.11    4.41  4.57  6.2   12.4
## 2 87398900  3.52 5.25    5.96  6.61  7.3   13.8
## 3 87398950  1.62 3.68    4.92  5.28  6.64  11.9
## 4 87398980  3.37 5.5     6.17  6.48  7.14  13.1
## 5 87405500  0.2  1.3     2.53  2.83  3.66   9.8
## 6 87406900  0.1  0.865   2.4   2.43  3.05   9.1
## 7 87409900  0.1  0.92    2.03  2.43  3.5    8.1

Tempo para esse code chunk ser rodado: 0.7 s

9.0.2 Demanda Bioquímica de Oxigênio

(dbo <- ggplot(plan_wide_19902020,
               aes(x = codigo,
                   y = dbo))+
   annotate("rect",
            xmin=-Inf,
            xmax=Inf,
            ymin=10,
            ymax=Inf,
            alpha=1,
            fill="#ac5079")+ #>pior classe
   annotate("rect",
            xmin=-Inf,
            xmax=Inf,
            ymin=5,
            ymax=10,
            alpha=1,
            fill="#fcf7ab")+ #classe 3
   annotate("rect",
            xmin=-Inf,
            xmax=Inf,
            ymin=3,
            ymax=5,
            alpha=1,
            fill="#70c18c")+ #classe 2
   annotate("rect",
            xmin=-Inf,
            xmax=Inf,
            ymin=0,
            ymax=3,
            alpha=1,
            fill="#8dcdeb")+ #classe 1
   stat_summary(
     fun.data = f,
     geom = 'errorbar',
     width = 0.3,
     position = position_dodge(width = 0.65),
   )+
   stat_summary(
     fun.data = f,
     geom = "boxplot",
     width = 0.7,
     fill = '#F8F8FF',
     color = "black",
     outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
   )+
   facet_wrap(~periodo)+
   labs(title = "Demanda Bioquímica de Oxigênio no período 1990-2020",
        x="Estação",
        y="mg/L",
        # caption = "Leonardo Fernandes Wink"
        )+
   ggbeeswarm::geom_quasirandom(
     size = 1.2,
     alpha = .25,
     width = .07,
   )+
   scale_x_discrete(limits = c("87398500", 
                               "87398980", 
                               "87398900", 
                               "87398950", 
                               "87405500", 
                               "87406900", 
                               "87409900"),
                    labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
   )+
   scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
                      n.breaks = 8,
                      limits = c(1,100),
                      trans = "log10")+
   geom_smooth(method = "lm",
               se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
               aes(group=1),
               alpha=.5,
               na.rm = TRUE,
               size = 1)+
   theme_grafs()
)
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 60 rows containing non-finite values (`stat_summary()`).
## Removed 60 rows containing non-finite values (`stat_summary()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 22 rows containing missing values.
## Warning: Removed 30 rows containing missing values.
## Warning: Removed 8 rows containing missing values.

Demanda Bioquímica de Oxigênio no período 1990-2020Tempo para esse code chunk ser rodado: 2.07 s

Tempo para esse code chunk ser rodado: 1.04 s

Tempo para esse code chunk ser rodado: 0.99 s

Tempo para esse code chunk ser rodado: 0.93 s

Tempo para esse code chunk ser rodado: 1.12 s

Tempo para esse code chunk ser rodado: 0.92 s

Tempo para esse code chunk ser rodado: 0.84 s

(sum_dbo_p1 <- plan_wide_19902020 %>%
   select(codigo, dbo, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(dbo, 
           na.rm = TRUE),
     q1 = 
       quantile(dbo, 0.25, 
                na.rm = TRUE),
     median = 
       median(dbo, 
              na.rm = TRUE),
     mean = 
       mean(dbo, 
            na.rm= TRUE),
     q3 = 
       quantile(dbo, 0.75, 
                na.rm = TRUE),
     max = 
       max(dbo, 
           na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500     1     1      2  1.86   2      13
## 2 87398900     1     1      1  1.52   2       6
## 3 87398950     1     1      1  1.66   2       6
## 4 87398980     1     1      1  1.13   1       2
## 5 87405500     1     2      3  5.37   5      64
## 6 87406900     1     4      5  9     11      26
## 7 87409900     2     3      4  6.97   9.5    31
(sum_dbo_p2 <- plan_wide_19902020 %>%
    select(codigo, dbo, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(dbo, 
            na.rm = TRUE),
      q1 = 
        quantile(dbo, 0.25, 
                 na.rm = TRUE),
      median = 
        median(dbo, 
               na.rm = TRUE),
      mean = 
        mean(dbo, 
             na.rm= TRUE),
      q3 = 
        quantile(dbo, 0.75, 
                 na.rm = TRUE),
      max = 
        max(dbo, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500     1     1      1  1.58   2       5
## 2 87398900     1     1      1  1.40   2       5
## 3 87398950     1     1      1  1.66   2       5
## 4 87398980     1     1      1  1.30   1       5
## 5 87405500     1     2      4  4.67   6.5    14
## 6 87406900     1     3      5  6.53   8      28
## 7 87409900     1     3      6  6.31   9      15
(sum_dbo_p3 <- plan_wide_19902020 %>%
    select(codigo, dbo, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(dbo, 
            na.rm = TRUE),
      q1 = 
        quantile(dbo, 0.25, 
                 na.rm = TRUE),
      median = 
        median(dbo, 
               na.rm = TRUE),
      mean = 
        mean(dbo, 
             na.rm= TRUE),
      q3 = 
        quantile(dbo, 0.75, 
                 na.rm = TRUE),
      max = 
        max(dbo, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500     1     1    1.5  2.15  3        7
## 2 87398900     1     1    1    1.51  2        5
## 3 87398950     1     1    2    2.65  2       18
## 4 87398980     1     1    1    1.32  2        2
## 5 87405500     1     3    4    5.28  6.25    21
## 6 87406900     1     3    5    6.58 10       24
## 7 87409900     1     3    4.5  6.18  8       18

Tempo para esse code chunk ser rodado: 0.34 s

ggsave("dbo.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = dbo,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("dbo_p1.png",
       plot = dbo_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("dbo_p2.png",
       plot = dbo_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("dbo_p3.png",
       plot = dbo_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 5.78 s

9.0.3 Fósforo total

(ptot <- ggplot(plan_wide_19902020,
                aes(codigo,
                    fosforo_total))+
   annotate("rect",
            xmin=-Inf,
            xmax=Inf,
            ymin=0.15,
            ymax=Inf,
            alpha=1,
            fill="#ac5079")+ #>pior classe
   annotate("rect",
            xmin=-Inf,
            xmax=Inf,
            ymin=0.1,
            ymax=0.15,
            alpha=1,
            fill="#fcf7ab")+ #classe 3
   annotate("rect",
            xmin=-Inf,
            xmax=Inf,
            ymin=0,
            ymax=0.1,
            alpha=1,
            fill="#8dcdeb")+ #classe 1
  stat_summary(
     fun.data = f,
     geom = 'errorbar',
     width = 0.3,
     position = position_dodge(width = 0.65),
   )+
   stat_summary(
     fun.data = f,
     geom = "boxplot",
     width = 0.7,
     fill = '#F8F8FF',
     color = "black",
     outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
   )+
  facet_wrap(~periodo)+
    labs(title = "Fósforo total no período 1990-2020",
         x="Estação",
         y="mg/L")+
   scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
                      n.breaks = 8,
                      limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
                                 max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
                      trans = "log10",
                      labels = scales::number_format(accuracy = .001,
                                                     decimal.mark = ",",
                                                     big.mark = " ")
                      )+
    ggbeeswarm::geom_quasirandom(
       size = 1.2,
       alpha = .25,
       width = .07,
    )+
    scale_x_discrete(limits = c("87398500", 
                                "87398980", 
                                "87398900", 
                                "87398950", 
                                "87405500", 
                                "87406900", 
                                "87409900"),
                     labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
    )+
    geom_smooth(method = "lm",
                se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
                aes(group=1),
                alpha=.5,
                na.rm = TRUE,
                size = 1)+
    theme_grafs()
)
## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 134 rows containing non-finite values (`stat_summary()`).
## Removed 134 rows containing non-finite values (`stat_summary()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 47 rows containing missing values.
## Warning: Removed 31 rows containing missing values.
## Warning: Removed 56 rows containing missing values.

Fósforo total no período 1990-2020Tempo para esse code chunk ser rodado: 2.04 s

(ptot_p1<-ggplot(plan_wide_19902020%>% 
                   filter(ano_coleta>"1990" &
                             ano_coleta<="2000"),
                 aes(codigo,
                     fosforo_total))+
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0.15,
             ymax=Inf,
             alpha=1,
             fill="#ac5079")+ #>pior classe
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0.1,
             ymax=0.15,
             alpha=1,
             fill="#fcf7ab")+ #classe 3
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0,
             ymax=0.1,
             alpha=1,
             fill="#8dcdeb")+ #classe 1
    stat_boxplot(geom = 'errorbar',
                 width=0.3,
                 position = position_dodge(width = 0.65))+
    geom_boxplot(fill='#F8F8FF',
                 color="black",
                 outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
                 width= 0.7)+
    labs(title = "Fósforo total no período 1990-2000",
         x="Estação",
         y="mg/L")+
    ggbeeswarm::geom_quasirandom(
       size = 1.2,
       alpha = .25,
       width = .07,
    )+
    scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
                       n.breaks = 8,
                       limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
                                  max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
                       trans = "log10")+
    scale_x_discrete(limits = c("87398500", 
                                "87398980", 
                                "87398900", 
                                "87398950", 
                                "87405500", 
                                "87406900", 
                                "87409900"),
                     labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
    )+
    geom_smooth(method = "lm",
                se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
                aes(group=1),
                alpha=.5,
                na.rm = TRUE,
                size = 1)+
    theme_grafs()
)

Tempo para esse code chunk ser rodado: 1.04 s

(ptot_p2 <- ggplot(plan_wide_19902020%>% 
                      filter(ano_coleta>"2000" &
                                ano_coleta<="2010"),
                   aes(codigo,
                       fosforo_total))+
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0.15,
             ymax=Inf,
             alpha=1,
             fill="#ac5079")+ #>pior classe
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0.1,
             ymax=0.15,
             alpha=1,
             fill="#fcf7ab")+ #classe 3
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0,
             ymax=0.1,
             alpha=1,
             fill="#8dcdeb")+ #classe 1
    stat_boxplot(geom = 'errorbar',
                 width=0.3,
                 position = position_dodge(width = 0.65))+
    geom_boxplot(fill='#F8F8FF',
                 color="black",
                 outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
                 width= 0.7)+
    labs(title = "Fósforo total no período 2000-2010",
         x="Estação",
         y="mg/L")+
   scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
                      n.breaks = 8,
                      limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
                                 max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
                      trans = "log10")+
    ggbeeswarm::geom_quasirandom(
       size = 1.2,
       alpha = .25,
       width = .07,
    )+
    scale_x_discrete(limits = c("87398500", 
                                "87398980", 
                                "87398900", 
                                "87398950", 
                                "87405500", 
                                "87406900", 
                                "87409900"),
                     labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
    )+
    geom_smooth(method = "lm",
                se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
                aes(group=1),
                alpha=.5,
                na.rm = TRUE,
                size = 1)+
    theme_grafs()
)

Tempo para esse code chunk ser rodado: 1.21 s

(ptot_p3 <- ggplot(plan_wide_19902020%>% 
                      filter(ano_coleta>"2010" &
                                ano_coleta<="2020"),
                   aes(codigo,
                       fosforo_total))+
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0.15,
             ymax=Inf,
             alpha=1,
             fill="#ac5079")+ #>pior classe
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0.1,
             ymax=0.15,
             alpha=1,
             fill="#fcf7ab")+ #classe 3
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0,
             ymax=0.1,
             alpha=1,
             fill="#8dcdeb")+ #classe 1
    stat_boxplot(geom = 'errorbar',
                 width=0.3,
                 position = position_dodge(width = 0.65))+
    geom_boxplot(fill='#F8F8FF',
                 color="black",
                 outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
                 width= 0.7)+
    labs(title = "Fósforo total no período 2010-2020",
         x="Estação",
         y="mg/L")+
    scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
                       n.breaks = 8,
                       limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
                                  max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
                       trans = "log10")+
   ggbeeswarm::geom_quasirandom(
     size = 1.2,
     alpha = .25,
     width = .07,
   )+
   scale_x_discrete(limits = c("87398500", 
                               "87398980", 
                               "87398900", 
                               "87398950", 
                               "87405500", 
                               "87406900", 
                               "87409900"),
                    labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
   )+
    geom_smooth(method = "lm",
                se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
                aes(group=1),
                alpha=.5,
                na.rm = TRUE,
                size = 1)+
    theme_grafs()
)

Tempo para esse code chunk ser rodado: 1.1 s

(sum_ptot_p1 <- plan_wide_19902020 %>%
    select(codigo, fosforo_total, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(fosforo_total, na.rm = TRUE),
     q1 = 
       quantile(fosforo_total, 0.25, na.rm = TRUE),
     median = 
       median(fosforo_total, na.rm = TRUE),
     mean = 
       mean(fosforo_total, na.rm= TRUE),
     q3 = 
       quantile(fosforo_total, 0.75, na.rm = TRUE),
     max = 
       max(fosforo_total, na.rm = TRUE)))
## # A tibble: 7 × 7
##   codigo      min     q1 median   mean     q3   max
##   <chr>     <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl>
## 1 87398500 0.0097 0.0593 0.0881 0.123  0.14   0.863
## 2 87398900 0.0023 0.0468 0.0678 0.0747 0.0883 0.247
## 3 87398950 0.0202 0.0544 0.0737 0.0751 0.0904 0.179
## 4 87398980 0.01   0.0254 0.0547 0.0708 0.114  0.189
## 5 87405500 0.017  0.171  0.281  0.417  0.492  2.32 
## 6 87406900 0.156  0.270  0.508  0.785  1.07   2.79 
## 7 87409900 0.107  0.258  0.384  0.489  0.712  1.53
(sum_ptot_p2 <- plan_wide_19902020 %>%
    select(codigo, fosforo_total, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(fosforo_total, na.rm = TRUE),
      q1 = 
        quantile(fosforo_total, 0.25, na.rm = TRUE),
      median = 
        median(fosforo_total, na.rm = TRUE),
      mean = 
        mean(fosforo_total, na.rm= TRUE),
      q3 = 
        quantile(fosforo_total, 0.75, na.rm = TRUE),
      max = 
        max(fosforo_total, na.rm = TRUE)))
## # A tibble: 7 × 7
##   codigo      min     q1 median  mean    q3   max
##   <chr>     <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.025  0.094   0.131 0.148 0.16  0.637
## 2 87398900 0.015  0.0764  0.104 0.140 0.164 0.646
## 3 87398950 0.036  0.116   0.171 0.180 0.207 0.485
## 4 87398980 0.0115 0.052   0.076 0.101 0.103 1    
## 5 87405500 0.046  0.261   0.406 0.547 0.681 1.98 
## 6 87406900 0.056  0.338   0.599 0.752 0.967 3.49 
## 7 87409900 0.043  0.325   0.624 0.677 0.989 1.57
(sum_ptot_p3 <- plan_wide_19902020 %>%
    select(codigo, fosforo_total, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(fosforo_total, na.rm = TRUE),
      q1 = 
        quantile(fosforo_total, 0.25, na.rm = TRUE),
      median = 
        median(fosforo_total, na.rm = TRUE),
      mean = 
        mean(fosforo_total, na.rm= TRUE),
      q3 = 
        quantile(fosforo_total, 0.75, na.rm = TRUE),
      max = 
        max(fosforo_total, na.rm = TRUE)))
## # A tibble: 7 × 7
##   codigo     min     q1 median  mean    q3   max
##   <chr>    <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.061 0.118   0.163 0.166 0.186 0.381
## 2 87398900 0.057 0.0935  0.130 0.163 0.168 0.444
## 3 87398950 0.07  0.132   0.156 0.292 0.221 3.11 
## 4 87398980 0.019 0.0625  0.106 0.144 0.170 0.59 
## 5 87405500 0.013 0.187   0.332 0.361 0.45  0.803
## 6 87406900 0.089 0.254   0.364 0.448 0.560 1.26 
## 7 87409900 0.203 0.259   0.369 0.488 0.564 1.7

Tempo para esse code chunk ser rodado: 0.61 s

ggsave("ptot.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = ptot,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("ptot_p1.png",
       plot = ptot_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("ptot_p2.png",
       plot = ptot_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("ptot_p3.png",
       plot = ptot_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 5.63 s

9.0.4 Escherichia coli

(ecoli <- boxplot_ecoli(
  titulo = "*Escherichia coli* no período 1990-2020"
)+
  facet_wrap(~periodo)
)

Escherichia-coli-gravataí no período 1990-2020

(ecoli <- ggplot(plan_wide_19902020,
                 aes(codigo,
                     escherichia_coli))+
   annotate("rect",
            xmin=-Inf, xmax=Inf,
            ymin=3200, ymax=Inf,
            alpha=1,
            fill="#ac5079")+ #>pior classe
   annotate("rect",
            xmin=-Inf, xmax=Inf,
            ymin=800, ymax=3200,
            alpha=1,
            fill="#fcf7ab")+ #classe 3
   annotate("rect",
            xmin=-Inf, xmax=Inf,
            ymin=160, ymax=800,
            alpha=1,
            fill="#70c18c")+ #classe 2
   annotate("rect",
            xmin=-Inf, xmax=Inf,
            ymin=0, ymax=160,
            alpha=1,
            fill="#8dcdeb")+ #classe 1
   stat_summary(
     fun.data = f,
     geom = 'errorbar',
     width = 0.3,
     position = position_dodge(width = 0.65),
   )+
   stat_summary(
     fun.data = f,
     geom = "boxplot",
     width = 0.7,
     fill = '#F8F8FF',
     color = "black",
     outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
   )+
   facet_wrap(~periodo)+
   labs(title = "*Escherichia coli* no período 1990-2020",
        x="Estação",
        y="NMP/100mL")+
   scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
                      # n.breaks = 9,
                      n.breaks = 6,
                      limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
                                 max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
                      trans = "log10",
                      labels = scales::number_format(accuracy = 1,
                                                     decimal.mark = ",",
                                                     big.mark = " "))+
   ggbeeswarm::geom_quasirandom(
     size = 1.2,
     alpha = .25,
     width = .07,
   )+
   scale_x_discrete(limits = c("87398500", 
                               "87398980", 
                               "87398900", 
                               "87398950", 
                               "87405500", 
                               "87406900", 
                               "87409900"),
                    labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
   )+
   geom_smooth(method = "lm",
               se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
               aes(group=1),
               alpha=.5,
               na.rm = TRUE,
               size = 1)+
   theme_grafs()+
    theme(
        axis.text.y = element_text(
          angle = 90, 
          # size=15,
          # face=2
        ),
        plot.title = 
          element_markdown(
            hjust = 0.5,
            color = "black",
            size = 19)
    )
)

Escherichia-coli-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 4.16 s

(ecoli_p1 <- ggplot(plan_wide_19902020 %>% 
                       filter(ano_coleta>"1990" &
                                 ano_coleta<="2000"),
                    aes(codigo,
                        escherichia_coli))+
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=3200,
             ymax=Inf,
             alpha=1,
             fill="#ac5079")+ #>pior classe
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=800,
             ymax=3200,
             alpha=1,
             fill="#fcf7ab")+ #classe 3
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=160,
             ymax=800,
             alpha=1,
             fill="#70c18c")+ #classe 2
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0,
             ymax=160,
             alpha=1,
             fill="#8dcdeb")+ #classe 1
    stat_boxplot(geom = 'errorbar',
                 width=0.3,
                 position = position_dodge(width = 0.65))+
    geom_boxplot(fill='#F8F8FF',
                 color="black",
                 outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
                 width= 0.7)+
    labs(title = "Escherichia coli no período 1990-2000",
         x="Estação",
         y="NMP/100mL")+
   scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
                      n.breaks = 9,
                      limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
                                 max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
                      trans = "log10",
                      labels = scales::number_format(accuracy = 1,
                                                     decimal.mark = ",",
                                                     big.mark = " "))+
    ggbeeswarm::geom_quasirandom(
       size = 1.2,
       alpha = .25,
       width = .07,
    )+
    scale_x_discrete(limits = c("87398500", 
                                "87398980", 
                                "87398900", 
                                "87398950", 
                                "87405500", 
                                "87406900", 
                                "87409900"),
                     labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
    )+
    geom_smooth(method = "lm",
                se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
                aes(group=1),
                alpha=.5,
                na.rm = TRUE,
                size = 1)+
    theme_grafs()
)

Tempo para esse code chunk ser rodado: 1.07 s

(ecoli_p2 <- ggplot(plan_wide_19902020 %>% 
                       filter(ano_coleta>"2000" &
                                 ano_coleta<="2010"),
                    aes(codigo,
                        escherichia_coli))+
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=3200,
             ymax=Inf,
             alpha=1,
             fill="#ac5079")+ #>pior classe
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=800,
             ymax=3200,
             alpha=1,
             fill="#fcf7ab")+ #classe 3
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=160,
             ymax=800,
             alpha=1,
             fill="#70c18c")+ #classe 2
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0,
             ymax=160,
             alpha=1,
             fill="#8dcdeb")+ #classe 1
    stat_boxplot(geom = 'errorbar',
                 width=0.3,
                 position = position_dodge(width = 0.65))+
    geom_boxplot(fill='#F8F8FF',
                 color="black",
                 outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
                 width= 0.7)+
    labs(title = "Escherichia coli no período 2000-2010",
         x="Estação",
         y="NMP/100mL")+
    scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
                       n.breaks = 9,
                       limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
                                  max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
                       trans = "log10",
                       labels = scales::number_format(accuracy = 1,
                                                      decimal.mark = ",",
                                                      big.mark = " "))+
   ggbeeswarm::geom_quasirandom(
     size = 1.2,
     alpha = .25,
     width = .07,
   )+
   scale_x_discrete(limits = c("87398500", 
                               "87398980", 
                               "87398900", 
                               "87398950", 
                               "87405500", 
                               "87406900", 
                               "87409900"),
                    labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
   )+
    geom_smooth(method = "lm",
                se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
                aes(group=1),
                alpha=.5,
                na.rm = TRUE,
                size = 1)+
    theme_grafs()
)

Tempo para esse code chunk ser rodado: 1.01 s

(ecoli_p3 <- ggplot(plan_wide_19902020 %>% 
                       filter(ano_coleta>"2010" &
                                 ano_coleta<="2020"),
                    aes(codigo,
                        escherichia_coli))+
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=3200,
             ymax=Inf,
             alpha=1,
             fill="#ac5079")+ #>pior classe
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=800,
             ymax=3200,
             alpha=1,
             fill="#fcf7ab")+ #classe 3
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=160,
             ymax=800,
             alpha=1,
             fill="#70c18c")+ #classe 2
    annotate("rect",
             xmin=-Inf,
             xmax=Inf,
             ymin=0,
             ymax=160,
             alpha=1,
             fill="#8dcdeb")+ #classe 1
    stat_boxplot(geom = 'errorbar',
                 width=0.3,
                 position = position_dodge(width = 0.65))+
    geom_boxplot(fill='#F8F8FF',
                 color="black",
                 outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
                 width= 0.7)+
    labs(title = "Escherichia coli no período 2010-2020",
         x="Estação",
         y="NMP/100mL")+
    scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
                       n.breaks = 9,
                       limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
                                  max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
                       trans = "log10",
                       labels = scales::number_format(accuracy = 1,
                                                      decimal.mark = ",",
                                                      big.mark = " "))+
    ggbeeswarm::geom_quasirandom(
     size = 1.2,
     alpha = .25,
     width = .07,
   )+
   scale_x_discrete(limits = c("87398500", 
                               "87398980", 
                               "87398900", 
                               "87398950", 
                               "87405500", 
                               "87406900", 
                               "87409900"),
                    labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
   )+
    geom_smooth(method = "lm",
                se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
                aes(group=1),
                alpha=.5,
                na.rm = TRUE,
                size = 1)+
    theme_grafs()
)

Tempo para esse code chunk ser rodado: 1.11 s

(sum_ecoli_p1 <- plan_wide_19902020 %>%
    select(codigo, escherichia_coli, ano_coleta) %>% 
    filter(ano_coleta>"1990" &
              ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(escherichia_coli, 
           na.rm = TRUE),
     q1 = 
       quantile(escherichia_coli, 0.25, 
                na.rm = TRUE),
     median = 
       median(escherichia_coli, 
              na.rm = TRUE),
     mean = 
       mean(escherichia_coli, 
            na.rm= TRUE),
     q3 = 
       quantile(escherichia_coli, 0.75, 
                na.rm = TRUE),
     max = 
       max(escherichia_coli, 
           na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median   mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl>  <dbl> <dbl> <dbl>
## 1 87398500  32   136     240   854.    720 19200
## 2 87398900  16    68     160   548.    480  7760
## 3 87398950   2.4  12.8   268  4039.  10000 28000
## 4 87398980   4   160     243. 2907.    446 25600
## 5 87405500   1.6  12.8    24   545.    128 18400
## 6 87406900  13.6  61.6   192   718.    414 12800
## 7 87409900   2.4  12.8    64    97.7   128   720
(sum_ecoli_p2 <- plan_wide_19902020 %>%
    select(codigo, escherichia_coli, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(escherichia_coli, 
            na.rm = TRUE),
      q1 = 
        quantile(escherichia_coli, 0.25, 
                 na.rm = TRUE),
      median = 
        median(escherichia_coli, 
               na.rm = TRUE),
      mean = 
        mean(escherichia_coli, 
             na.rm= TRUE),
      q3 = 
        quantile(escherichia_coli, 0.75, 
                 na.rm = TRUE),
      max = 
        max(escherichia_coli, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median   mean     q3    max
##   <chr>    <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1 87398500  21.6   91    150   1335.   308   27200
## 2 87398900  11     70    133.   444.   414.   2600
## 3 87398950  20    400    720    935.  1120    5500
## 4 87398980  24    110.   195    410.   289.   8800
## 5 87405500   4.7  162   2400  25445. 12950  490000
## 6 87406900   8    172  12800  66370. 62300  650000
## 7 87409900  16   7355. 35500  72440. 68750  460000
(sum_ecoli_p3 <- plan_wide_19902020 %>%
    select(codigo, escherichia_coli, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(escherichia_coli, 
            na.rm = TRUE),
      q1 = 
        quantile(escherichia_coli, 0.25, 
                 na.rm = TRUE),
      median = 
        median(escherichia_coli, 
               na.rm = TRUE),
      mean = 
        mean(escherichia_coli, 
             na.rm= TRUE),
      q3 = 
        quantile(escherichia_coli, 0.75, 
                 na.rm = TRUE),
      max = 
        max(escherichia_coli, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo      min      q1 median    mean      q3      max
##   <chr>     <dbl>   <dbl>  <dbl>   <dbl>   <dbl>    <dbl>
## 1 87398500   90     155.    260     409.    451     2420 
## 2 87398900   10      52.8   107     245.    313     1553.
## 3 87398950  108.    250     487    1424.   1553.   10462 
## 4 87398980   40.8   140.    242.    529.    738.    2400 
## 5 87405500  632    8965   19232. 109992.  70750  1400000 
## 6 87406900 1440   23100   34500  230828. 140500  3400000 
## 7 87409900 2000   20100   38400   83128.  83680   345000

Tempo para esse code chunk ser rodado: 0.33 s

ggsave("ecoli.png",
       plot = ecoli,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("ecoli_p1.png",
       plot = ecoli_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("ecoli_p2.png",
       plot = ecoli_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("ecoli_p3.png",
       plot = ecoli_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 5.56 s

9.0.5 Nitrogênio amoniacal

(namon <- plan_wide_19902020 %>% 
  boxplot_namon(
    eixo_y = nitrogenio_amoniacal,
    titulo = "Nitrogênio Amoaniacal no período 1990-2020"
    )+
  facet_wrap(~periodo)
 )

nitrogenio-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 1.92 s

periodo_inicial <- as.Date("1990-01-01", "%Y-%m-%d")
periodo_final <- as.Date("2021-01-01",  "%Y-%m-%d")

(nitro_line <- 
  plan_wide_19902020 %>%
  filter(ano_coleta > "1990" &
           ano_coleta <= "2020") %>%
  dplyr::select(codigo, nitrogenio_amoniacal, data_coleta, periodo) %>%
  # group_by(codigo) %>%
  mutate(
    ponto_monitoramento = case_when(
      codigo == "87398500" ~ "PM1",
      codigo == "87398980" ~ "PM2",
      codigo == "87398900" ~ "PM3",
      codigo == "87398950" ~ "PM4",
      codigo == "87405500" ~ "PM5",
      codigo == "87406900" ~ "PM6",
      codigo == "87409900" ~ "PM7"
    )
  ) %>% 
    # pivot_wider(
    #   names_from = codigo,
    #   values_from = nitro_amon,
    #   id_cols = data_coleta
    # ) %>% 
    ggplot(
      aes(x = data_coleta,
          y = nitrogenio_amoniacal,
          # color = codigo
      ))+
    # geom_rect(
    #   aes(xmin = periodo_inicial, 
    #       xmax = periodo_final,
    #       ymin = 13.3, 
    #       ymax = Inf,
    #       alpha= 0.005,
    #       fill= "#ac5079"),
    # show.legend = FALSE)+ #>pior classe
    # geom_rect(
    #   aes(xmin = periodo_inicial, 
    #       xmax = periodo_final,
  #       ymin= 3.7,
  #       ymax= 13.3,
  #       alpha= 0.005,
  #       fill= "#fcf7ab"),
  #    show.legend = FALSE)+ #classe 3
  # geom_rect(
  #   aes(xmin = periodo_inicial, 
  #       xmax = periodo_final,
  #       ymin= 0,
  #       ymax= 3.7,
  #       alpha= 0.005,
  #       fill= "blue"
  #         # "#8dcdeb"
  #         ),
  #    show.legend = FALSE)+ #classe 1
  annotate("rect",
           xmin= periodo_inicial,
           xmax= periodo_final,
           ymin=13.3,
           ymax=Inf,
           alpha= 0.7,
           fill="#ac5079")+ #>pior classe
    annotate("rect",
             xmin= periodo_inicial,
             xmax= periodo_final,
             ymin=3.7,
             ymax=13.3,
             alpha= 0.7,
             fill="#fcf7ab")+ #classe 3
    annotate("rect",
             xmin= periodo_inicial,
             xmax= periodo_final,
             ymin= -Inf,
             ymax=3.7,
             alpha= 0.7,
             fill="#8dcdeb")+ #classe 1
    geom_line(
      # aes(color = codigo),
      na.rm = TRUE)+
    geom_point(
      # aes(color = codigo),
      na.rm = TRUE)+
    scale_x_date(
      limits = as.Date(c(
        "1990-01-01", 
        "2021-01-01"
        # NA #pode usar NA também
      )),
      expand = c(0.0, 0.0),
      date_breaks = "10 years",
      minor_breaks = "5 years",
      date_labels = "%Y",
    )+
    # geom_smooth(
    #   # aes(color = codigo),
    #   method = "lm",
    #   # formula = y ~ poly(x, 2),
    #   # span = 0.2,
    #   se = TRUE, #se deixar TRUE gera o intervalo de confiança de 95%
    #   aes(group = 1),
    #   alpha =.5,
    #   na.rm = TRUE,
    #   size = 0.3,
    #   # fullrange = TRUE,
  #   # show.legend = TRUE
  # )+
  # stat_smooth(
  #   geom = "smooth",
  #   # span = 0.2,
  #   se = FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
  #   # aes(group = 1),
  #   # alpha =.5,
  #   na.rm = TRUE,
  #   # size = 0.3,
  #   fullrange = TRUE,
  #   show.legend = TRUE
  # )+
  facet_wrap(
    ~ponto_monitoramento,
    nrow = 4,
  )+
    theme_bw()
)

Tempo para esse code chunk ser rodado: 1.34 s

(namon_p1 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   boxplot_namon(
     titulo = "Nitrogênio Amoniacal no período 1990-2000"
   )
 )

Tempo para esse code chunk ser rodado: 0.98 s

(namon_p2 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2000" &
            ano_coleta<="2010") %>% 
   boxplot_namon(
     titulo = "Nitrogênio Amoniacal no período 2000-2010"
   )
 )

Tempo para esse code chunk ser rodado: 1.62 s

(namon_p3 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2010" &
            ano_coleta<="2020") %>% 
   boxplot_namon(
     titulo = "Nitrogênio Amoniacal no período 2010-2020"
   )
 )

Tempo para esse code chunk ser rodado: 1.33 s

grid.arrange(namon_p1, namon_p2, namon_p3, ncol = 3)

Tempo para esse code chunk ser rodado: 3.61 s

(sum_namon_p1 <- plan_wide_19902020 %>%
   select(codigo, nitrogenio_amoniacal, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(nitrogenio_amoniacal, 
           na.rm = TRUE),
     q1 = 
       quantile(nitrogenio_amoniacal, 0.25, 
                na.rm = TRUE),
     median = 
       median(nitrogenio_amoniacal, 
              na.rm = TRUE),
     mean = 
       mean(nitrogenio_amoniacal, 
            na.rm= TRUE),
     q3 = 
       quantile(nitrogenio_amoniacal, 0.75, 
                na.rm = TRUE),
     max = 
       max(nitrogenio_amoniacal, 
           na.rm = TRUE),
      n = 
       length(nitrogenio_amoniacal)
   )
)
## # A tibble: 7 × 8
##   codigo       min     q1 median    mean     q3     max     n
##   <chr>      <dbl>  <dbl>  <dbl>   <dbl>  <dbl>   <dbl> <int>
## 1 87398500   0.08   0.165  0.205   0.246  0.28     0.91   101
## 2 87398900   0.087  0.17   0.2     0.248  0.242    1.13   101
## 3 87398950 Inf     NA     NA     NaN     NA     -Inf       68
## 4 87398980   0.027  0.12   0.15    0.158  0.188    0.3     30
## 5 87405500   0.43   0.875  1.74    4.28   5.88    17.7     97
## 6 87406900   0.51   1.14   2.78    5.35   7.50    26       32
## 7 87409900 Inf     NA     NA     NaN     NA     -Inf       65
(sum_namon_p2 <- plan_wide_19902020 %>%
    select(codigo, nitrogenio_amoniacal, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(nitrogenio_amoniacal, 
            na.rm = TRUE),
      q1 = 
        quantile(nitrogenio_amoniacal, 0.25, 
                 na.rm = TRUE),
      median = 
        median(nitrogenio_amoniacal, 
               na.rm = TRUE),
      mean = 
        mean(nitrogenio_amoniacal, 
             na.rm= TRUE),
      q3 = 
        quantile(nitrogenio_amoniacal, 0.75, 
                 na.rm = TRUE),
      max = 
        max(nitrogenio_amoniacal, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3    max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl>
## 1 87398500 0.031 0.16   0.21  0.259 0.29   1.22 
## 2 87398900 0.03  0.16   0.21  0.284 0.342  2.77 
## 3 87398950 0.044 0.214  0.276 0.268 0.349  0.413
## 4 87398980 0.024 0.098  0.14  0.161 0.21   0.551
## 5 87405500 0.038 0.79   2.09  3.49  4.54  18    
## 6 87406900 0.03  1.05   2.66  4.27  5.62  19.4  
## 7 87409900 0.453 0.78   2.46  3.84  4.77  16.6
(sum_namon_p3 <- plan_wide_19902020 %>%
    select(codigo, nitrogenio_amoniacal, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(nitrogenio_amoniacal, 
            na.rm = TRUE),
      q1 = 
        quantile(nitrogenio_amoniacal, 0.25, 
                 na.rm = TRUE),
      median = 
        median(nitrogenio_amoniacal, 
               na.rm = TRUE),
      mean = 
        mean(nitrogenio_amoniacal, 
             na.rm= TRUE),
      q3 = 
        quantile(nitrogenio_amoniacal, 0.75, 
                 na.rm = TRUE),
      max = 
        max(nitrogenio_amoniacal, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3    max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl>  <dbl>
## 1 87398500  0.03 0.085  0.1   0.150 0.198  0.419
## 2 87398900  0.03 0.1    0.192 0.213 0.248  0.699
## 3 87398950  0.02 0.165  0.263 0.315 0.4    0.951
## 4 87398980  0.02 0.06   0.1   0.179 0.235  0.717
## 5 87405500  0.05 0.808  1.60  2.55  3.78   9.12 
## 6 87406900  0.03 1.09   2.16  3.61  5.02  21.2  
## 7 87409900  0.04 1.44   2.5   3.40  4.39  18.8

Tempo para esse code chunk ser rodado: 0.55 s

ggsave("namon.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = namon,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("namon_p1.png",
       plot = namon_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("namon_p2.png",
       plot = namon_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("namon_p3.png",
       plot = namon_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("namon_3periodos.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = grid.arrange(namon_p1, namon_p2, namon_p3, ncol = 3),
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 11.92 s

9.0.6 Turbidez

(turb <- plan_wide_19902020 %>% 
   boxplot_turb(
     titulo = "Turbidez no período 1990-2020"
   )+
   facet_wrap(~periodo)
 )

turbidez-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 1.95 s

(turb_line <- plan_wide_19902020 %>%
   filter(ano_coleta > "1990" &
            ano_coleta <= "2020") %>%
   select(codigo, turbidez, data_coleta, periodo) %>%
  group_by(codigo) %>%
  ggplot(
    aes(x = data_coleta,
        y = turbidez,
        color = codigo
    ))+
    geom_line(
      # aes(color = codigo),
      na.rm = TRUE)+
    geom_point(
      # aes(color = codigo),
      na.rm = TRUE)+
    scale_x_date(
      limits = as.Date(c(
        "1990-01-01", 
        "2021-01-01"
        # NA #pode usar NA também
      )),
      expand = c(0.0, 0.0),
      date_breaks = "10 years",
      minor_breaks = "5 years",
      date_labels = "%Y",
    )+
  # geom_smooth(
  #   # aes(color = codigo),
  #   method = "lm",
  #   # formula = y ~ poly(x, 2),
  #   # span = 0.2,
  #   se = TRUE, #se deixar TRUE gera o intervalo de confiança de 95%
  #   aes(group = 1),
  #   alpha =.5,
  #   na.rm = TRUE,
  #   size = 0.3,
  #   # fullrange = TRUE,
  #   # show.legend = TRUE
  # )+
  # stat_smooth(
  #   geom = "smooth",
  #   # span = 0.2,
  #   se = FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
  #   # aes(group = 1),
  #   # alpha =.5,
  #   na.rm = TRUE,
  #   # size = 0.3,
  #   fullrange = TRUE,
  #   show.legend = TRUE
  # )+
  facet_wrap(
    ~codigo,
    nrow = 4,
  )+
  theme_bw()
)

Tempo para esse code chunk ser rodado: 1.38 s

(turb_p1 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   boxplot_turb(
     titulo = "Turbidez no período 1990-2000"
   )
 )

Tempo para esse code chunk ser rodado: 0.89 s

(turb_p2 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2000" &
            ano_coleta<="2010") %>% 
   boxplot_turb(
     titulo = "Turbidez no período 2000-2010"
   )
 )

Tempo para esse code chunk ser rodado: 1.02 s

(turb_p3 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2010" &
            ano_coleta<="2020") %>% 
   boxplot_turb(
     titulo = "Turbidez no período 2010-2020"
   )
 )

Tempo para esse code chunk ser rodado: 0.97 s

grid.arrange(turb_p1, turb_p2, turb_p3, ncol = 3)

Tempo para esse code chunk ser rodado: 2.62 s

(sum_turb_p1 <- plan_wide_19902020 %>%
   select(codigo, turbidez, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(turbidez, 
           na.rm = TRUE),
     q1 = 
       quantile(turbidez, 0.25, 
                na.rm = TRUE),
     median = 
       median(turbidez, 
              na.rm = TRUE),
     mean = 
       mean(turbidez, 
            na.rm= TRUE),
     q3 = 
       quantile(turbidez, 0.75, 
                na.rm = TRUE),
     max = 
       max(turbidez, 
           na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500   6.2  19     34.5  63.5  67     461
## 2 87398900   9    19     49.5  61.5  73.8   460
## 3 87398950   9.6  16     22    33.3  48.8   144
## 4 87398980  16    32.8   43    66.8  90.5   190
## 5 87405500   8.5  23.5   47    47.5  58     159
## 6 87406900  33    54.8   67    77.7  81.5   199
## 7 87409900   5.8  15     25    32.2  48      76
(sum_turb_p2 <- plan_wide_19902020 %>%
    select(codigo, turbidez, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(turbidez, 
            na.rm = TRUE),
      q1 = 
        quantile(turbidez, 0.25, 
                 na.rm = TRUE),
      median = 
        median(turbidez, 
               na.rm = TRUE),
      mean = 
        mean(turbidez, 
             na.rm= TRUE),
      q3 = 
        quantile(turbidez, 0.75, 
                 na.rm = TRUE),
      max = 
        max(turbidez, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500     9  41.2   55.5  71.1  74.2   428
## 2 87398900    39  57     78   107.  116.    475
## 3 87398950    39  47     64    96.5  90     330
## 4 87398980    24  37     50    64.5  87     176
## 5 87405500    32  46     63.5  70.3  76     341
## 6 87406900    35  49     62    69.9  75.5   284
## 7 87409900    40  45     60    70.4  90     151
(sum_turb_p3 <- plan_wide_19902020 %>%
    select(codigo, turbidez, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(turbidez, 
            na.rm = TRUE),
      q1 = 
        quantile(turbidez, 0.25, 
                 na.rm = TRUE),
      median = 
        median(turbidez, 
               na.rm = TRUE),
      mean = 
        mean(turbidez, 
             na.rm= TRUE),
      q3 = 
        quantile(turbidez, 0.75, 
                 na.rm = TRUE),
      max = 
        max(turbidez, 
            na.rm = TRUE))
) 
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500  8.52  16.4   29    33.3  43     85 
## 2 87398900 14.8   39.2   48.3  66.7  73.4  299 
## 3 87398950 16     29.9   41    51.6  65    230 
## 4 87398980 11     19.4   33.6  39.5  42.2  110.
## 5 87405500 10.0   29.0   41    42.9  54.5  131 
## 6 87406900  9.62  23     39    41.2  52    122 
## 7 87409900  9.68  22.0   34.0  40.5  47    182.

Tempo para esse code chunk ser rodado: 0.28 s

ggsave("turb.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = turb,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("turb_p1.png",
       plot = turb_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("turb_p2.png",
       plot = turb_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("turb_p3.png",
       plot = turb_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("turb_3periodos.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = grid.arrange(turb_p1, turb_p2, turb_p3, ncol = 3),
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 9.06 s

9.0.7 pH

(pH <- boxplot_pH(
  titulo = "pH no período 1990-2020"
)+
  facet_wrap(~periodo)
)

pH-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 1.84 s

(pH_p1 <- plan_wide_19902020 %>% 
   filter(ano_coleta > "1990" &
            ano_coleta <= "2000") %>% 
   boxplot_pH(
     titulo = "pH no período 1990-2000"
   )
 )

Tempo para esse code chunk ser rodado: 0.89 s

(pH_p2 <- plan_wide_19902020 %>% 
   filter(ano_coleta > "2000" &
            ano_coleta <= "2010") %>% 
   boxplot_pH(
     titulo = "pH no período 2000-2010"
   )
 )

Tempo para esse code chunk ser rodado: 0.87 s

(pH_p3 <- plan_wide_19902020 %>% 
   filter(ano_coleta > "2010" &
            ano_coleta <= "2020") %>% 
   boxplot_pH(
     titulo = "pH no período 2010-2020"
   )
 )

Tempo para esse code chunk ser rodado: 0.85 s

grid.arrange(pH_p1, pH_p2, pH_p3, ncol = 3)

Tempo para esse code chunk ser rodado: 2.32 s

(sum_pH_p1 <- plan_wide_19902020 %>%
   select(codigo, pH, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(pH, 
           na.rm = TRUE),
     q1 = 
       quantile(pH, 0.25, 
                na.rm = TRUE),
     median = 
       median(pH, 
              na.rm = TRUE),
     mean = 
       mean(pH, 
            na.rm= TRUE),
     q3 = 
       quantile(pH, 0.75, 
                na.rm = TRUE),
     max = 
       max(pH, 
           na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500   5    6.18   6.59  6.51  6.82   7.9
## 2 87398900   5.2  6      6.3   6.33  6.63   7.9
## 3 87398950   5.4  6.29   6.4   6.49  6.72   8.1
## 4 87398980   5.3  5.93   6.2   6.16  6.3    7.3
## 5 87405500   5    6.3    6.4   6.47  6.7    9.3
## 6 87406900   5.5  6.18   6.45  6.43  6.8    7.3
## 7 87409900   4.5  6.2    6.4   6.44  6.7    7.4
(sum_pH_p2 <- plan_wide_19902020 %>%
    select(codigo, pH, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(pH, 
            na.rm = TRUE),
      q1 = 
        quantile(pH, 0.25, 
                 na.rm = TRUE),
      median = 
        median(pH, 
               na.rm = TRUE),
      mean = 
        mean(pH, 
             na.rm= TRUE),
      q3 = 
        quantile(pH, 0.75, 
                 na.rm = TRUE),
      max = 
        max(pH, 
            na.rm = TRUE))
) 
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500   5.3   6.3   6.6   6.59  6.88   7.9
## 2 87398900   5.5   6.4   6.65  6.63  6.9    7.5
## 3 87398950   6     6.6   6.8   6.89  7.25   7.6
## 4 87398980   5.8   6.3   6.5   6.63  7      7.5
## 5 87405500   5.2   6.4   6.6   6.68  6.9    8.3
## 6 87406900   5.5   6.4   6.7   6.66  6.9    8.6
## 7 87409900   5.8   6.5   6.8   6.77  7      8.4
(sum_pH_p3 <- plan_wide_19902020 %>%
    select(codigo, pH, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(pH, 
            na.rm = TRUE),
      q1 = 
        quantile(pH, 0.25, 
                 na.rm = TRUE),
      median = 
        median(pH, 
               na.rm = TRUE),
      mean = 
        mean(pH, 
             na.rm= TRUE),
      q3 = 
        quantile(pH, 0.75, 
                 na.rm = TRUE),
      max = 
        max(pH, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500  5.47  6.28   6.42  6.47  6.60  7.3 
## 2 87398900  5.68  6.36   6.5   6.57  6.84  7.4 
## 3 87398950  5.71  6.28   6.46  6.46  6.68  7   
## 4 87398980  5.42  6.10   6.36  6.39  6.6   7.2 
## 5 87405500  5.64  6.34   6.5   6.49  6.7   7.01
## 6 87406900  5.6   6.4    6.48  6.51  6.77  7.3 
## 7 87409900  5.59  6.46   6.6   6.57  6.76  7.2

Tempo para esse code chunk ser rodado: 0.36 s

ggsave("pH.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = pH,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("pH_p1.png",
       plot = pH_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("pH_p2.png",
       plot = pH_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("pH_p3.png",
       plot = pH_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("pH_3periodos.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = grid.arrange(pH_p1, pH_p2, pH_p3, ncol = 3),
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 8.59 s

9.0.8 Sólidos totais

(SolTot <- plan_wide_19902020 %>% 
   boxplot_solidos_totais(
     titulo = "Sólidos totais no período 1990-2020"
   )+
   facet_wrap(~periodo)
)

sólidos-totais-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 1.92 s

(SolTot_p1 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"1990" &
          ano_coleta<="2000") %>% 
   boxplot_solidos_totais(
     titulo = "Sólidos totais no período 1990-2000"
   )
 )

Tempo para esse code chunk ser rodado: 1.03 s

(SolTot_p2 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2000" &
            ano_coleta<="2010") %>% 
   boxplot_solidos_totais(
     titulo = "Sólidos totais no período 2000-2010"
   )
)

Tempo para esse code chunk ser rodado: 0.94 s

(SolTot_p3 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2010" &
            ano_coleta<="2020") %>% 
   boxplot_solidos_totais(
     titulo = "Sólidos totais no período 2010-2020"
   )
)

Tempo para esse code chunk ser rodado: 0.91 s

grid.arrange(SolTot_p1, SolTot_p2, SolTot_p3, ncol = 3)

Tempo para esse code chunk ser rodado: 2.48 s

(sum_SolTot_p1 <- plan_wide_19902020 %>%
   select(codigo, solidos_totais, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(solidos_totais, 
           na.rm = TRUE),
     q1 = 
       quantile(solidos_totais, 0.25, 
                na.rm = TRUE),
     median = 
       median(solidos_totais, 
              na.rm = TRUE),
     mean = 
       mean(solidos_totais, 
            na.rm= TRUE),
     q3 = 
       quantile(solidos_totais, 0.75, 
                na.rm = TRUE),
     max = 
       max(solidos_totais, 
           na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500    46  84.5   95   122.   120    510
## 2 87398900    18  74.5   97   111.   122.   474
## 3 87398950    10  76.5   91    90.9  106.   155
## 4 87398980    48  63.5   81.5 104.   126.   337
## 5 87405500    70 101    121   133.   151    361
## 6 87406900    89 118    155   165.   210    279
## 7 87409900    20  99.5  122   128.   143    381
(sum_SolTot_p2 <- plan_wide_19902020 %>%
    select(codigo, solidos_totais, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(solidos_totais, 
            na.rm = TRUE),
      q1 = 
        quantile(solidos_totais, 0.25, 
                 na.rm = TRUE),
      median = 
        median(solidos_totais, 
               na.rm = TRUE),
      mean = 
        mean(solidos_totais, 
             na.rm= TRUE),
      q3 = 
        quantile(solidos_totais, 0.75, 
                 na.rm = TRUE),
      max = 
        max(solidos_totais, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500    28  80     100  111.   123.   412
## 2 87398900    42  82     102. 128.   140.   489
## 3 87398950    46  94.2   108. 126.   127.   318
## 4 87398980    40  61      77   85.3   96    228
## 5 87405500    48 102     133  148.   170.   522
## 6 87406900    50 109     134. 154.   170.   670
## 7 87409900    56 112.    156  167.   190.   599
(sum_SolTot_p3 <- plan_wide_19902020 %>%
    select(codigo, solidos_totais, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(solidos_totais, 
            na.rm = TRUE),
      q1 = 
        quantile(solidos_totais, 0.25, 
                 na.rm = TRUE),
      median = 
        median(solidos_totais, 
               na.rm = TRUE),
      mean = 
        mean(solidos_totais, 
             na.rm= TRUE),
      q3 = 
        quantile(solidos_totais, 0.75, 
                 na.rm = TRUE),
      max = 
        max(solidos_totais, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500    61  69      90   82.8   96    101
## 2 87398900    41  77     104  120.   127    308
## 3 87398950    45  93     101  109.   117    221
## 4 87398980    55  62.8    80   79.9   95    109
## 5 87405500    83  89.2   108. 124.   162.   195
## 6 87406900    50 106     117  135.   163    246
## 7 87409900    75 103     115  131.   145    251

Tempo para esse code chunk ser rodado: 0.33 s

ggsave("SolTot.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = SolTot,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("SolTot_p1.png",
       plot = SolTot_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("SolTot_p2.png",
       plot = SolTot_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("SolTot_p3.png",
       plot = SolTot_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("SolTot_3periodos.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = grid.arrange(SolTot_p1, SolTot_p2, SolTot_p3, ncol = 3),
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 10.19 s

9.1 Condutividade elétrica

(cond_elet <- plan_wide_19902020 %>% 
   boxplot_cond_elet(
     titulo = "Condutividade elétrica no período 1990-2020"
   )+
   facet_wrap(~periodo)
)

condutividade-eletrica-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 3.2 s

(cond_elet_p1 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   boxplot_cond_elet(
     titulo = "Condutividade elétrica no período 1990-2000"
   )
)

Tempo para esse code chunk ser rodado: 1.31 s

(cond_elet_p2 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2000" &
            ano_coleta<="2010") %>% 
   boxplot_cond_elet(
     titulo = "Condutividade elétrica no período 2000-2010"
   )
)

Tempo para esse code chunk ser rodado: 1 s

(cond_elet_p3 <- plan_wide_19902020 %>% 
   filter(ano_coleta>"2010" &
            ano_coleta<="2020") %>% 
   boxplot_cond_elet(
     titulo = "Condutividade elétrica no período 2010-2020"
   )
)

Tempo para esse code chunk ser rodado: 0.83 s

grid.arrange(cond_elet_p1, cond_elet_p2, cond_elet_p3, ncol = 3)

Tempo para esse code chunk ser rodado: 2.34 s

(sum_cond_elet_p1 <- plan_wide_19902020 %>%
   select(codigo, condutividade, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(condutividade, 
           na.rm = TRUE),
     q1 = 
       quantile(condutividade, 0.25, 
                na.rm = TRUE),
     median = 
       median(condutividade, 
              na.rm = TRUE),
     mean = 
       mean(condutividade, 
            na.rm= TRUE),
     q3 = 
       quantile(condutividade, 0.75, 
                na.rm = TRUE),
     max = 
       max(condutividade, 
           na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500   9.4  51.1   67    75.1  83.2 340  
## 2 87398900  10    41.5   51    55.3  64.2 160  
## 3 87398950   9    41.5   51.5  60.1  69.5 160  
## 4 87398980  11.3  42.4   52.0  53.0  67.0  83.8
## 5 87405500  25    68.7   88.2 130.  170   560  
## 6 87406900  52    88.4  133.  193.  256.  576  
## 7 87409900  29    80    110.  134.  168.  460
(sum_cond_elet_p2 <- plan_wide_19902020 %>%
    select(codigo, condutividade, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(condutividade, 
            na.rm = TRUE),
      q1 = 
        quantile(condutividade, 0.25, 
                 na.rm = TRUE),
      median = 
        median(condutividade, 
               na.rm = TRUE),
      mean = 
        mean(condutividade, 
             na.rm= TRUE),
      q3 = 
        quantile(condutividade, 0.75, 
                 na.rm = TRUE),
      max = 
        max(condutividade, 
            na.rm = TRUE))
)
## # A tibble: 7 × 7
##   codigo     min    q1 median  mean    q3   max
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>
## 1 87398500  11.9  67.0   82.6  84.8 102.   164.
## 2 87398900  11    44.4   52.3  57.1  72.6  136.
## 3 87398950  39.8  58.4   76    82.3  98.3  160 
## 4 87398980   9.4  42.4   49.7  51.5  62    114.
## 5 87405500  17    77.5  107   142.  171.   679 
## 6 87406900  23.1  85.6  124.  164.  199.   619 
## 7 87409900  56.1 114.   177   200.  242    454
(sum_cond_elet_p3 <- plan_wide_19902020 %>%
    select(codigo, condutividade, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(condutividade, 
            na.rm = TRUE),
      q1 = 
        quantile(condutividade, 0.25, 
                 na.rm = TRUE),
      median = 
        median(condutividade, 
               na.rm = TRUE),
      mean = 
        mean(condutividade, 
             na.rm= TRUE),
      q3 = 
        quantile(condutividade, 0.75, 
                 na.rm = TRUE),
      max = 
        max(condutividade, 
            na.rm = TRUE),
      n = 
        length(condutividade))
)
## # A tibble: 7 × 8
##   codigo     min    q1 median  mean    q3   max     n
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <int>
## 1 87398500  0.01  68.5   80.2  80.4  99.5 125.     34
## 2 87398900 39.7   53.4   58.3  61.1  65.5 103      36
## 3 87398950 40.9   64.7   70.1  76.1  82.5 195.     35
## 4 87398980 43.2   51.7   54.0  56.3  61.0  78.9    28
## 5 87405500 47     85.8  121.  146.  209.  286      33
## 6 87406900 62.7   95.9  142.  163.  216.  354.     35
## 7 87409900 65.7  121.   159.  179.  245.  498.     37
# plan_wide_19902020 %>% 
#    select(codigo, IQA) %>% 
#    group_by(codigo) %>% 
#    summarize(
#       min = 
#          min(IQA, 
#              na.rm = TRUE),
#       q1 = 
#          quantile(IQA, 0.25, 
#                   na.rm = TRUE),
#       median = 
#          median(IQA, 
#                 na.rm = TRUE),
#       mean = 
#          mean(IQA, 
#               na.rm= TRUE),
#       q3 = 
#          quantile(IQA, 0.75, 
#                   na.rm = TRUE),
#       max = 
#          max(IQA, 
#              na.rm = TRUE))

Tempo para esse code chunk ser rodado: 0.33 s

ggsave("cond_elet.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = cond_elet,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("cond_elet_p1.png",
       plot = cond_elet_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("cond_elet_p2.png",
       plot = cond_elet_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("cond_elet_p3.png",
       plot = cond_elet_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("cond_elet_3periodos.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = grid.arrange(cond_elet_p1, cond_elet_p2, cond_elet_p3, ncol = 3),
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 9.35 s

9.1.1 IQA

iqa-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 2.45 s

Tempo para esse code chunk ser rodado: 1.38 s

Tempo para esse code chunk ser rodado: 1.06 s

Tempo para esse code chunk ser rodado: 0.92 s

grid.arrange(iqa_p1, iqa_p2, iqa_p3, ncol = 3)

Tempo para esse code chunk ser rodado: 3.76 s

(sum_IQA_p1 <- plan_wide_19902020 %>%
   select(codigo, iqa, ano_coleta) %>% 
   filter(ano_coleta>"1990" &
            ano_coleta<="2000") %>% 
   group_by(codigo) %>% 
   summarize(
     min = 
       min(iqa, 
           na.rm = TRUE),
     q1 = 
       quantile(iqa, 0.25, 
                na.rm = TRUE),
     median = 
       median(iqa, 
              na.rm = TRUE),
     mean = 
       mean(iqa, 
            na.rm= TRUE),
     q3 = 
       quantile(iqa, 0.75, 
                na.rm = TRUE),
     max = 
       max(iqa, 
           na.rm = TRUE),
     n = 
        length(iqa)
   )
)
## # A tibble: 7 × 8
##   codigo     min    q1 median  mean    q3   max     n
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <int>
## 1 87398500  27.0  35.7   40.9  40.7  46.2  52.2   101
## 2 87398900  27.8  37.9   42.9  43.0  48.0  58.5   101
## 3 87398950  32.8  36.8   41.4  43.2  48.6  61.9    68
## 4 87398980  29.2  35.8   40.4  40.3  44.8  51.9    30
## 5 87405500  24.8  34.9   41.2  40.3  46.9  57.6    97
## 6 87406900  24.7  31.3   37.8  37.4  44.4  49.0    32
## 7 87409900  23.6  31.9   37.1  38.8  46.2  55.4    65
(sum_IQA_p2 <- plan_wide_19902020 %>%
    select(codigo, iqa, ano_coleta) %>% 
    filter(ano_coleta>"2000" &
             ano_coleta<="2010") %>% 
    group_by(codigo) %>% 
    summarize(
      min = 
        min(iqa, 
            na.rm = TRUE),
      q1 = 
        quantile(iqa, 0.25, 
                 na.rm = TRUE),
      median = 
        median(iqa, 
               na.rm = TRUE),
      mean = 
        mean(iqa, 
             na.rm= TRUE),
      q3 = 
        quantile(iqa, 0.75, 
                 na.rm = TRUE),
      max = 
        max(iqa, 
            na.rm = TRUE),
      n = 
        length(iqa)
      )
)
## # A tibble: 7 × 8
##   codigo     min    q1 median  mean    q3   max     n
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <int>
## 1 87398500  27.8  34.6   40.0  39.5  43.5  48.7    75
## 2 87398900  28.5  35.1   37.6  38.3  40.6  48.5    77
## 3 87398950  21.1  29.4   32.7  32.8  36.8  44.0    30
## 4 87398980  24.5  35.7   39.4  39.5  43.4  52.1    66
## 5 87405500  19.8  28.7   31.5  31.9  35.7  48.8    78
## 6 87406900  17.1  25.3   29.0  29.5  32.8  44.1    79
## 7 87409900  16.2  20.5   26.1  25.0  29.8  33.1    31
(sum_IQA_p3 <- plan_wide_19902020 %>%
    select(codigo, iqa, ano_coleta) %>% 
    filter(ano_coleta>"2010" &
             ano_coleta<="2020") %>%
    # ?as_factor(codigo) %>% 
    group_by(codigo) %>%
    summarize(
      min = 
        min(iqa, 
            na.rm = TRUE),
      q1 = 
        quantile(iqa, 0.25, 
                 na.rm = TRUE),
      median = 
        median(iqa, 
               na.rm = TRUE),
      mean = 
        mean(iqa, 
             na.rm= TRUE),
      q3 = 
        quantile(iqa, 0.75, 
                 na.rm = TRUE),
      max = 
        max(iqa, 
            na.rm = TRUE),
      n = 
        length(iqa),
      NAs = 
        sum(is.na(iqa))
      ) %>% 
  mutate(
    "%NA" = NAs/n*100
  )
)
## # A tibble: 7 × 10
##   codigo     min    q1 median  mean    q3   max     n   NAs `%NA`
##   <chr>    <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <int> <int> <dbl>
## 1 87398500  40.2  42.5   45.4  44.2  45.5  47.2    34    29  85.3
## 2 87398900  34.1  38.6   41.2  40.2  42.9  44.4    36    32  88.9
## 3 87398950  36.7  39.5   42.4  41.5  44.4  44.6    35    31  88.6
## 4 87398980  40.0  40.0   40.0  40.0  40.0  40.0    28    27  96.4
## 5 87405500  30.8  31.6   32.5  32.5  33.3  34.1    33    31  93.9
## 6 87406900  22.9  24.4   25.9  25.3  26.5  27.2    35    32  91.4
## 7 87409900  24.1  25.1   27.3  26.9  28.2  29.7    37    32  86.5

Tempo para esse code chunk ser rodado: 0.33 s

ggsave("iqa.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = iqa,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("iqa_p1.png",
       plot = iqa_p1,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("iqa_p2.png",
       plot = iqa_p2,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("iqa_p3.png",
       plot = iqa_p3,
       path = "./graficos",
       dpi = 300,
       type = "cairo")

ggsave("iqa_3periodos.png",
       units = c("px"),
       width = 4500,
       height = 2993,
       plot = grid.arrange(iqa_p1, iqa_p2, iqa_p3, ncol = 3),
       path = "./graficos",
       dpi = 300,
       type = "cairo")

Tempo para esse code chunk ser rodado: 10.33 s

9.2 Testando coisas

9.3 Correlação

parametros_IQA %>% 
  dplyr::select(
    -codigo,
    -ano_coleta,
    -nitrogenio_total
    ) %>% 
  # group_by(codigo) %>% 
  rename(
    CE = condutividade,
    E_coli = escherichia_coli,
    OD = oxigenio_dissolvido,
    ST = solidos_totais,
    Turb = turbidez,
    Temp = temperatura_agua,
    Ptot = fosforo_total,
    # NTot = nitrogenio_total,
    NAmon = nitrogenio_amoniacal,
    NTK = nitrogenio_kjeldahl
  ) %>% 
  ggcorr(
    method = "complete.obs",
    # "pearson",
    # "pairwise",
    name = "Correlação",
    label = TRUE,
    label_alpha = TRUE,
    digits = 3,
    low = "#3B9AB2",
    mid = "#EEEEEE",
    high = "#F21A00",
    # palette = "RdYlBu",
    layout.exp = 0,
    legend.position = "left",
    label_round = 3,
    # legend.size = 18,
    geom = "tile",
    nbreaks = 10,
  )+
  labs(title = "Correlação entre parâmetros físico-químicos na\nBacia Hidrográfica do rio Gravataí no período 1990-2020")+
  theme_linedraw()+
  theme(
    legend.position = c(0.15, 0.6),
    legend.title = element_text(size = 16),
    legend.text = element_text(size = 14),
    # legend.spacing = unit(element_text(),
                          # units = 5)
    plot.title = element_text(hjust = 0.5,
                              size = 16)
  )

correlação-parametros-qualidade-agua-gravataí no período 1990-2020

# Gráfico das correlações entre todos os parâmetros com significância
correl_IQA <- parametros_IQA %>%
  dplyr::select(-codigo) %>%
  ggpairs(title = "Correlação entre parâmetros que compõem o IQA",
          axisLabels = "show")

correlacao_pIQA <- parametros_IQA %>% 
  group_by(codigo) %>% 
  correlation::correlation()

correlacao_pIQA %>% 
  # glimpse()
  filter(
    p < 0.001
  ) %>% 
  as_tibble() %>% 
  # filter(
  #   Parameter1 == "oxigenio_dissolvido"
  # ) %>% 
  arrange(desc(r)) 
## # A tibble: 129 × 12
##    Group   Param…¹ Param…²     r    CI CI_low CI_high        t df_er…³         p
##    <chr>   <chr>   <chr>   <dbl> <dbl>  <dbl>   <dbl>    <dbl>   <int>     <dbl>
##  1 873985… nitrog… nitrog… 1      0.95  1       1     Inf          115 0        
##  2 873989… nitrog… nitrog… 1      0.95  1       1     Inf           60 0        
##  3 874069… nitrog… nitrog… 1      0.95  1       1       3.88e8      67 0        
##  4 874099… nitrog… nitrog… 1.00   0.95  1.00    1.00    7.91e2      71 6.50e-140
##  5 873989… nitrog… nitrog… 0.998  0.95  0.997   0.999   1.81e2     116 2.92e-142
##  6 873989… nitrog… nitrog… 0.991  0.95  0.986   0.994   6.11e1      68 2.83e- 59
##  7 874055… nitrog… nitrog… 0.988  0.95  0.982   0.992   6.64e1     110 1.05e- 88
##  8 874099… nitrog… nitrog… 0.976  0.95  0.934   0.992   1.75e1      15 1.51e-  9
##  9 874055… nitrog… nitrog… 0.932  0.95  0.891   0.958   2.07e1      65 1.83e- 28
## 10 874069… nitrog… nitrog… 0.930  0.95  0.890   0.957   2.08e1      67 4.70e- 29
## # … with 119 more rows, 2 more variables: Method <chr>, n_Obs <int>, and
## #   abbreviated variable names ¹​Parameter1, ²​Parameter2, ³​df_error
parametros_IQA %>% 
  # group_by(codigo) %>% 
  dplyr::select(
    nitrogenio_kjeldahl, condutividade
  ) %>% 
  # correlation::cor_test() %>% 
  plot()

correlação-parametros-qualidade-agua-gravataí no período 1990-2020Tempo para esse code chunk ser rodado: 4.08 s

10 Textando o texto

  • § falar do comportamento geral dos dados
  • 2º § - xº § -> abordar os principais parâmetros que estão sendo impactados, detalhando, nas estações mais relevantes, como ficaram os quartis/mediana etc.

10.8

Os resultados apontam que para o parâmetro OD

11 Gráficos exemplos boxplot

set.seed(2023)
exemplo_boxplot_df <- data.frame(
  PM = c("PM1"),
  # letras = letters[seq( from = 1, to = 1 )],
  Stat1 = rnorm(100, 
                mean = 5, 
                sd = 1.8)
)

(sumario_exemplo_bp <- exemplo_boxplot_df %>% 
    group_by(PM) %>% 
    summarize(
      max = max(Stat1),
      p95 = quantile(Stat1, 0.95),
      p80 = quantile(Stat1, 0.8),
      median = median(Stat1),
      p20 = quantile(Stat1, 0.2),
      p05 = quantile(Stat1, 0.05),
      min = min(Stat1),
    ) %>% 
    t() %>% 
    row_to_names(row_number = 1) %>% 
    as.numeric()
)
## [1] 9.923430 7.866927 6.683828 4.886935 3.545771 2.277104 1.282177
(boxplot_example <- exemplo_boxplot_df %>% 
    ggplot(
      aes(
        x = PM,
        y = Stat1,
      )
    )+
    stat_summary(
      fun.data = f,
      geom = 'errorbar',
      width = 0.15,
      position = position_dodge(width = 0.65),
    )+
    stat_summary(
      fun.data = f,
      geom = "boxplot",
      width = 0.40,
      fill = '#F8F8FF',
      color = "black",
      outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
    )+
    labs(
      title = "Elementos do *boxplot*",
      x= NULL,
      y= NULL
    )+
    ggbeeswarm::geom_quasirandom(
      size = 1.4,
      alpha = .3,
      width = .07,
    )+
    scale_y_continuous(
      expand = expansion(mult = c(0,0)),
      n.breaks = 8,
      limits = c(-0.3,12)
    )+
    annotate(
      geom = "text",
      x = 1.55,
      hjust = "right",
      y = sumario_exemplo_bp,
      label = c("Valor máximo", "P95", "P80", "Mediana", "P20", "P05", "Valor mínimo"),
      # fontface = 3
    )+
    geom_richtext(
      x = 0.56,
      y = 9.103998,
      label.color = NA,
      hjust = "center",
      label = "<i>Outliers</i>"
    )+
    geom_curve(
      aes(
        x = 0.6, xend = 0.98,
        y = 9.103998 , yend = 9.103998 , #Outliers
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    #definindo o [
    geom_curve(
      aes(
        x = 0.74, xend = 0.78,
        y = 6.683828, yend = 6.683828,
      ),
      curvature = 0,
      size = 1.0,
      lineend = "butt"
    )+
    geom_curve(
      aes(
        x = 0.74, xend = 0.74,
        y = 3.545771, yend = 6.683828,
      ),
      curvature = 0,
      size = 1.0,
      lineend = "butt"
    )+
    annotate(
      geom = "text",
      x = 0.56,
      hjust = "center",
      y = 5.11,
      label = "Amplitude\n(P80-P20)"
    )+
    geom_curve(
      aes(
        x = 0.74, xend = 0.78,
        y = 3.545771 , yend = 3.545771 ,
      ),
      curvature = 0,
      size = 1.0,
      lineend = "butt"
    )+
    # fim do [
    geom_curve(
      aes(
        x = 0.6, xend = 0.90,
        y = 7.866927 , yend = 7.866927 , #whisker superior
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    annotate(
      geom = "text",
      x = 0.56,
      hjust = "center",
      y = 7.866927,
      label = "Whisker\nsuperior"
    )+
    geom_curve(
      aes(
        x = 0.6, xend = 0.90,
        y = 2.277104  , yend = 2.277104  , #whisker inferior
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    annotate(
      geom = "text",
      x = 0.56,
      hjust = "center",
      y = 2.277104,
      label = "Whisker\ninferior"
    )+
    geom_curve(
      aes(
        x = 1.4, xend = 1.01,
        y = 9.92343, yend = 9.92343, #valor máximo
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    geom_curve(
      aes(
        x = 1.45, xend = 1.11,
        y = 7.866927 , yend = 7.866927 , #P95
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    geom_curve(
      aes(
        x = 1.45, xend = 1.22,
        y = 6.683828  , yend = 6.683828  , #P80
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    geom_curve(
      aes(
        x = 1.45, xend = 1.22,
        y = 4.886935   , yend = 4.886935   , #P50
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    geom_curve(
      aes(
        x = 1.45, xend = 1.22,
        y = 3.545771, yend = 3.545771, #P20
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    geom_curve(
      aes(
        x = 1.45, xend = 1.11,
        y = 2.277104, yend = 2.277104, #P05
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    geom_curve(
      aes(
        x = 1.4, xend = 1.01,
        y = 1.282177, yend = 1.282177, #valor mínimo
      ),
      curvature = 0,
      size = 1.0,
      arrow = arrow(length = unit(0.05, "npc")),
      lineend = "round"
    )+
    # theme_grafs()+
    theme_bw()+
    theme(
      plot.title = 
        element_markdown(
          hjust = 0.5,
          color = "black",
          size = 19),
    )
)

Tempo para esse code chunk ser rodado: 3.22 s

ggsave(
  filename = "exemplo_boxplot.png",
  plot = boxplot_example,
  units = c("px"),
  width = (4500)/1.5,
  height = (2993)/1.5,
  path = "./graficos",
  dpi = 300,
  # type = "cairo"
)

Tempo para esse code chunk ser rodado: 2.93 s

set.seed(2021)

data <- tibble(
  grupo = factor(
    c(rep(
      "Grupo 1", 100), 
      rep("Grupo 2", 250), 
      rep("Grupo 3", 25)
    )
  ),
  valor = c(seq(0, 20, length.out = 100),
            c(rep(0, 5), 
              rnorm(30, 2, .1), 
              rnorm(90, 5.4, .1), 
              rnorm(90, 14.6, .1), 
              rnorm(30, 18, .1), 
              rep(20, 5)
            ),
            rep(seq(0, 20, length.out = 5), 5))
) %>% 
  rowwise() %>%
  mutate(
    valor = if_else(
      grupo == "Grupo 2", valor + rnorm(1, 0, .4), 
      valor
      )
    )

## function to return median and labels
n_fun <- function(x){
  return(
    data.frame(
      y = median(x) - 1.25, 
      label = paste0(
        "n = ",length(x)
      )
    )
  )
}

Tempo para esse code chunk ser rodado: 0.06 s

(tukey_n_boxplot <- ggplot(data, 
                           aes(x = grupo, 
                               y = valor)
)+
  stat_boxplot(geom = 'errorbar',
               width = 0.15,
               position = position_dodge(width = 0.65))+
  geom_boxplot(fill = "grey92",
               width = 0.40,
               position = position_dodge(width = 0.65))+
  ## use summary function to add text labels
  stat_summary(
    geom = "text",
    fun.data = n_fun,
    # family = "Oswald",
    size = 5
  )+
  labs(
    title = "Tukey *boxplot*",
    x= NULL,
    # y="mg/L"
  )+
  # theme_grafs()+
  theme_bw()+
  theme(
    axis.text.y = element_text(
      angle = 90, 
      # size=15,
      # face=2
    ),
    plot.title = 
      element_markdown(
        hjust = 0.5,
        color = "black",
        size = 19)
  )
)

(tukey_boxplot <- ggplot(data, aes(x = grupo, 
                                   y = valor)) +
  stat_boxplot(geom = 'errorbar',
               width = 0.15,
               position = position_dodge(width = 0.65))+
  geom_boxplot(fill = "grey92",
               width = 0.40,
               position = position_dodge(width = 0.65)) +
  ## use either geom_point() or geom_jitter()
  geom_point(
    ## draw bigger points
    size = 2,
    ## add some transparency
    alpha = .25,
    ## add some jittering
    position = position_jitter(
      ## control randomness and range of jitter
      seed = 1, width = .2
    )
  )+
  theme_bw()+
  labs(
      title = "Tukey *boxplot*",
      x= NULL,
      # y="mg/L"
    )+
  # theme_grafs()+
  theme_bw()+
  theme(
        axis.text.y = element_text(
          angle = 90, 
          # size=15,
          # face=2
        ),
        plot.title = 
          element_markdown(
            hjust = 0.5,
            color = "black",
            size = 19)
    ))

Tempo para esse code chunk ser rodado: 1.31 s

data %>% 
  group_by(grupo) %>% 
  summarize(
    min = min(valor),
    P20 = quantile(valor, 0.20),
    q1 = quantile(valor, 0.25),
    mediana = median(valor),
    q3 = quantile(valor, 0.75),
    P80 = quantile(valor, 0.80),
    max = max(valor)
  ) %>% 
  t() %>% 
  row_to_names(row_number = 1)
##         Grupo 1      Grupo 2      Grupo 3     
## min     " 0.0000000" "-0.6345142" " 0.0000000"
## P20     "4.000000"   "5.057189"   "4.000000"  
## q1      "5.000000"   "5.245691"   "5.000000"  
## mediana "10.00000"   "10.01593"   "10.00000"  
## q3      "15.00000"   "14.81205"   "15.00000"  
## P80     "16.00000"   "15.04351"   "16.00000"  
## max     "20.0000"    "20.3882"    "20.0000"
(box_percentile_plot <- ggplot(data, 
       aes(x = grupo, y = valor)
       ) +
      stat_summary(
        fun.data = f,
        geom = 'errorbar',
        width = 0.15,
        position = position_dodge(width = 0.65),
      )+
      stat_summary(
        fun.data = f,
        geom = "boxplot",
        width = 0.40,
        fill = 'grey92',
        color = "black",
        outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
      )+
  # geom_boxplot(fill = "grey92") +
  ## use either geom_point() or geom_jitter()
  geom_point(
    ## draw bigger points
    size = 2,
    ## add some transparency
    alpha = .25,
    ## add some jittering
    position = position_jitter(
      ## control randomness and range of jitter
      seed = 1, width = .2
    )
  )+
  labs(
      title = "*Box Percentile-Plot*",
      x= NULL,
      # y="mg/L"
    )+
  # theme_grafs()+
  theme_bw()+
  theme(
        axis.text.y = element_text(
          angle = 90, 
          # size = 15,
          # face = 2
        ),
        plot.title = 
          element_markdown(
            hjust = 0.5,
            color = "black",
            size = 19)
    )
  )

grid.arrange(
  tukey_boxplot, box_percentile_plot, 
  ncol = 2
  )

fig_tukey_garrett <- plot_grid(tukey_boxplot, box_percentile_plot, 
                               labels = "AUTO")

Tempo para esse code chunk ser rodado: 4.2 s

ggsave(
  filename = "tukey_n_boxplot.png",
  plot = tukey_n_boxplot,
  units = c("px"),
  width = 4500,
  height = 2993,
  path = "./graficos",
  dpi = 300,
  # type = "cairo"
)

ggsave(
  filename = "tukey_boxplot.png",
  plot = tukey_boxplot,
  units = c("px"),
  width = 4500,
  height = 2993,
  path = "./graficos",
  dpi = 300,
  # type = "cairo"
)

ggsave(
  filename = "box_percentile_plot.png",
  plot = box_percentile_plot,
  units = c("px"),
  width = 4500,
  height = 2993,
  path = "./graficos",
  dpi = 300,
  # type = "cairo"
)

ggsave(
  filename = "fig_tukey_garrett.png",
  plot = fig_tukey_garrett,
  units = c("px"),
  width = 4500,
  height = 2993,
  path = "./graficos",
  dpi = 300,
  # type = "cairo"
)

Tempo para esse code chunk ser rodado: 4.8 s

LS0tDQp0aXRsZTogIlRDQyINCmF1dGhvcjogIkxlb25hcmRvIEZlcm5hbmRlcyBXaW5rIg0KZGF0ZTogImByIGZvcm1hdChTeXMudGltZSgpLCAnJWQvJW0vJVknKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGRpc3RpbGw6OmRpc3RpbGxfYXJ0aWNsZToNCiAgICBoaWdobGlnaHQ6IGhhZGRvY2sNCiAgICBrZWVwX21kOiB5ZXMNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRoZW1lOiBmbGF0bHkNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDoNCiAgICAgIGNvbGxhcHNlZDogbm8NCiAgICAgIHNtb290aF9zY3JvbGw6IG5vDQogICAgZmlnX3dpZHRoOiAxMA0KICAgIGZpZ19oZWlnaHQ6IDYuNjYNCiAgICBmaWdfY2FwdGlvbjogeWVzDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICBwZGZfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCiAgd29yZF9kb2N1bWVudDogDQogICAgdG9jOiB5ZXMNCiAgICBrZWVwX21kOiB5ZXMNCiAgZ2l0aHViX2RvY3VtZW50Og0KICAgIGh0bWxfcHJldmlldzogdHJ1ZQ0KYWx3YXlzX2FsbG93X2h0bWw6IHllcw0KZWRpdG9yX29wdGlvbnM6IA0KICBjaHVua19vdXRwdXRfdHlwZTogY29uc29sZQ0KZmlnLmFsaWduOiBjZW50ZXINCi0tLQ0KDQpgYGB7ciBSb3RpbmEgcHJhIHRvZGEgdmV6IHF1ZSBhYnJpciBvIGRvY3VtZW50bywgZWNobyA9IEZBTFNFfQ0KIyBBYnJpciBvIEdpdEh1YiBEZXNrdG9wDQojIFZlcmlmaWNhciBzZSBow6EgcHVsbCBwcmEgc2VyIGZlaXRvDQojIEFicmlyIG8gUlN0dWRpbw0KYGBgDQoNCiMgQnJpZWYgZXhwbGFuYXRpb24NCg0KRXZlcnkgYm94cGxvdCBtZWFucyBhIG1vbml0b3JpbmcgcG9pbnQgKFBvbnRvIGRlIG1vbml0b3JhbWVudG8gKG9yIFBNKSBpbiBwb3J0dWd1ZXNlKS4gTXkgZ29hbCBoZXJlIGlzIHRvIGFuYWx5emUgdGhlIGV2b2x1dGlvbiBiZXR3ZWVuIGRlY2FkZXMgb2YgZWFjaCB3YXRlciBxdWFsaXR5IHBhcmFtZXRlciB0aGF0IGNvbXBvdW5kcyB0aGUgV2F0ZXIgUXVhbGl0eSBJbmRleCAoV1FJKS4NCg0KVGhlIHJpdmVyIGZsb3dzIGluIHRoZSBlYXN0LXdlc3QgZGlyZWN0aW9uIGFzIHNob3duIGluIHRoZSBpbWFnZSBiZWxvdy4NCg0KIVtdKGltYWdlcy9wYXN0ZS03QUQ3MDI3Ri5wbmcpDQoNClRoZSBsb2dpYyBiZWhpbmQgdGhlIHNvcnRpbmcgaW4gdGhlIGJveHBsb3RzIGlzIGJlY2F1c2Ugb2YgMiBtYWluIHJlYXNvbnM6DQoNCjEuICBUaGUgb3JpZ2luYWwgbW9uaXRvcmluZyBwb2ludCBpc24ndCBlYXN5IHRvIHVuZGVyc3RhbmQgKDggZGlnaXRzLCBsaWtlIDg3NDA5OTAwKQ0KMi4gIENoYW5naW5nIHRoZSBvcmlnaW5hbCBub21lbmNsYXR1cmUgdG8gUE0xLCBQTTIgKC4uLikgbWFrZXMgaXQgZWFzaWVyIHRvIHVuZGVyc3RhbmQgdGhhdCB0aGUgbGFzdCBwb2ludCBoYXMgd2F0ZXIgY29udHJpYnV0aW9ucyBvZiBldmVyeSBvdGhlciBwb2ludCB1cHN0cmVhbS4NCg0KU29tZSBmZWF0dXJlcyB0aGF0IEkgd2FudCB0byBhZGQ6DQoNCi0gICBJZiB0aGUgcGFyYW1ldGVyIGlzIHgsIHRoZW4gdXNlIHgncyBjbGFzc2VzICh3aXRoIGl0cyBvd24gY2xhc3NlcyBiYWNrZ3JvdW5kIGNvbG9yIHBsb3R0ZWQpDQoNCi0gICBEZWZpbmUgdGhlIHRpbWVzY2FsZSwgc2hvdWxkIGFjdCBqdXN0IGxpa2UgYSBmaWx0ZXINCg0KYGBge3IgcDEgZXhhbXBsZSwgZXZhbD1GQUxTRX0NCiMgcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KIyAgIGZpbHRlcihhbm9fY29sZXRhID4gIjE5OTAiICYNCiMgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAwMCIpDQpgYGANCg0KIyBBbm90YcOnw7VlcyBkZSBjb2lzYXMgcG9yIGZhemVyOg0KDQotICAgRGVzY29icmlyIGNvbW8gY29sb2NhciBhcyBlc3Rhw6fDtWVzIG5vIHNlbnRpZG8gY29ycmV0byBtb250YW50ZSAtXD4ganVzYW50ZSBub3Mgc3Vtw6FyaW9zDQoNCj4gODczOTg1MDAsIDg3Mzk4OTgwLCA4NzM5ODkwMCwgODczOTg5NTAsIDg3NDA1NTAwLCA4NzQwNjkwMCwgODc0MDk5MDANCg0KLSAgIH5+QXByZW5kZXIgYSBzZWdtZW50YXIgbyBtZXUgZGF0YXNldCBwb3IgcGVyw61vZG9zfn4NCi0gICBhcHJlbmRlciBhIGNyaWFyIHVtYSBub3ZhIGNvbHVuYSBjb20gYSBzZWdtZW50YcOnw6NvIGRvcyBwZXLDrW9kb3MNCi0gICBtYXliZSB1c2UgYH5mYWNldC5ncmlkYA0KLSAgIGFwcmVuZGVyIGEgY29sb2NhciBhIGxlZ2VuZGEgZGVudHJvIGRvIGdyw6FmaWNvDQogICAgLSAgIHJlZHV6aXIgbyB0YW1hbmhvIGRhIGxlZ2VuZGENCi0gICB+fmNvcnJpZ2lyIG9zIHZhbG9yZXMgMCBkZSBJUUEgcHJhIE5Bfn4NCi0gICBkZXNjb2JyaXIgY29tbyBjb25zZWd1aXIgYSBlcXVhw6fDo28gZG8gbG0NCi0gICB+fmFwcmVuZGVyIGEgcGl2b3RhciBvIHN1bcOhcmlvfn4gLVw+IG1ldSBzdW3DoXJpbyBkbyBnb29nbGUgZG9jcyB0YSBiYXRlbmRvIGRpcmVpdGluaG8gY29tIG8gZG8gUg0KLSAgIGRlc2NvYnJpciBzZSBow6Egb3V0cm9zIFRDQ3MgY29tIGRpc3BvbmliaWxpemHDp8OjbyBkZSBjw7NkaWdvcw0KLSAgIH5+YE5hbW9uYCB0w6EgY29tIGNvbSBjYXNhIGRlY2ltYWwgYCIsImAgZSBgcHRvdGAgdMOhIGNvbSBgIi4iYH5+DQotICAgY29ycmVsYcOnw6NvIGZvcnRlIGVudHJlIGNvbmR1dGl2aWRhZGUgZSBOYW1vbi9QdG90L0RCTw0KDQp8IDE5OTAtMjAwMCB8IDIwMDAtMjAxMCB8IDIwMTAtMjAyMCB8DQp8Oi0tLS0tLS0tLTp8Oi0tLS0tLS0tLTp8Oi0tLS0tLS0tLTp8DQp8IDE5OTAtMjAwMCB8IDIwMDAtMjAxMCB8IDIwMTAtMjAyMCB8DQoNCiMgSW5zdGFsYXIgb3MgcGFjb3Rlcw0KDQpgYGB7ciBpbnN0YWxhciBwYWNvdGVzLCBldmFsPUZBTFNFfQ0KIyBpbnN0YWxsLnBhY2thZ2VzKHRpZHl2ZXJzZSkNCmBgYA0KDQojIyBhY2Vzc2FyIG9zIHBhY290ZXMNCg0KYGBge3IgQWNlc3NhciBvcyBwYWNvdGVzLCBtZXNzYWdlID0gRkFMU0UsIHdhcm5pbmcgPSBUUlVFfQ0KcGFjbWFuOjpwX2xvYWQocmVhZHIsIHJtYXJrZG93biwgcmVhZHhsLCBqYW5pdG9yLA0KICAgICAgICAgICAgICAgcGlsbGFyLCBkcGx5ciwgdGlkeXZlcnNlLA0KICAgICAgICAgICAgICAga25pdHIsIGthYmxlRXh0cmEsIHNlZSwNCiAgICAgICAgICAgICAgIGdyaWRFeHRyYSwgI21vZGVsc3VtbWFyeSwgDQogICAgICAgICAgICAgICBndHN1bW1hcnksIGdncGxvdDIsDQogICAgICAgICAgICAgICBnZ2JlZXN3YXJtLCBHR2FsbHksIGdndGV4dCwgY293cGxvdCwNCiAgICAgICAgICAgICAgIHJlcG9ydCkNCiMgcGFjbWFuOjpwX2xvYWQodGliYmxldGltZSkNCiMgY2l0ZV9wYWNrYWdlcygpDQpgYGANCg0KYGBge3IgY3Jvbm9tZXRyYW5kbyBxdWFudG8gdGVtcG8gY2FkYSBjaHVuayBsZXZhfQ0Ka25pdHI6OmtuaXRfaG9va3Mkc2V0KHRpbWVfaXQgPSBsb2NhbCh7DQogICBub3cgPC0gTlVMTA0KICAgZnVuY3Rpb24oYmVmb3JlLCBvcHRpb25zKSB7DQogICAgICBpZiAoYmVmb3JlKSB7DQogICAgICAgICAjIHJlY29yZCB0aGUgY3VycmVudCB0aW1lIGJlZm9yZSBlYWNoIGNodW5rDQogICAgICAgICBub3cgPDwtIFN5cy50aW1lKCkNCiAgICAgIH0gZWxzZSB7DQogICAgICAgICAjIGNhbGN1bGF0ZSB0aGUgdGltZSBkaWZmZXJlbmNlIGFmdGVyIGEgY2h1bmsNCiAgICAgICAgIHJlcyA8LSBkaWZmdGltZShTeXMudGltZSgpLCBub3cpDQogICAgICAgICAjIHJldHVybiBhIGNoYXJhY3RlciBzdHJpbmcgdG8gc2hvdyB0aGUgdGltZQ0KICAgICAgICAgcGFzdGUoIlRlbXBvIHBhcmEgZXNzZSBjb2RlIGNodW5rIHNlciByb2RhZG86Iiwgcm91bmQocmVzLCBkaWdpdHMgPSAyKSwgInMiKQ0KICAgICAgfQ0KICAgfQ0KfSkpDQoNCmtuaXRyOjpvcHRzX2NodW5rJHNldCh0aW1lX2l0ID0gVFJVRSkNCmBgYA0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCiMga25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCiMjIyByZWZlcmVuY2lhbmRvIG9zIHBhY290ZXMNCg0KYGBge3IgcmVmZXJlbmNpYW5kbyBvcyBwYWNvdGVzfQ0KdmVyc2lvbiR2ZXJzaW9uLnN0cmluZw0KIyBjaXRhdGlvbihwYWNrYWdlID0gInRpZHl2ZXJzZSIpDQpgYGANCg0KIyMgaW1wb3J0YW5kbyBhIHBsYW5pbGhhDQoNCmBgYHtyIEltcG9ydGFuZG8gYSBwbGFuaWxoYSwgZWNobyA9IEZBTFNFLCBtZXNzYWdlID0gVFJVRSwgd2FybmluZyA9IEZBTFNFfQ0KcGxhbl93aWRlXzE5OTAyMDIwIDwtIHJlYWRfZGVsaW0oImh0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9sZW9uYXJkb2Z3aW5rL1RDQ19naC9tYWluL3BsYW5fd2lkZV8xOTkwMjAyMC50c3YiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVsaW0gPSAiXHQiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVzY2FwZV9kb3VibGUgPSBGQUxTRSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbF90eXBlcyA9IGNvbHMoDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIEFsY2FsaW5pZGFkZSA9IGNvbF9kb3VibGUoKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ09ESUdPID0gY29sX2NoYXJhY3RlcigpLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ09PUkRfR0VPX0xBVF9HUkFVID0gY29sX2RvdWJsZSgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDT09SRF9HRU9fTE9OR19HUkFVID0gY29sX2RvdWJsZSgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBEQVRBX0NPTEVUQSA9IGNvbF9kYXRlKGZvcm1hdCA9ICIlZC8lbS8lWSIpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBOaXRyYXRvID0gY29sX2RvdWJsZSgpLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTml0cml0byA9IGNvbF9kb3VibGUoKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU0RUID0gY29sX2RvdWJsZSgpLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgU1NUID0gY29sX2RvdWJsZSgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBgVmF6YW9gID0gY29sX2RvdWJsZSgpLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYFZhemFvIHJpb2AgPSBjb2xfZG91YmxlKCkNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2NhbGUgPSBsb2NhbGUoDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRhdGVfbmFtZXMgPSAicHQiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVjaW1hbF9tYXJrID0gIiwiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBncm91cGluZ19tYXJrID0gIiINCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0cmltX3dzID0gVFJVRQ0KKSAlPiUgDQogIGphbml0b3I6OmNsZWFuX25hbWVzKCkgJT4lIA0KICByZW5hbWUoDQogICAgcEggPSBwX2gsDQogICAgaXFhX3BIID0gaXFhX3BfaCwNCiAgICBpcWFfcEhfMiA9IGlxYV9wX2hfMg0KICApICU+JSANCiAgbXV0YXRlKA0KICAgIHBvbnRvX21vbml0b3JhbWVudG8gPSBjYXNlX3doZW4oDQogICAgICBjb2RpZ28gPT0gIjg3Mzk4NTAwIiB+ICJQTTEiLA0KICAgICAgY29kaWdvID09ICI4NzM5ODk4MCIgfiAiUE0yIiwNCiAgICAgIGNvZGlnbyA9PSAiODczOTg5MDAiIH4gIlBNMyIsDQogICAgICBjb2RpZ28gPT0gIjg3Mzk4OTUwIiB+ICJQTTQiLA0KICAgICAgY29kaWdvID09ICI4NzQwNTUwMCIgfiAiUE01IiwNCiAgICAgIGNvZGlnbyA9PSAiODc0MDY5MDAiIH4gIlBNNiIsDQogICAgICBjb2RpZ28gPT0gIjg3NDA5OTAwIiB+ICJQTTciDQogICAgKQ0KICApICU+JSANCiAgc2VsZWN0KGNvZGlnbywgcG9udG9fbW9uaXRvcmFtZW50bywgZXZlcnl0aGluZygpKSAlPiUgI3Jlb3JkZW5hbmRvIGNvbHVuYXMNCiAgYXJyYW5nZShkYXRhX2NvbGV0YSwgcG9udG9fbW9uaXRvcmFtZW50bykNCiMgdGVzdGUgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KIyAgIGRwbHlyOjpmaWx0ZXIoZGF0YV9jb2xldGEgPj0gYXMuUE9TSVhjdCgiMjAxMC0wMS0wMSIpKSAjdGhpcyB3b3Jrcw0KYGBgDQoNCmBgYHtyIFZpc3VhbGl6YcOnw6NvIGRhIHBsYW5pbGhhIGltcG9ydGFkYSwgZWNobyA9IEZBTFNFfQ0KcGFnZWRfdGFibGUocGxhbl93aWRlXzE5OTAyMDIwLA0KICAgICAgICAgICAgb3B0aW9ucyA9IGxpc3Qocm93cy5wcmludCA9IDE1LA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgY29scy5wcmludCA9IDEwKSkNCmBgYA0KDQojIGRhdGEgd3JhbmdsaW5nDQoNCkNvbW8gaMOhIGRhZG9zIGZhbHRhbnRlcywgbm8gY8OhbGN1bG8gZW50cmUgbyBwcm9kdXRvIGRhcyBjb2x1bmFzLCBvIFIgYWNhYmEgaW50ZXJwcmV0YW5kbyBjb21vIHNlIGZvc3NlIHplcm8sIG1hcyBuYSB2ZXJkYWRlIMOpIGBOQWAuDQoNCmBgYHtyIGRhdGEgd3JhbmdsaW5nfQ0KcGxhbl93aWRlXzE5OTAyMDIwIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICBtdXRhdGUoaXFhID0gaWZlbHNlKGlxYSA9PSAwLCBOQSwgaXFhKSkNCg0KcGFyYW1ldHJvc19JUUEgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICBzZWxlY3QoDQogICAgY29kaWdvLA0KICAgIHBvbnRvX21vbml0b3JhbWVudG8sDQogICAgcEgsDQogICAgb3hpZ2VuaW9fZGlzc29sdmlkbywNCiAgICBkYm8sDQogICAgZm9zZm9yb190b3RhbCwNCiAgICBlc2NoZXJpY2hpYV9jb2xpLA0KICAgIG5pdHJvZ2VuaW9fYW1vbmlhY2FsLA0KICAgIG5pdHJvZ2VuaW9fa2plbGRhaGwsDQogICAgbml0cm9nZW5pb190b3RhbCwNCiAgICB0dXJiaWRleiwNCiAgICB0ZW1wZXJhdHVyYV9hZ3VhLA0KICAgIHNvbGlkb3NfdG90YWlzLA0KICAgIGNvbmR1dGl2aWRhZGUsDQogICAgYW5vX2NvbGV0YQ0KICApDQoNCndyaXRlLmNzdihwYXJhbWV0cm9zX0lRQSwNCiAgICAgICAgICAiLi9wYXJhbWV0cm9zX0lRQS5jc3YiLA0KICAgICAgICAgIHJvdy5uYW1lcyA9IEZBTFNFKQ0KYGBgDQoNCmBgYHtyIGZ1dHVybyBjYWxjdWxvIGRlIElRQSwgaW5jbHVkZSA9IEZBTFNFfQ0KcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgc2VsZWN0KHN0YXJ0c193aXRoKCJpcWFfIikpICU+JSANCiAgbXV0YXRlKA0KICAgIHRlc3RlX2lxYV9jYWxjID0gcHJvZCgpICNxdWVyaWEgdGVudGFyIGdlcmFyIG8gcHJvZHV0w7NyaW8gZW50cmUgYXMgY29sdW5hcyBxdWUgasOhIHBvc3N1ZW0gbyBJUUFeMg0KICApDQpgYGANCg0KYGBge3IgQ8OzZGlnb3MgR2l0LCBlY2hvID0gRkFMU0UsIGluY2x1ZGU9RkFMU0V9DQojIGNkIG15cmVwbw0KIyBscw0KIyBoZWFkIFJFQURNRS5tZA0KIyBnaXQgc3RhdHVzDQojIGdpdCBhZGQgUkVBRE1FLm1kDQojIGdpdCBjb21taXQgLW0gIkEgY29tbWl0IGZyb20gbXkgbG9jYWwgY29tcHV0ZXIiDQojIA0KIyBjZCAuLiAjIHZvbHRhciBwcm8gZGlyZXTDs3JpbyBhY2ltYQ0KIyBybSAtcmYgbXlyZXBvLyAjcmVtb3Zlci9hcGFnYXIgYSBwYXN0YSBteXJlcG8NCmBgYA0KDQpgYGB7ciBBcHJlbmRlbmRvIEdpdCwgZWNobyA9IEZBTFNFLCBpbmNsdWRlPUZBTFNFfQ0KIyBzbGlkZXMgZGEgYmlhIHF1ZSBhanVkYW0gbXQNCiMgaHR0cHM6Ly9iZWF0cml6bWlsei5naXRodWIuaW8vc2xpZGVzUi9naXRfcnN0dWRpby8xMS0yMDIxLUVOQ0UuaHRtbCMyMA0KIyBhcHJlbmRlbmRvIGEgc2luY3Jvbml6YXIgdXNhbmRvIGVzc2UgZ3VpYSAtPiANCiMgaHR0cHM6Ly9oYXBweWdpdHdpdGhyLWNvbS50cmFuc2xhdGUuZ29vZy9wdXNoLXB1bGwtZ2l0aHViLmh0bWw/X3hfdHJfc2w9YXV0byZfeF90cl90bD1wdCZfeF90cl9obD1wdC1CUg0KIyBsaWJyYXJ5KHVzZXRoaXMpDQojIHVzZXRoaXM6OmNyZWF0ZV9naXRodWJfdG9rZW4oKSBjcmlhciB1bSBjw7NkaWdvIHByYSBhY2Vzc28gZSBzaW5jcm9uaXphw6fDo28gYmV0d2VlbiBSIGUgZ2l0aHViDQoNCiMgZ2l0Y3JlZHM6OmdpdGNyZWRzX3NldCgpIA0KIyANCiMgdXNlX2dpdF9jb25maWcodXNlci5uYW1lID0gImxlb25hcmRvZndpbmsiLA0KIyAgICAgICAgICAgICAgICB1c2VyLmVtYWlsID0gImxlb25hcmRvZndpbmtAZ21haWwuY29tIikNCiMgdXNldGhpczo6Z2hfdG9rZW5faGVscCgpDQoNCiMgQ29tbyBtb3N0cmFyIG9zIGRhZG9zIGRlIHVtIGFycXVpdm8gdmlhIEdpdC9HaXRIdWINCiMgZ2l0IGNsb25lIGh0dHBzOi8vZ2l0aHViLmNvbS9sZW9uYXJkb2Z3aW5rL215cmVwby5naXQNCiMgY2QgbXlyZXBvICNhY2Vzc2EgYSBwYXN0YSBteXJlcG8NCiMgbHMgI2xpc3RhIG9zIGFycXVpdm9zIGRhIHBhc3RhIA0KIyBoZWFkIFJFQURNRS5tZCAjbW9zdHJhIGFzIHByaW1laXJhcyBvYnNlcnZhw6fDtWVzIGRvIGFycXVpdm8NCg0KIyBDb21vIG1vc3RyYXIgb3MgZGFkb3MgZGUgdW0gYXJxdWl2byB2aWEgUg0KIyBoZWFkKEM6L1VzZXJzL0zDqW8vbXlyZXBvL1JFQURNRS5tZCkNCg0KIyBBZGljaW9uYXIgdW1hIGxpbmhhIGFvIFJFQURNRS5tZCBlIHZlcmlmaWNhciBzZSBvIEdpdCBwZXJjZWJlIGEgbXVkYW7Dp2ENCiMgZWNobyAiQSBsaW5lIEkgd3JvdGUgb24gbXkgbG9jYWwgY29tcHV0ZXIiID4+IFJFQURNRS5tZA0KIyBnaXQgc3RhdHVzDQojIyBDOlxVc2Vyc1xMw6lvXG15cmVwbz5naXQgc3RhdHVzDQojIyBPbiBicmFuY2ggbWFpbg0KIyMgWW91ciBicmFuY2ggaXMgdXAgdG8gZGF0ZSB3aXRoICdvcmlnaW4vbWFpbicuDQojIyANCiMjIENoYW5nZXMgbm90IHN0YWdlZCBmb3IgY29tbWl0Og0KIyMgICAodXNlICJnaXQgYWRkIDxmaWxlPi4uLiIgdG8gdXBkYXRlIHdoYXQgd2lsbCBiZSBjb21taXR0ZWQpDQojIyAgICh1c2UgImdpdCByZXN0b3JlIDxmaWxlPi4uLiIgdG8gZGlzY2FyZCBjaGFuZ2VzIGluIHdvcmtpbmcgZGlyZWN0b3J5KQ0KIyMgICAgICAgICAqKm1vZGlmaWVkOiAgIFJFQURNRS5tZCoqDQojIyANCiMjIG5vIGNoYW5nZXMgYWRkZWQgdG8gY29tbWl0ICh1c2UgImdpdCBhZGQiIGFuZC9vciAiZ2l0IGNvbW1pdCAtYSIpDQpgYGANCg0KIyBzZXR0aW5nIHRoZW1lDQoNCmBgYHtyIHNldHRpbmcgdGhlbWV9DQp0aGVtZV9ncmFmcyA8LSBmdW5jdGlvbihiZyA9ICJ3aGl0ZSIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgY29sb3JhY2FvX2xldHJhID0gImJsYWNrIil7DQogIHRoZW1lKA0KICAgIHBsb3QudGl0bGUgPSANCiAgICAgIGVsZW1lbnRfdGV4dCgNCiAgICAgICAgaGp1c3QgPSAwLjUsDQogICAgICAgIGNvbG9yID0gY29sb3JhY2FvX2xldHJhLA0KICAgICAgICBzaXplID0gMTkpLA0KICAgIA0KICAgIGF4aXMudGl0bGUueCA9IA0KICAgICAgIyBlbGVtZW50X3RleHQoDQogICAgICAjIGNvbG9yID0gY29sb3JhY2FvX2xldHJhLA0KICAgICAgIyBzaXplID0gMTUsDQogICAgICAjIGFuZ2xlID0gMCwpLA0KICAgICAgZWxlbWVudF9ibGFuaygpLA0KICAgIGF4aXMudGl0bGUueSA9IGVsZW1lbnRfdGV4dCgNCiAgICAgIGNvbG9yID0gY29sb3JhY2FvX2xldHJhLA0KICAgICAgc2l6ZSA9IDE1LA0KICAgICAgYW5nbGUgPSA5MCksDQogICAgDQogICAgYXhpcy50ZXh0LnggPSBlbGVtZW50X3RleHQoDQogICAgICBjb2xvciA9IGNvbG9yYWNhb19sZXRyYSwNCiAgICAgIHNpemUgPSAxNyksDQogICAgYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoDQogICAgICBjb2xvciA9IGNvbG9yYWNhb19sZXRyYSwNCiAgICAgIHNpemUgPSAxNywNCiAgICAgIGFuZ2xlID0gMCksDQogICAgDQogICAgc3RyaXAuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChmaWxsID0gYmcsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsaW5ldHlwZSA9IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzaXplID0gMC41LA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sb3IgPSAiYmxhY2siKSwNCiAgICBzdHJpcC50ZXh0ID0gZWxlbWVudF90ZXh0KHNpemUgPSAxNyksDQogICAgcGFuZWwuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChmaWxsID0gYmcpLA0KICAgIHBsb3QuYmFja2dyb3VuZCA9IGVsZW1lbnRfcmVjdChmaWxsID0gYmcpLA0KICAgIHBsb3QubWFyZ2luID0gbWFyZ2luKGwgPSA1LCByID0gMTAsDQogICAgICAgICAgICAgICAgICAgICAgICAgYiA9IDUsIHQgPSA1KQ0KICApDQp9DQpgYGANCg0KIyBzZXR0aW5nIGRpZmZlcmVudCB0aW1lc2NhbGVzDQoNCmBgYHtyIHNldHRpbmcgcGVyaW9kb3MsIGVjaG8gPSBUUlVFfQ0KcGxhbl93aWRlXzE5OTAyMDIwIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogIG11dGF0ZSgNCiAgICBwZXJpb2RvID0gaWZfZWxzZSgNCiAgICAgIGFub19jb2xldGEgPD0gMjAwMCwgDQogICAgICAiMTk5MC0yMDAwIiwNCiAgICAgIGlmX2Vsc2UoDQogICAgICAgIGFub19jb2xldGEgPD0gMjAxMCwNCiAgICAgICAgIjIwMDAtMjAxMCIsDQogICAgICAgICIyMDEwLTIwMjAiDQogICAgICApDQogICAgKQ0KICApDQpgYGANCg0KIyBzZXR0aW5nIHN1bWFyaWVzDQoNCmBgYHtyIFN1bcOhcmlvcywgZWNobyA9IEZBTFNFfQ0Kc3VtYXJpbyA8LSBmdW5jdGlvbihkYWRvcyA9IHBsYW5fd2lkZV8xOTkwMjAyMCwgcGFyYW1ldHJvID0gIiIpIHsNCiAgZGFkb3MgJT4lIA0KICAgICMgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAjICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIikgJT4lDQogICAgZ3JvdXBfYnkocG9udG9fbW9uaXRvcmFtZW50bykgJT4lDQogICAgc3VtbWFyaXplKA0KICAgICAgbWluID0NCiAgICAgICAgbWluKHBhcmFtZXRybywNCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBwMDUgPSANCiAgICAgICAgcXVhbnRpbGUocGFyYW1ldHJvLCAwLjA1LA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgcDIwID0NCiAgICAgICAgcXVhbnRpbGUocGFyYW1ldHJvLCAwLjIwLA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWVkaWFuID0NCiAgICAgICAgbWVkaWFuKHBhcmFtZXRybywNCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0NCiAgICAgICAgbWVhbihwYXJhbWV0cm8sDQogICAgICAgICAgICAgbmEucm09IFRSVUUpLA0KICAgICAgcDgwID0NCiAgICAgICAgcXVhbnRpbGUocGFyYW1ldHJvLCAwLjgwLA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgcDk1ID0NCiAgICAgICAgcXVhbnRpbGUocGFyYW1ldHJvLCAwLjk1LA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0NCiAgICAgICAgbWF4KHBhcmFtZXRybywNCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSkNCiAgICAgICkNCn0NCmBgYA0KDQojIEZ1bsOnw7Vlcw0KDQojIyBjcmlhbmRvIGZ1bsOnw6NvIHBhcmEgZ2VyYXIgYm94cGxvdHMgY29tIHBlcmNlbnRpbCAyMCBlIDgwDQoNCmBgYHtyIGZ1bmNhbyBwZXJjZW50aWwgODB9DQpmIDwtIGZ1bmN0aW9uKHgpIHsNCiAgciA8LSBxdWFudGlsZSh4LCBwcm9icyA9IGMoMC4wNSwgMC4yMCwgMC41MCwgMC44MCwgMC45NSkpDQogIG5hbWVzKHIpIDwtIGMoInltaW4iLCAibG93ZXIiLCAibWlkZGxlIiwgInVwcGVyIiwgInltYXgiKQ0KICByZXR1cm4ocikNCn0NCmBgYA0KDQojIyBPeGlnw6puaW8gRGlzc29sdmlkbw0KDQpgYGB7ciBnZXJhbmRvIGZ1bmN0aW9uIGdyYWYgb2QsIGVjaG8gPSBGQUxTRX0NCmJveHBsb3Rfb2QgPC0gZnVuY3Rpb24oZGFkb3MgPSBwbGFuX3dpZGVfMTk5MDIwMjAsIGVpeG9feCA9IGNvZGlnbywgZWl4b195ID0gb3hpZ2VuaW9fZGlzc29sdmlkbywgdGl0dWxvID0gIk94aWfDqm5pbyBEaXNzb2x2aWRvIil7DQogIGdncGxvdDI6OmdncGxvdCgNCiAgICBkYXRhID0gZGFkb3MsDQogICAgYWVzKA0KICAgICAgeCA9IHt7ZWl4b194fX0sDQogICAgICB5ID0ge3tlaXhvX3l9fQ0KICAgICkNCiAgKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbiA9IC1JbmYsIHhtYXggPSBJbmYsDQogICAgICAgICAgICAgeW1pbiA9IC1JbmYsIHltYXggPSAyLA0KICAgICAgICAgICAgIGFscGhhID0gMSwNCiAgICAgICAgICAgICBmaWxsID0gIiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluID0gLUluZiwgeG1heCA9IEluZiwNCiAgICAgICAgICAgICB5bWluID0gMiwgeW1heCA9IDQsDQogICAgICAgICAgICAgYWxwaGEgPSAxLA0KICAgICAgICAgICAgIGZpbGwgPSAiI2ViNTY2MSIpKyAjY2xhc3NlIDQNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbiA9IC1JbmYsIHhtYXggPSBJbmYsDQogICAgICAgICAgICAgeW1pbiA9IDQsIHltYXggPSA1LA0KICAgICAgICAgICAgIGFscGhhID0gMSwNCiAgICAgICAgICAgICBmaWxsID0gIiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW4gPSAtSW5mLCB4bWF4ID0gSW5mLA0KICAgICAgICAgICAgIHltaW4gPSA1LCB5bWF4ID0gNiwNCiAgICAgICAgICAgICBhbHBoYSA9IDEsDQogICAgICAgICAgICAgZmlsbCA9ICIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluID0gLUluZiwgeG1heCA9IEluZiwNCiAgICAgICAgICAgICB5bWluPSA2LCB5bWF4ID0gSW5mLA0KICAgICAgICAgICAgIGFscGhhID0gMSwNCiAgICAgICAgICAgICBmaWxsID0gIiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICAgc3RhdF9zdW1tYXJ5KA0KICAgICAgZnVuLmRhdGEgPSBmLA0KICAgICAgZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgICB3aWR0aCA9IDAuMywNCiAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICApKw0KICAgIHN0YXRfc3VtbWFyeSgNCiAgICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgIGdlb20gPSAiYm94cGxvdCIsDQogICAgICB3aWR0aCA9IDAuNywNCiAgICAgIGZpbGwgPSAnI0Y4RjhGRicsDQogICAgICBjb2xvciA9ICJibGFjayIsDQogICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICApKw0KICAgICMgZmFjZXRfd3JhcCh+cGVyaW9kbykrDQogICAgbGFicygNCiAgICAgIHRpdGxlID0gdGl0dWxvLA0KICAgICAgeD0gTlVMTCwNCiAgICAgIHk9Im1nL0wiDQogICAgKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgc2l6ZSA9IDEuMiwNCiAgICAgIGFscGhhID0gLjI1LA0KICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV95X2NvbnRpbnVvdXMoDQogICAgICBleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMCwwKSksDQogICAgICBuLmJyZWFrcyA9IDExLA0KICAgICAgbGltaXRzID0gYygtMC4zLDIxKQ0KICAgICkrDQogICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICApKw0KICAgIGdlb21fc21vb3RoKA0KICAgICAgbWV0aG9kID0gImxtIiwNCiAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgYWVzKGdyb3VwID0gMSksDQogICAgICBhbHBoYSA9IC41LA0KICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgc2l6ZSA9IDENCiAgICApKw0KICAgIHRoZW1lX2dyYWZzKCkNCn0NCmBgYA0KDQojIyBEQk8NCg0KYGBge3IgZ2VyYW5kbyBmdW5jdGlvbiBncmFmIGRibywgZWNobyA9IEZBTFNFfQ0KYm94cGxvdF9kYm8gPC0gZnVuY3Rpb24oZGFkb3MgPSBwbGFuX3dpZGVfMTk5MDIwMjAsIGVpeG9feCA9IGNvZGlnbywgZWl4b195ID0gZGJvLCB0aXR1bG8gPSAiRGVtYW5kYSBCaW9xdcOtbWljYSBkZSBPeGlnw6puaW8iKXsNCiAgZ2dwbG90Mjo6Z2dwbG90KA0KICAgIGRhdGEgPSBkYWRvcywNCiAgICBhZXMoDQogICAgICB4ID0ge3tlaXhvX3h9fSwNCiAgICAgIHkgPSB7e2VpeG9feX19DQogICAgKQ0KICApKw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTAsIHltYXg9SW5mLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2FjNTA3OSIpKyAjPnBpb3IgY2xhc3NlDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj01LCB5bWF4PTEwLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLCB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTMsIHltYXg9NSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM3MGMxOGMiKSsgI2NsYXNzZSAyDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0wLCB5bWF4PTMsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgIHN0YXRfc3VtbWFyeSgNCiAgICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgIGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgd2lkdGggPSAwLjMsDQogICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICAgKSsNCiAgICBzdGF0X3N1bW1hcnkoDQogICAgICBmdW4uZGF0YSA9IGYsDQogICAgICBnZW9tID0gImJveHBsb3QiLA0KICAgICAgd2lkdGggPSAwLjcsDQogICAgICBmaWxsID0gJyNGOEY4RkYnLA0KICAgICAgY29sb3IgPSAiYmxhY2siLA0KICAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICAgKSsNCiAgICAjIGZhY2V0X3dyYXAofnBlcmlvZG8pKw0KICAgIGxhYnModGl0bGUgPSB0aXR1bG8sDQogICAgICAgICB4PSJFc3Rhw6fDo28iLA0KICAgICAgICAgeT0ibWcvTCIsDQogICAgICAgICBjYXB0aW9uID0gIkxlb25hcmRvIEZlcm5hbmRlcyBXaW5rIg0KICAgICkrDQogICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgIHNpemUgPSAxLjIsDQogICAgICBhbHBoYSA9IC4yNSwNCiAgICAgIHdpZHRoID0gLjA3LA0KICAgICkrDQogICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5ODAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDU1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICApKw0KICAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMC4wMywwLjAzKSksDQogICAgICAgICAgICAgICAgICAgICAgIG4uYnJlYWtzID0gOCwNCiAgICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygxLDEwMCksDQogICAgICAgICAgICAgICAgICAgICAgIHRyYW5zID0gImxvZzEwIikrDQogICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgICB0aGVtZV9ncmFmcygpDQp9DQpgYGANCg0KIyMgUHRvdA0KDQpgYGB7ciBnZXJhbmRvIGZ1bmN0aW9uIGdyYWYgcHRvdCwgZWNobyA9IEZBTFNFfQ0KYm94cGxvdF9wdG90IDwtIGZ1bmN0aW9uKGRhZG9zID0gcGxhbl93aWRlXzE5OTAyMDIwLCBlaXhvX3ggPSBjb2RpZ28sIGVpeG9feSA9IGZvc2Zvcm9fdG90YWwsIHRpdHVsbyA9ICJGw7NzZm9ybyB0b3RhbCIpew0KICBnZ3Bsb3QyOjpnZ3Bsb3QoDQogICAgZGF0YSA9IGRhZG9zLA0KICAgIGFlcygNCiAgICAgIHggPSB7e2VpeG9feH19LA0KICAgICAgeSA9IHt7ZWl4b195fX0NCiAgICApDQogICkrDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgIHltaW49MC4xNSwNCiAgICAgICAgICAgIHltYXg9SW5mLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTAuMSwNCiAgICAgICAgICAgIHltYXg9MC4xNSwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTAsDQogICAgICAgICAgICB5bWF4PTAuMSwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgIHdpZHRoID0gMC4zLA0KICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICApKw0KICAgc3RhdF9zdW1tYXJ5KA0KICAgICBmdW4uZGF0YSA9IGYsDQogICAgIGdlb20gPSAiYm94cGxvdCIsDQogICAgIHdpZHRoID0gMC43LA0KICAgICBmaWxsID0gJyNGOEY4RkYnLA0KICAgICBjb2xvciA9ICJibGFjayIsDQogICAgIG91dGxpZXIuc2hhcGUgPSBOQSwgI3NlIGRlaXhhciBOQSBmaWNhIHPDsyBvIGppdHRlciwgc2UgbsOjbywgZGVpeGEgMQ0KICAgKSsNCiAgICBsYWJzKHRpdGxlID0gdGl0dWxvLA0KICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9Im1nL0wiKSsNCiAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMC4wMywwLjAzKSksDQogICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA4LA0KICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMobWluKHBsYW5fd2lkZV8xOTkwMjAyMCRmb3Nmb3JvX3RvdGFsLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4KHBsYW5fd2lkZV8xOTkwMjAyMCRmb3Nmb3JvX3RvdGFsKSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICB0cmFucyA9ICJsb2cxMCIsDQogICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gc2NhbGVzOjpudW1iZXJfZm9ybWF0KGFjY3VyYWN5ID0gLjAwMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVjaW1hbC5tYXJrID0gIiwiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiaWcubWFyayA9ICIgIikNCiAgICAgICAgICAgICAgICAgICAgICApKw0KICAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgICAgc2l6ZSA9IDEuMiwNCiAgICAgICBhbHBoYSA9IC4yNSwNCiAgICAgICB3aWR0aCA9IC4wNywNCiAgICApKw0KICAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICAgKSsNCiAgICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgIHRoZW1lX2dyYWZzKCkNCn0NCmBgYA0KDQojIyBFIGNvbGkNCg0KYGBge3IgZnVuY2FvLWdyYWYtZWNvbGksIGVjaG8gPSBGQUxTRX0NCmJveHBsb3RfZWNvbGkgPC0gZnVuY3Rpb24oZGFkb3MgPSBwbGFuX3dpZGVfMTk5MDIwMjAsIGVpeG9feCA9IGNvZGlnbywgZWl4b195ID0gZXNjaGVyaWNoaWFfY29saSwgdGl0dWxvID0gIipFc2NoZXJpY2hpYSBjb2xpKiIpew0KICBnZ3Bsb3QyOjpnZ3Bsb3QoDQogICAgZGF0YSA9IGRhZG9zLA0KICAgIGFlcygNCiAgICAgIHggPSB7e2VpeG9feH19LA0KICAgICAgeSA9IHt7ZWl4b195fX0NCiAgICApDQogICkrDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0zMjAwLCB5bWF4PUluZiwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTgwMCwgeW1heD0zMjAwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0xNjAsIHltYXg9ODAwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiM3MGMxOGMiKSsgI2NsYXNzZSAyDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0wLCB5bWF4PTE2MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgc3RhdF9zdW1tYXJ5KA0KICAgICBmdW4uZGF0YSA9IGYsDQogICAgIGdlb20gPSAnZXJyb3JiYXInLA0KICAgICB3aWR0aCA9IDAuMywNCiAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgKSsNCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gImJveHBsb3QiLA0KICAgICB3aWR0aCA9IDAuNywNCiAgICAgZmlsbCA9ICcjRjhGOEZGJywNCiAgICAgY29sb3IgPSAiYmxhY2siLA0KICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICkrDQogICAjIGZhY2V0X3dyYXAofnBlcmlvZG8pKw0KICAgbGFicyh0aXRsZSA9IHRpdHVsbywNCiAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgeT0iTk1QLzEwMG1MIikrDQogICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDEsIDAuMDEpKSwNCiAgICAgICAgICAgICAgICAgICAgICAjIG4uYnJlYWtzID0gOSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDYsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYyhtaW4ocGxhbl93aWRlXzE5OTAyMDIwJGVzY2hlcmljaGlhX2NvbGksIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXgocGxhbl93aWRlXzE5OTAyMDIwJGVzY2hlcmljaGlhX2NvbGksIG5hLnJtID0gVFJVRSkpLA0KICAgICAgICAgICAgICAgICAgICAgIHRyYW5zID0gImxvZzEwIiwNCiAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBzY2FsZXM6Om51bWJlcl9mb3JtYXQoYWNjdXJhY3kgPSAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkZWNpbWFsLm1hcmsgPSAiLCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJpZy5tYXJrID0gIiAiKSkrDQogICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICBzaXplID0gMS4yLA0KICAgICBhbHBoYSA9IC4yNSwNCiAgICAgd2lkdGggPSAuMDcsDQogICApKw0KICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgKSsNCiAgIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIsDQogICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgIGFscGhhPS41LA0KICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgdGhlbWVfZ3JhZnMoKSsNCiAgICB0aGVtZSgNCiAgICAgICAgYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoDQogICAgICAgICAgYW5nbGUgPSA5MCwgDQogICAgICAgICAgIyBzaXplPTE1LA0KICAgICAgICAgICMgZmFjZT0yDQogICAgICAgICksDQogICAgICAgIHBsb3QudGl0bGUgPSANCiAgICAgICAgICBlbGVtZW50X21hcmtkb3duKA0KICAgICAgICAgICAgaGp1c3QgPSAwLjUsDQogICAgICAgICAgICBjb2xvciA9ICJibGFjayIsDQogICAgICAgICAgICBzaXplID0gMTkpDQogICAgKQ0KfQ0KYGBgDQoNCiMjIE5pdHJvZ8OqbmlvIEFtb25pYWNhbA0KDQpgYGB7ciBnZXJhbmRvIGZ1bmN0aW9uIGdyYWYgbmFtb24sIGVjaG8gPSBGQUxTRX0NCmJveHBsb3RfbmFtb24gPC0gZnVuY3Rpb24oZGFkb3MgPSBwbGFuX3dpZGVfMTk5MDIwMjAsIGVpeG9feCA9IGNvZGlnbywgZWl4b195ID0gbml0cm9nZW5pb19hbW9uaWFjYWwsIHRpdHVsbyA9ICJOaXRyb2fDqm5pbyBBbW9uaWFjYWwiKXsNCiAgZ2dwbG90Mjo6Z2dwbG90KA0KICAgIGRhdGEgPSBkYWRvcywNCiAgICBhZXMoDQogICAgICB4ID0ge3tlaXhvX3h9fSwNCiAgICAgIHkgPSB7e2VpeG9feX19DQogICAgKQ0KICApKw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTEzLjMsDQogICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0zLjcsDQogICAgICAgICAgICB5bWF4PTEzLjMsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0wLA0KICAgICAgICAgICAgeW1heD0zLjcsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgd2lkdGggPSAwLjMsDQogICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICkrDQogICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICJib3hwbG90IiwNCiAgICAgd2lkdGggPSAwLjcsDQogICAgIGZpbGwgPSAnI0Y4RjhGRicsDQogICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICApKw0KICAgIyBmYWNldF93cmFwKH5wZXJpb2RvKSsNCiAgIGxhYnModGl0bGUgPSB0aXR1bG8sDQogICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgIHk9Im1nL0wiKSsNCiAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMC4wMSwgMC4wNSkpLA0KICAgICAgICAgICAgICAgICAgICAgIG4uYnJlYWtzID0gOSwNCiAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKG1pbihwbGFuX3dpZGVfMTk5MDIwMjAkbml0cm9nZW5pb19hbW9uaWFjYWwsIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXgocGxhbl93aWRlXzE5OTAyMDIwJG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCBuYS5ybSA9IFRSVUUpKSwNCiAgICAgICAgICAgICAgICAgICAgICB0cmFucyA9ICJsb2cxMCIsDQogICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gc2NhbGVzOjpudW1iZXJfZm9ybWF0KGFjY3VyYWN5ID0gLjAwMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVjaW1hbC5tYXJrID0gIiwiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiaWcubWFyayA9ICIgIikpKw0KICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgc2l6ZSA9IDEuMiwNCiAgICAgYWxwaGEgPSAuMjUsDQogICAgIHdpZHRoID0gLjA3LA0KICAgKSsNCiAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5ODAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDU1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICkrDQogICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgc2U9RkFMU0UsICNzZSBkZWl4YXIgVFJVRSBnZXJhIG8gaW50ZXJ2YWxvIGRlIGNvbmZpYW7Dp2EgZGUgOTUlDQogICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSwNCiAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgIHRoZW1lX2dyYWZzKCkNCn0NCmBgYA0KDQojIyBUdXJiaWRleg0KDQpgYGB7ciBnZXJhbmRvIGZ1bmN0aW9uIGdyYWYgdHVyYiwgZWNobyA9IEZBTFNFfQ0KYm94cGxvdF90dXJiIDwtIGZ1bmN0aW9uKGRhZG9zID0gcGxhbl93aWRlXzE5OTAyMDIwLCBlaXhvX3ggPSBjb2RpZ28sIGVpeG9feSA9IHR1cmJpZGV6LCB0aXR1bG8gPSAiVHVyYmlkZXoiKXsNCiAgZ2dwbG90Mjo6Z2dwbG90KA0KICAgIGRhdGEgPSBkYWRvcywNCiAgICBhZXMoDQogICAgICB4ID0ge3tlaXhvX3h9fSwNCiAgICAgIHkgPSB7e2VpeG9feX19DQogICAgKQ0KICApKw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTAwLCB5bWF4PUluZiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj00MCwgeW1heD0xMDAsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTAsIHltYXg9NDAsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgd2lkdGggPSAwLjMsDQogICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICkrDQogICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICJib3hwbG90IiwNCiAgICAgd2lkdGggPSAwLjcsDQogICAgIGZpbGwgPSAnI0Y4RjhGRicsDQogICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICApKw0KICAgbGFicyh0aXRsZSA9IHRpdHVsbywNCiAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgeT0iVU5UIikrDQogICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDUsIDAuMDUpKSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDgsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygNCiAgICAgICAgICAgICAgICAgICAgICAgICMgMSwNCiAgICAgICAgICAgICAgICAgICAgICAgIG1pbihwbGFuX3dpZGVfMTk5MDIwMjAkdHVyYmlkZXosIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAjIDUwMA0KICAgICAgICAgICAgICAgICAgICAgICAgbWF4KHBsYW5fd2lkZV8xOTkwMjAyMCR0dXJiaWRleiwgbmEucm0gPSBUUlVFKQ0KICAgICAgICAgICAgICAgICAgICAgICksDQogICAgICAgICAgICAgICAgICAgICAgdHJhbnMgPSAibG9nMTAiLA0KICAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IHNjYWxlczo6bnVtYmVyX2Zvcm1hdChhY2N1cmFjeSA9IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRlY2ltYWwubWFyayA9ICIsIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmlnLm1hcmsgPSAiICIpKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICBzaXplID0gMS4yLA0KICAgICBhbHBoYSA9IC4yNSwNCiAgICAgd2lkdGggPSAuMDcsDQogICApKw0KICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgKSsNCiAgIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIsDQogICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgIGFscGhhPS41LA0KICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgIHRoZW1lX2dyYWZzKCkNCn0NCg0KYGBgDQoNCiMjIHBIDQoNCmBgYHtyIGdlcmFuZG8gZnVuY3Rpb24gZ3JhZiBwSCwgZWNobyA9IEZBTFNFfQ0KYm94cGxvdF9wSCA8LSBmdW5jdGlvbihkYWRvcyA9IHBsYW5fd2lkZV8xOTkwMjAyMCwgZWl4b194ID0gY29kaWdvLCBlaXhvX3kgPSBwSCwgdGl0dWxvID0gInBIIil7DQogIGdncGxvdDI6OmdncGxvdCgNCiAgICBkYXRhID0gZGFkb3MsDQogICAgYWVzKA0KICAgICAgeCA9IHt7ZWl4b194fX0sDQogICAgICB5ID0ge3tlaXhvX3l9fQ0KICAgICkNCiAgKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluID0gLUluZiwgeG1heCA9IEluZiwNCiAgICAgICAgICAgIHltaW4gPSAtSW5mLCB5bWF4ID0gNiwNCiAgICAgICAgICAgIGFscGhhID0gMSwNCiAgICAgICAgICAgIGZpbGw9IiNlYjU2NjEiKSsgI2NsYXNzZSA0DQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluID0gLUluZiwgeG1heCA9IEluZiwNCiAgICAgICAgICAgIHltaW4gPSA5LCB5bWF4ID0gSW5mLA0KICAgICAgICAgICAgYWxwaGEgPSAxLA0KICAgICAgICAgICAgZmlsbD0iI2ViNTY2MSIpKyAjY2xhc3NlIDQNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW4gPSAtSW5mLCB4bWF4ID0gSW5mLA0KICAgICAgICAgICAgeW1pbiA9IDYsIHltYXggPSA5LA0KICAgICAgICAgICAgYWxwaGEgPSAxLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgICBzdGF0X3N1bW1hcnkoDQogICAgICBmdW4uZGF0YSA9IGYsDQogICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgIHdpZHRoID0gMC4zLA0KICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgICkrDQogICAgc3RhdF9zdW1tYXJ5KA0KICAgICAgZnVuLmRhdGEgPSBmLA0KICAgICAgZ2VvbSA9ICJib3hwbG90IiwNCiAgICAgIHdpZHRoID0gMC43LA0KICAgICAgZmlsbCA9ICcjRjhGOEZGJywNCiAgICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgIG91dGxpZXIuc2hhcGUgPSBOQSwgI3NlIGRlaXhhciBOQSBmaWNhIHPDsyBvIGppdHRlciwgc2UgbsOjbywgZGVpeGEgMQ0KICAgICkrDQogICAgbGFicygNCiAgICAgIHRpdGxlID0gdGl0dWxvLA0KICAgICAgeD0gTlVMTCwNCiAgICAgIHk9Im1nL0wiDQogICAgKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgc2l6ZSA9IDEuMiwNCiAgICAgIGFscGhhID0gLjI1LA0KICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDEsIDAuMDEpKSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDgsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYyg0LDExKSwNCiAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBzY2FsZXM6Om51bWJlcl9mb3JtYXQoYWNjdXJhY3kgPSAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkZWNpbWFsLm1hcmsgPSAiLCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJpZy5tYXJrID0gIiAiKSkrDQogICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICApKw0KICAgIGdlb21fc21vb3RoKA0KICAgICAgbWV0aG9kID0gImxtIiwNCiAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgYWVzKGdyb3VwID0gMSksDQogICAgICBhbHBoYSA9IC41LA0KICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgc2l6ZSA9IDENCiAgICApKw0KICAgIHRoZW1lX2dyYWZzKCkNCn0NCmBgYA0KDQojIyBTw7NsaWRvcyBUb3RhaXMNCg0KYGBge3IgZ2VyYW5kbyBmdW5jdGlvbiBncmFmIFNvbFRvdCwgZWNobyA9IEZBTFNFfQ0KYm94cGxvdF9zb2xpZG9zX3RvdGFpcyA8LSBmdW5jdGlvbihkYWRvcyA9IHBsYW5fd2lkZV8xOTkwMjAyMCwgZWl4b194ID0gY29kaWdvLCBlaXhvX3kgPSBzb2xpZG9zX3RvdGFpcywgdGl0dWxvID0gIlPDs2xpZG9zIHRvdGFpcyIpew0KICBnZ3Bsb3QyOjpnZ3Bsb3QoDQogICAgZGF0YSA9IGRhZG9zLA0KICAgIGFlcygNCiAgICAgIHggPSB7e2VpeG9feH19LA0KICAgICAgeSA9IHt7ZWl4b195fX0NCiAgICApDQogICkrDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluID0gLUluZiwgeG1heCA9IEluZiwNCiAgICAgICAgICAgIHltaW4gPSA1MDAsIHltYXggPSBJbmYsDQogICAgICAgICAgICBhbHBoYSA9IDEsDQogICAgICAgICAgICBmaWxsID0gIiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbiA9IC1JbmYsIHhtYXggPSBJbmYsDQogICAgICAgICAgICB5bWluID0gMCwgeW1heCA9IDUwMCwNCiAgICAgICAgICAgIGFscGhhID0gMSwNCiAgICAgICAgICAgIGZpbGwgPSAiIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgd2lkdGggPSAwLjMsDQogICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICkrDQogICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICJib3hwbG90IiwNCiAgICAgd2lkdGggPSAwLjcsDQogICAgIGZpbGwgPSAnI0Y4RjhGRicsDQogICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICApKw0KICAgbGFicyh0aXRsZSA9IHRpdHVsbywNCiAgICAgICAgeD0gTlVMTCwNCiAgICAgICAgeT0iIikrDQogICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDEsIDAuMDUpKSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDgsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYyhtaW4ocGxhbl93aWRlXzE5OTAyMDIwJHNvbGlkb3NfdG90YWlzLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4KHBsYW5fd2lkZV8xOTkwMjAyMCRzb2xpZG9zX3RvdGFpcywgbmEucm0gPSBUUlVFKSksDQogICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gc2NhbGVzOjpudW1iZXJfZm9ybWF0KGFjY3VyYWN5ID0gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVjaW1hbC5tYXJrID0gIiwiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiaWcubWFyayA9ICIgIiksDQogICAgICAgICAgICAgICAgICAgICAgdHJhbnMgPSAibG9nMTAiKSsNCiAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICBzaXplID0gMSkrDQogICB0aGVtZV9ncmFmcygpDQp9DQpgYGANCg0KIyMgQ29uZHV0aXZpZGFkZQ0KDQpgYGB7ciBnZXJhbmRvIGZ1bmN0aW9uIGdyYWYgY29uZHV0aXZpZGFkZS1lbGV0cmljYSwgZWNobyA9IEZBTFNFfQ0KYm94cGxvdF9jb25kX2VsZXQgPC0gZnVuY3Rpb24oZGFkb3MgPSBwbGFuX3dpZGVfMTk5MDIwMjAsIGVpeG9feCA9IGNvZGlnbywgZWl4b195ID0gY29uZHV0aXZpZGFkZSwgdGl0dWxvID0gIkNvbmR1dGl2aWRhZGUgZWzDqXRyaWNhIil7DQogIGdncGxvdDI6OmdncGxvdCgNCiAgICBkYXRhID0gZGFkb3MsDQogICAgYWVzKA0KICAgICAgeCA9IHt7ZWl4b194fX0sDQogICAgICB5ID0ge3tlaXhvX3l9fQ0KICAgICkNCiAgKSsNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW4gPSAtSW5mLCB4bWF4ID0gSW5mLA0KICAgICAgICAgICAgeW1pbiA9IDUwMCwgeW1heCA9IEluZiwNCiAgICAgICAgICAgIGFscGhhID0gMSwNCiAgICAgICAgICAgIGZpbGw9IiNlYjU2NjEiKSsgI2NsYXNzZSA0DQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluID0gLUluZiwgeG1heCA9IEluZiwNCiAgICAgICAgICAgIHltaW4gPSAwLCB5bWF4ID0gNTAwLA0KICAgICAgICAgICAgYWxwaGEgPSAxLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgd2lkdGggPSAwLjMsDQogICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICkrDQogICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICJib3hwbG90IiwNCiAgICAgd2lkdGggPSAwLjcsDQogICAgIGZpbGwgPSAnI0Y4RjhGRicsDQogICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICApKw0KICAgICAgbGFicyh0aXRsZSA9IHRpdHVsbywNCiAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgeT0iwrVtaG9zL2NtIikrDQogICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDEsIDAuMDUpKSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDgsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygNCiAgICAgICAgICAgICAgICAgICAgICAgICMgbWluKHBsYW5fd2lkZV8xOTkwMjAyMCRjb25kdXRpdmlkYWRlLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgNSwNCiAgICAgICAgICAgICAgICAgICAgICAgIDEwMDANCiAgICAgICAgICAgICAgICAgICAgICAgICMgbWF4KHBsYW5fd2lkZV8xOTkwMjAyMCRjb25kdXRpdmlkYWRlLCBuYS5ybSA9IFRSVUUpDQogICAgICAgICAgICAgICAgICAgICAgKSwNCiAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBzY2FsZXM6Om51bWJlcl9mb3JtYXQoYWNjdXJhY3kgPSAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkZWNpbWFsLm1hcmsgPSAiLCIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJpZy5tYXJrID0gIiAiKSwNCiAgICAgICAgICAgICAgICAgICAgICB0cmFucyA9ICJsb2cxMCIpKw0KICAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICBzaXplID0gMSkrDQogICB0aGVtZV9ncmFmcygpDQp9DQpgYGANCg0KDQojIFBhcsOibWV0cm9zIGbDrXNpY28tcXXDrW1pY29zDQoNCiMjIyBPeGlnw6puaW8gRGlzc29sdmlkbw0KDQpgYGB7ciBHcsOhZmljbyBPRCBmYWNldHRlZCwgZWNobyA9IEZBTFNFLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlID0gRkFMU0UsIGZpZy5jYXA9Ik94aWfDqm5pbyBEaXNzb2x2aWRvIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCJ9DQoob2QgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGJveHBsb3Rfb2QoDQogICAgIHRpdHVsbyA9ICJPeGlnw6puaW8gRGlzc29sdmlkbyBubyBwZXLDrW9kbyAxOTkwLTIwMjAiLA0KICAgKSsNCiAgIGZhY2V0X3dyYXAofnBlcmlvZG8pDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gT0QgcGVyaW9kbyAxLCBlY2hvID0gRkFMU0UsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSwgZmlnLmNhcD0iT3hpZ8OqbmlvIERpc3NvbHZpZG8gbm8gcGVyw61vZG8gMTk5MC0yMDAwIn0NCihvZF9wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGEgPiAiMTk5MCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAwMCIpICU+JSANCiAgIGJveHBsb3Rfb2QoDQogICAgIHRpdHVsbyA9ICJPeGlnw6puaW8gRGlzc29sdmlkbyBubyBwZXLDrW9kbyAxOTkwLTIwMDAiDQogICApDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gT0QgcGVyaW9kbyAyLCBlY2hvID0gRkFMU0UsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihvZF9wMiA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGEgPiAiMjAwMCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAxMCIpICU+JSANCiAgIGJveHBsb3Rfb2QoDQogICAgIHRpdHVsbyA9ICJPeGlnw6puaW8gRGlzc29sdmlkbyBubyBwZXLDrW9kbyAyMDAwLTIwMTAiDQogICApDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gT0QgcGVyaW9kbyAzLCBlY2hvID0gRkFMU0UsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihvZF9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGEgPiAiMjAxMCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAyMCIpICU+JSANCiAgIGJveHBsb3Rfb2QoDQogICAgIHRpdHVsbyA9ICJPeGlnw6puaW8gRGlzc29sdmlkbyBubyBwZXLDrW9kbyAyMDEwLTIwMjAiDQogICApDQopDQpgYGANCg0KYGBge3IgU2FsdmFuZG8gT0QsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQpnZ3NhdmUoIm9kLnBuZyIsDQogICAgICAgdW5pdHMgPSBjKCJweCIpLA0KICAgICAgIHdpZHRoID0gNDUwMCwNCiAgICAgICBoZWlnaHQgPSAyOTkzLA0KICAgICAgIHBsb3QgPSBvZCwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJvZF9wMS5wbmciLA0KICAgICAgIHBsb3QgPSBvZF9wMSwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJvZF9wMi5wbmciLA0KICAgICAgIHBsb3QgPSBvZF9wMiwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJvZF9wMy5wbmciLA0KICAgICAgIHBsb3QgPSBvZF9wMywNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBJUUEgT0QgcGVyaW9kbzEsIGVjaG8gPSBGQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCihpcWFvZF9wMSA8LWdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgICAgICAgICAgICAgICAgICAgIGZpbHRlcihhbm9fY29sZXRhID4gIjE5OTAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAwMCIpLA0KICAgICAgICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICAgICAgIGlxYV9vZCwgbmEucm0gPSBUUlVFKSkrDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPS1JbmYsDQogICAgICAgICAgICAgeW1heD0xOSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0xOSwNCiAgICAgICAgICAgICB5bWF4PTM2LA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ViNTY2MSIpKyAjY2xhc3NlIDQNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MzYsDQogICAgICAgICAgICAgeW1heD01MSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTUxLA0KICAgICAgICAgICAgIHltYXg9NzksDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj03OSwNCiAgICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgIHdpZHRoID0gMC4zLA0KICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICApKw0KICAgc3RhdF9zdW1tYXJ5KA0KICAgICBmdW4uZGF0YSA9IGYsDQogICAgIGdlb20gPSAiYm94cGxvdCIsDQogICAgIHdpZHRoID0gMC43LA0KICAgICBmaWxsID0gJyNGOEY4RkYnLA0KICAgICBjb2xvciA9ICJibGFjayIsDQogICAgIG91dGxpZXIuc2hhcGUgPSBOQSwgI3NlIGRlaXhhciBOQSBmaWNhIHPDsyBvIGppdHRlciwgc2UgbsOjbywgZGVpeGEgMQ0KICAgKSsNCiAgIGxhYnModGl0bGUgPSAiVmFyaWHDp8OjbyBkbyBJUUEgcGFyYSBvIHBhcsOibWV0cm8gT3hpZ8OqbmlvIERpc3NvbHZpZG8gMTk5MC0yMDAwIiwNCiAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9IiIpKw0KICAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgICAgc2l6ZSA9IDEuMiwNCiAgICAgICBhbHBoYSA9IC4yNSwNCiAgICAgICB3aWR0aCA9IC4wNywNCiAgICApKw0KICAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICAgKSsNCiAgICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAsMCkpLA0KICAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDYsDQogICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMoLTEsMTAxKSkrDQogICAgZ2VvbV9zbW9vdGgoDQogICAgICAgbWV0aG9kID0gImxtIiwNCiAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgYWxwaGE9LjUsDQogICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgIHNpemUgPSAxDQogICAgKSsNCiAgICB0aGVtZV9ncmFmcygpDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gSVFBIE9EIHBlcmlvZG8yLCBlY2hvID0gRkFMU0UsIHdhcm5pbmc9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQooaXFhb2RfcDIgPC1nZ3Bsb3QocGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIoYW5vX2NvbGV0YSA+ICIyMDAwIiAmDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFub19jb2xldGEgPD0gIjIwMTAiKSwNCiAgICAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICAgICBpcWFfb2QsIG5hLnJtID0gVFJVRSkpKw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0tSW5mLA0KICAgICAgICAgICAgIHltYXg9MTksDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTksDQogICAgICAgICAgICAgeW1heD0zNiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNlYjU2NjEiKSsgI2NsYXNzZSA0DQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTM2LA0KICAgICAgICAgICAgIHltYXg9NTEsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj01MSwNCiAgICAgICAgICAgICB5bWF4PTc5LA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iIzcwYzE4YyIpKyAjY2xhc3NlIDINCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49NzksDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICAgd2lkdGg9MC4zLA0KICAgICAgICAgICAgICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNywNCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSsNCiAgICBsYWJzKHRpdGxlID0gIlZhcmlhw6fDo28gZG8gSVFBIHBhcmEgbyBwYXLDom1ldHJvIE94aWfDqm5pbyBEaXNzb2x2aWRvIDIwMDAtMjAxMCIsDQogICAgICAgICB4PSJFc3Rhw6fDo28iLA0KICAgICAgICAgeT0iIikrDQogICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgICBzaXplID0gMS4yLA0KICAgICAgIGFscGhhID0gLjI1LA0KICAgICAgIHdpZHRoID0gLjA3LA0KICAgICkrDQogICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLDApKSwNCiAgICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA2LA0KICAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKC0xLDEwMSkpKw0KICAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICAgKSsNCiAgICBnZW9tX3Ntb290aCgNCiAgICAgICBtZXRob2QgPSAibG0iLA0KICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICBhbHBoYT0uNSwNCiAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgc2l6ZSA9IDENCiAgICApKw0KICAgIHRoZW1lX2dyYWZzKCkNCikNCg0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIElRQSBPRCBwZXJpb2RvMywgZWNobyA9IEZBTFNFLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQooaXFhb2RfcDMgPC1nZ3Bsb3QocGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIoYW5vX2NvbGV0YSA+ICIyMDEwIiAmDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFub19jb2xldGEgPD0gIjIwMjAiKSwNCiAgICAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICAgICBpcWFfb2QsIG5hLnJtID0gVFJVRSkpKw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0tSW5mLA0KICAgICAgICAgICAgIHltYXg9MTksDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTksDQogICAgICAgICAgICAgeW1heD0zNiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNlYjU2NjEiKSsgI2NsYXNzZSA0DQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTM2LA0KICAgICAgICAgICAgIHltYXg9NTEsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj01MSwNCiAgICAgICAgICAgICB5bWF4PTc5LA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iIzcwYzE4YyIpKyAjY2xhc3NlIDINCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49NzksDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICAgd2lkdGg9MC4zLA0KICAgICAgICAgICAgICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNywNCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSsNCiAgICBsYWJzKHRpdGxlID0gIlZhcmlhw6fDo28gZG8gSVFBIHBhcmEgbyBwYXLDom1ldHJvIE94aWfDqm5pbyBEaXNzb2x2aWRvIDIwMTAtMjAyMCIsDQogICAgICAgICB4PSJFc3Rhw6fDo28iLA0KICAgICAgICAgeT0iIikrDQogICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgICBzaXplID0gMS4yLA0KICAgICAgIGFscGhhID0gLjI1LA0KICAgICAgIHdpZHRoID0gLjA3LA0KICAgICkrDQogICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLDApKSwNCiAgICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA2LA0KICAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKC0xLDEwMSkpKw0KICAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICAgKSsNCiAgICBnZW9tX3Ntb290aCgNCiAgICAgICBtZXRob2QgPSAibG0iLA0KICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICBhbHBoYT0uNSwNCiAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgc2l6ZSA9IDENCiAgICApKw0KICAgIHRoZW1lX2dyYWZzKCkNCikNCmBgYA0KDQpgYGB7ciBTdW3DoXJpbyBPRCwgZWNobyA9IEZBTFNFLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlID0gRkFMU0UsfQ0KKHN1bV9vZF9wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgb3hpZ2VuaW9fZGlzc29sdmlkbywgYW5vX2NvbGV0YSkgJT4lIA0KICAgIGZpbHRlcihhbm9fY29sZXRhID4gIjE5OTAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhIDw9ICIyMDAwIikgJT4lIA0KICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICAjIGNvZGlnbyA9PSAiODczOTg1MDAiIDwtICJ0ZXN0ZTEiDQogICAgIyAlPiUgDQogc3VtbWFyaXplKA0KICAgICAgIG1heCA9IA0KICAgICAgICAgbWF4KG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtID0gVFJVRSksDQogICAgICAgcDk1ID0gDQogICAgICAgICBxdWFudGlsZShveGlnZW5pb19kaXNzb2x2aWRvLCAwLjk1LCBuYS5ybSA9IFRSVUUpLA0KICAgICAgIHA4MCA9IA0KICAgICAgICAgcXVhbnRpbGUob3hpZ2VuaW9fZGlzc29sdmlkbywgMC44MCwgbmEucm0gPSBUUlVFKSwNCiAgICAgICBtZWRpYW4gPSANCiAgICAgICAgIG1lZGlhbihveGlnZW5pb19kaXNzb2x2aWRvLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgIG1lYW4gPSANCiAgICAgICAgIG1lYW4ob3hpZ2VuaW9fZGlzc29sdmlkbywgbmEucm09IFRSVUUpLA0KICAgICAgIHAyMCA9IA0KICAgICAgICAgcXVhbnRpbGUob3hpZ2VuaW9fZGlzc29sdmlkbywgMC4yMCwgbmEucm0gPSBUUlVFKSwNCiAgICAgICBwMDUgPSANCiAgICAgICAgIHF1YW50aWxlKG94aWdlbmlvX2Rpc3NvbHZpZG8sIDAuMDUsIG5hLnJtID0gVFJVRSksDQogICAgICAgbWluID0gDQogICAgICAgICBtaW4ob3hpZ2VuaW9fZGlzc29sdmlkbywgbmEucm0gPSBUUlVFKSwNCiAgICAgICBuID0gDQogICAgICAgICBsZW5ndGgob3hpZ2VuaW9fZGlzc29sdmlkbykNCiApICU+JSANCiAgICBwaXZvdF9sb25nZXIoDQogICAgICAgIWNvZGlnbywNCiAgICAgICBuYW1lc190byA9ICJwYXIiLA0KICAgICAgIHZhbHVlc190byA9ICJ2YWxvciINCiAgICApICU+JSANCiAgICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0gY29kaWdvLA0KICAgICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gdmFsb3IpICU+JSANCiAgIHJlbmFtZSgNCiAgICAgIlBNMSIgPSAiODczOTg1MDAiLA0KICAgICAiUE0yIiA9ICI4NzM5ODkwMCIsDQogICAgICJQTTMiID0gIjg3Mzk4OTUwIiwNCiAgICAgIlBNNCIgPSAiODczOTg5ODAiLA0KICAgICAiUE01IiA9ICI4NzQwNTUwMCIsDQogICAgICJQTTYiID0gIjg3NDA2OTAwIiwNCiAgICAgIlBNNyIgPSAiODc0MDk5MDAiDQogICApIA0KICkNCg0KIyB0ZXN0ZTEgPC0gcGFyYW1ldHJvc19JUUEgJT4lIA0KIyAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KIyAgIHBpdm90X2xvbmdlcigNCiMgICAgICFjb2RpZ28sDQojICAgICBuYW1lc190byA9ICJwYXJhbWV0cm8iLA0KIyAgICAgdmFsdWVzX3RvID0gInZhbG9yIg0KIyAgICkgJT4lIA0KIyAgICMgZ3JvdXBfYnkocGFyYW1ldHJvKQ0KIyAgIHBpdm90X3dpZGVyKA0KIyAgICAgbmFtZXNfZnJvbSA9IGNvZGlnbywNCiMgICAgIHZhbHVlc19mcm9tID0gdmFsb3IsDQojICAgICAjIC5ncm91cHMgPSAiZHJvcCINCiMgICApICU+JSANCiMgICByZW5hbWUoDQojICAgICAiUE0xIiA9ICI4NzM5ODUwMCIsDQojICAgICAiUE0yIiA9ICI4NzM5ODkwMCIsDQojICAgICAiUE0zIiA9ICI4NzM5ODk1MCIsDQojICAgICAiUE00IiA9ICI4NzM5ODk4MCIsDQojICAgICAiUE01IiA9ICI4NzQwNTUwMCIsDQojICAgICAiUE02IiA9ICI4NzQwNjkwMCIsDQojICAgICAiUE03IiA9ICI4NzQwOTkwMCINCiMgICApICU+JQ0KIyAgIHNlbGVjdChwYXIsIFBNMSwgUE0yLCBQTTMsIFBNNCwgUE01LCBQTTYsIFBNNykgJT4lIA0KIyAgIGZpbHRlcigNCiMgICAgIHBhciA9PSAicEgiDQojICAgKSANCiMgJT4lIA0KIyAgIHVubmVzdChkcGx5cjo6ZXZlcnl0aGluZygpKQ0KDQoNCiMgdGVzdGUxJFBNMVsyXQ0KDQojICU+JQ0KIyAgIHN1bW1hcml6ZSgNCiMgICAgIG1heCA9DQojICAgICAgIG1heChveGlnZW5pb19kaXNzb2x2aWRvLCBuYS5ybSA9IFRSVUUpLA0KIyAgICAgcTMgPQ0KIyAgICAgICBxdWFudGlsZShveGlnZW5pb19kaXNzb2x2aWRvLCAwLjc1LCBuYS5ybSA9IFRSVUUpLA0KIyAgICAgbWVkaWFuID0NCiMgICAgICAgbWVkaWFuKG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtID0gVFJVRSksDQojICAgICBtZWFuID0NCiMgICAgICAgbWVhbihveGlnZW5pb19kaXNzb2x2aWRvLCBuYS5ybT0gVFJVRSksDQojICAgICBxMSA9DQojICAgICAgIHF1YW50aWxlKG94aWdlbmlvX2Rpc3NvbHZpZG8sIDAuMjUsIG5hLnJtID0gVFJVRSksDQojICAgICBtaW4gPQ0KIyAgICAgICBtaW4ob3hpZ2VuaW9fZGlzc29sdmlkbywgbmEucm0gPSBUUlVFKSwNCiMgICAgIG4gPQ0KIyAgICAgICBsZW5ndGgob3hpZ2VuaW9fZGlzc29sdmlkbykNCiMgICAgICkNCiMgIyAgICAgDQojIA0KIyBzdW0oc3VtX29kX3AxJG4pDQoNCg0KDQooc3VtX29kX3AyIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUNCiAgICAgIHNlbGVjdChjb2RpZ28sIG94aWdlbmlvX2Rpc3NvbHZpZG8sIGFub19jb2xldGEpICU+JSANCiAgICAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDAwIiAmDQogICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMTAiKSAlPiUgDQogICAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICAgIHN1bW1hcml6ZSgNCiAgICAgICAgIG1pbiA9IA0KICAgICAgICAgICAgbWluKG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtID0gVFJVRSksDQogICAgICAgICBxMSA9IA0KICAgICAgICAgICAgcXVhbnRpbGUob3hpZ2VuaW9fZGlzc29sdmlkbywgMC4yNSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgIG1lZGlhbiA9IA0KICAgICAgICAgICAgbWVkaWFuKG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtID0gVFJVRSksDQogICAgICAgICBtZWFuID0gDQogICAgICAgICAgICBtZWFuKG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtPSBUUlVFKSwNCiAgICAgICAgIHEzID0gDQogICAgICAgICAgICBxdWFudGlsZShveGlnZW5pb19kaXNzb2x2aWRvLCAwLjc1LCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgbWF4ID0gDQogICAgICAgICAgICBtYXgob3hpZ2VuaW9fZGlzc29sdmlkbywgbmEucm0gPSBUUlVFKQ0KICAgICAgKQ0KKQ0KDQooc3VtX29kX3AzIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUNCiAgICAgIHNlbGVjdChjb2RpZ28sIG94aWdlbmlvX2Rpc3NvbHZpZG8sIGFub19jb2xldGEpICU+JSANCiAgICAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDEwIiAmDQogICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSAlPiUgDQogICAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICAgIHN1bW1hcml6ZSgNCiAgICAgICAgIG1pbiA9IA0KICAgICAgICAgICAgbWluKG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtID0gVFJVRSksDQogICAgICAgICBxMSA9IA0KICAgICAgICAgICAgcXVhbnRpbGUob3hpZ2VuaW9fZGlzc29sdmlkbywgMC4yNSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgIG1lZGlhbiA9IA0KICAgICAgICAgICAgbWVkaWFuKG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtID0gVFJVRSksDQogICAgICAgICBtZWFuID0gDQogICAgICAgICAgICBtZWFuKG94aWdlbmlvX2Rpc3NvbHZpZG8sIG5hLnJtPSBUUlVFKSwNCiAgICAgICAgIHEzID0gDQogICAgICAgICAgICBxdWFudGlsZShveGlnZW5pb19kaXNzb2x2aWRvLCAwLjc1LCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgbWF4ID0gDQogICAgICAgICAgICBtYXgob3hpZ2VuaW9fZGlzc29sdmlkbywgbmEucm0gPSBUUlVFKQ0KICAgICAgKQ0KKQ0KDQojICAgcGl2b3Rfd2lkZXIoaWRfY29scyA9IGNvZGlnbywNCiMgICAgICAgICAgICAgICBuYW1lc19mcm9tID0gY29kaWdvLA0KIyAgICAgICAgICAgICAgIHZhbHVlc19mcm9tID0gb3hpZ2VuaW9fZGlzc29sdmlkbykNCiMgDQojIA0KIyAgIGdyb3VwX2J5KGNvZGlnbykgJT4lDQojICAgZ2V0X3N1bW1hcnlfc3RhdHModHlwZSA9ICJjb21tb24iKSAlPiUNCiMgICBwaXZvdF93aWRlcihpZF9jb2xzID0gdmFyaWFibGUsDQojICAgICAgICAgICAgICAgbmFtZXNfZnJvbSA9IGNvZGlnbywNCiMgICAgICAgICAgICAgICB2YWx1ZXNfZnJvbSA9IHZhcmlhYmxlJG94aWdlbmlvX2Rpc3NvbHZpZG8pDQojIA0KIyAjIGluc3RhbGwucGFja2FnZXMoImdncHViciIpDQojICMgbGlicmFyeShnZ3B1YnIpDQpgYGANCg0KIyMjIERlbWFuZGEgQmlvcXXDrW1pY2EgZGUgT3hpZ8OqbmlvDQoNCmBgYHtyIEdyw6FmaWNvIERCTyBmYWNldHRlZCwgZmlnLmNhcD0iRGVtYW5kYSBCaW9xdcOtbWljYSBkZSBPeGlnw6puaW8gbm8gcGVyw61vZG8gMTk5MC0yMDIwIn0NCihkYm8gPC0gZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCwNCiAgICAgICAgICAgICAgIGFlcyh4ID0gY29kaWdvLA0KICAgICAgICAgICAgICAgICAgIHkgPSBkYm8pKSsNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0xMCwNCiAgICAgICAgICAgIHltYXg9SW5mLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTUsDQogICAgICAgICAgICB5bWF4PTEwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgIHltaW49MywNCiAgICAgICAgICAgIHltYXg9NSwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTAsDQogICAgICAgICAgICB5bWF4PTMsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgd2lkdGggPSAwLjMsDQogICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICkrDQogICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICJib3hwbG90IiwNCiAgICAgd2lkdGggPSAwLjcsDQogICAgIGZpbGwgPSAnI0Y4RjhGRicsDQogICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICApKw0KICAgZmFjZXRfd3JhcCh+cGVyaW9kbykrDQogICBsYWJzKHRpdGxlID0gIkRlbWFuZGEgQmlvcXXDrW1pY2EgZGUgT3hpZ8OqbmlvIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCIsDQogICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgIHk9Im1nL0wiLA0KICAgICAgICAjIGNhcHRpb24gPSAiTGVvbmFyZG8gRmVybmFuZGVzIFdpbmsiDQogICAgICAgICkrDQogICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICBzaXplID0gMS4yLA0KICAgICBhbHBoYSA9IC4yNSwNCiAgICAgd2lkdGggPSAuMDcsDQogICApKw0KICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgKSsNCiAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMC4wMywwLjAzKSksDQogICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA4LA0KICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMoMSwxMDApLA0KICAgICAgICAgICAgICAgICAgICAgIHRyYW5zID0gImxvZzEwIikrDQogICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgc2U9RkFMU0UsICNzZSBkZWl4YXIgVFJVRSBnZXJhIG8gaW50ZXJ2YWxvIGRlIGNvbmZpYW7Dp2EgZGUgOTUlDQogICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSwNCiAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgIHRoZW1lX2dyYWZzKCkNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBEQk8gcGVyw61vZG8xLCBlY2hvID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKGRib19wMTwtZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMDAiKSwNCiAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICBkYm8pKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTAsDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49NSwNCiAgICAgICAgICAgICB5bWF4PTEwLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MywNCiAgICAgICAgICAgICB5bWF4PTUsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0wLA0KICAgICAgICAgICAgIHltYXg9MywNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICAgc3RhdF9ib3hwbG90KGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNykrDQogICAgbGFicyh0aXRsZSA9ICJEZW1hbmRhIEJpb3F1w61taWNhIGRlIE94aWfDqm5pbyBubyBwZXLDrW9kbyAxOTkwLTIwMDAiLA0KICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9Im1nL0wiKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgIHNpemUgPSAxLjIsDQogICAgICAgYWxwaGEgPSAuMjUsDQogICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgICkrDQogICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLjAzLDAuMDMpKSwNCiAgICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA4LA0KICAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKDEsMTAwKSwNCiAgICAgICAgICAgICAgICAgICAgICAgdHJhbnMgPSAibG9nMTAiKSsNCiAgICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgIHRoZW1lX2dyYWZzKCkNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBEQk8gcGVyw61vZG8yLCBlY2hvID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKGRib19wMjwtZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMTAiKSwNCiAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICBkYm8pKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTAsDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49NSwNCiAgICAgICAgICAgICB5bWF4PTEwLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTMsDQogICAgICAgICAgICB5bWF4PTUsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzcwYzE4YyIpKyAjY2xhc3NlIDINCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0wLA0KICAgICAgICAgICAgeW1heD0zLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICBzdGF0X2JveHBsb3QoZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgICAgICAgICAgICAgd2lkdGg9MC4zLA0KICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkrDQogICBnZW9tX2JveHBsb3QoZmlsbD0nI0Y4RjhGRicsDQogICAgICAgICAgICAgICAgY29sb3I9ImJsYWNrIiwNCiAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICB3aWR0aD0gMC43KSsNCiAgIGxhYnModGl0bGUgPSAiRGVtYW5kYSBCaW9xdcOtbWljYSBkZSBPeGlnw6puaW8gbm8gcGVyw61vZG8gMjAwMC0yMDEwIiwNCiAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgeT0ibWcvTCIpKw0KICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgc2l6ZSA9IDEuMiwNCiAgICAgYWxwaGEgPSAuMjUsDQogICAgIHdpZHRoID0gLjA3LA0KICAgKSsNCiAgICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgICkrDQogICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLjAzLDAuMDMpKSwNCiAgICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA4LA0KICAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKDEsMTAwKSwNCiAgICAgICAgICAgICAgICAgICAgICAgdHJhbnMgPSAibG9nMTAiKSsNCiAgICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgIHRoZW1lX2dyYWZzKCkNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBEQk8gcGVyw61vZG8zLCBlY2hvID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKGRib19wMzwtZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSwNCiAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICBkYm8sIG5hLnJtPVRSVUUpKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTAsDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49NSwNCiAgICAgICAgICAgICB5bWF4PTEwLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MywNCiAgICAgICAgICAgICB5bWF4PTUsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0wLA0KICAgICAgICAgICAgIHltYXg9MywNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICAgc3RhdF9ib3hwbG90KGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNykrDQogICAgbGFicyh0aXRsZSA9ICJEZW1hbmRhIEJpb3F1w61taWNhIGRlIE94aWfDqm5pbyBubyBwZXLDrW9kbyAyMDEwLTIwMjAiLA0KICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9Im1nL0wiKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgIHNpemUgPSAxLjIsDQogICAgICAgYWxwaGEgPSAuMjUsDQogICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDMsMC4wMykpLA0KICAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDgsDQogICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMoMSwxMDApLA0KICAgICAgICAgICAgICAgICAgICAgICB0cmFucyA9ICJsb2cxMCIpKw0KICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgKSsNCiAgICAgICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgICB0aGVtZV9ncmFmcygpDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gSVFBIERCTyBwZXJpb2RvMSwgZWNobyA9IEZBTFNFLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihpcWFfZGJvMTwtZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICAgICAgICAgICAgICAgICAgIGZpbHRlcihhbm9fY29sZXRhPiIxOTkwIiAmDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIiksDQogICAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICAgIGlxYV9kYm8pKSsNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0tSW5mLA0KICAgICAgICAgICAgeW1heD0xOSwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0xOSwNCiAgICAgICAgICAgIHltYXg9MzYsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iI2ViNTY2MSIpKyAjY2xhc3NlIDQNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0zNiwNCiAgICAgICAgICAgIHltYXg9NTEsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj01MSwNCiAgICAgICAgICAgIHltYXg9NzksDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzcwYzE4YyIpKyAjY2xhc3NlIDINCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj03OSwNCiAgICAgICAgICAgIHltYXg9SW5mLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxKSkNCiAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICBnZW9tX2JveHBsb3QoZmlsbD0nI0Y4RjhGRicsDQogICAgICAgICAgICAgICAgY29sb3I9ImJsYWNrIiwNCiAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICB3aWR0aD0gMC43KSsNCiAgIGxhYnModGl0bGUgPSAiVmFyaWHDp8OjbyBkbyBJUUEgcGFyYSBvIHBhcsOibWV0cm8gREJPIDE5OTAtMjAyMCIsDQogICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgIHk9Im1nL0wiKSsNCiAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAsMCkpLA0KICAgICAgICAgICAgICAgICAgICAgIG4uYnJlYWtzID0gNiwNCiAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKC0xLDEwMSkpKw0KICAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICAgKSsNCiAgICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgIHRoZW1lX2dyYWZzKCkNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBJUUEgREJPIHBlcmlvZG8yLCBlY2hvID0gRkFMU0UsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKGlxYV9kYm8yPC1nZ3Bsb3QocGxhbl93aWRlXzE5OTAyMDIwJT4lIA0KICAgICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpLA0KICAgICAgICAgICAgICAgICAgYWVzKGNvZGlnbywNCiAgICAgICAgICAgICAgICAgICAgICBpcWFfZGJvKSkrDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPS1JbmYsDQogICAgICAgICAgICAgeW1heD0xOSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0xOSwNCiAgICAgICAgICAgICB5bWF4PTM2LA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ViNTY2MSIpKyAjY2xhc3NlIDQNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MzYsDQogICAgICAgICAgICAgeW1heD01MSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTUxLA0KICAgICAgICAgICAgIHltYXg9NzksDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj03OSwNCiAgICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxKSkNCiAgICBzdGF0X2JveHBsb3QoZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgICAgICAgICAgICAgIHdpZHRoPTAuMywNCiAgICAgICAgICAgICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpKw0KICAgIGdlb21fYm94cGxvdChmaWxsPScjRjhGOEZGJywNCiAgICAgICAgICAgICAgICAgY29sb3I9ImJsYWNrIiwNCiAgICAgICAgICAgICAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICAgICAgICAgICAgICAgIHdpZHRoPSAwLjcpKw0KICAgIGxhYnModGl0bGUgPSAiVmFyaWHDp8OjbyBkbyBJUUEgcGFyYSBvIHBhcsOibWV0cm8gREJPIDIwMDAtMjAxMCIsDQogICAgICAgICB4PSJFc3Rhw6fDo28iLA0KICAgICAgICAgeT0ibWcvTCIpKw0KICAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgICAgc2l6ZSA9IDEuMiwNCiAgICAgICBhbHBoYSA9IC4yNSwNCiAgICAgICB3aWR0aCA9IC4wNywNCiAgICApKw0KICAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMCwwKSksDQogICAgICAgICAgICAgICAgICAgICAgIG4uYnJlYWtzID0gNiwNCiAgICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygtMSwxMDEpKSsNCiAgICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgICkrDQogICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgICB0aGVtZV9ncmFmcygpDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gSVFBIERCTyBwZXJpb2RvMywgZWNobyA9IEZBTFNFLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihpcWFfZGJvMzwtZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCU+JSANCiAgICAgICAgICAgICAgICAgICAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDEwIiAmDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSwNCiAgICAgICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICAgICAgaXFhX2RibykpKw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0tSW5mLA0KICAgICAgICAgICAgIHltYXg9MTksDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTksDQogICAgICAgICAgICAgeW1heD0zNiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNlYjU2NjEiKSsgI2NsYXNzZSA0DQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTM2LA0KICAgICAgICAgICAgIHltYXg9NTEsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj01MSwNCiAgICAgICAgICAgICB5bWF4PTc5LA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iIzcwYzE4YyIpKyAjY2xhc3NlIDINCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49NzksDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMSkpDQogICAgc3RhdF9ib3hwbG90KGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSsNCiAgICBnZW9tX2JveHBsb3QoZmlsbD0nI0Y4RjhGRicsDQogICAgICAgICAgICAgICAgIGNvbG9yPSJibGFjayIsDQogICAgICAgICAgICAgICAgIG91dGxpZXIuc2hhcGUgPSBOQSwgI3NlIGRlaXhhciBOQSBmaWNhIHPDsyBvIGppdHRlciwgc2UgbsOjbywgZGVpeGEgMQ0KICAgICAgICAgICAgICAgICB3aWR0aD0gMC43KSsNCiAgICBsYWJzKHRpdGxlID0gIlZhcmlhw6fDo28gZG8gSVFBIHBhcmEgbyBwYXLDom1ldHJvIERCTyAyMDEwLTIwMjAiLA0KICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9Im1nL0wiKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgIHNpemUgPSAxLjIsDQogICAgICAgYWxwaGEgPSAuMjUsDQogICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAsMCkpLA0KICAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDYsDQogICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMoLTEsMTAxKSkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgICAgICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgIHRoZW1lX2dyYWZzKCkNCikNCmBgYA0KDQpgYGB7ciBTdW3DoXJpbyBEQk8sIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQooc3VtX2Rib19wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICBzZWxlY3QoY29kaWdvLCBkYm8sIGFub19jb2xldGEpICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhPiIxOTkwIiAmDQogICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAwMCIpICU+JSANCiAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgc3VtbWFyaXplKA0KICAgICBtaW4gPSANCiAgICAgICBtaW4oZGJvLCANCiAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgcTEgPSANCiAgICAgICBxdWFudGlsZShkYm8sIDAuMjUsIA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lZGlhbiA9IA0KICAgICAgIG1lZGlhbihkYm8sIA0KICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBtZWFuID0gDQogICAgICAgbWVhbihkYm8sIA0KICAgICAgICAgICAgbmEucm09IFRSVUUpLA0KICAgICBxMyA9IA0KICAgICAgIHF1YW50aWxlKGRibywgMC43NSwgDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgbWF4ID0gDQogICAgICAgbWF4KGRibywgDQogICAgICAgICAgIG5hLnJtID0gVFJVRSkpDQopDQoNCihzdW1fZGJvX3AyIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUNCiAgICBzZWxlY3QoY29kaWdvLCBkYm8sIGFub19jb2xldGEpICU+JSANCiAgICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDEwIikgJT4lIA0KICAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgIHN1bW1hcml6ZSgNCiAgICAgIG1pbiA9IA0KICAgICAgICBtaW4oZGJvLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShkYm8sIDAuMjUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWVkaWFuID0gDQogICAgICAgIG1lZGlhbihkYm8sIA0KICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lYW4gPSANCiAgICAgICAgbWVhbihkYm8sIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKGRibywgMC43NSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtYXggPSANCiAgICAgICAgbWF4KGRibywgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpKQ0KKQ0KDQooc3VtX2Rib19wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgZGJvLCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAyMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKGRibywgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgcTEgPSANCiAgICAgICAgcXVhbnRpbGUoZGJvLCAwLjI1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4oZGJvLCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4oZGJvLCANCiAgICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgICBxMyA9IA0KICAgICAgICBxdWFudGlsZShkYm8sIDAuNzUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heChkYm8sIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCmBgYA0KDQpgYGB7ciBTYWx2YW5kbyBEQk8sIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQpnZ3NhdmUoImRiby5wbmciLA0KICAgICAgIHVuaXRzID0gYygicHgiKSwNCiAgICAgICB3aWR0aCA9IDQ1MDAsDQogICAgICAgaGVpZ2h0ID0gMjk5MywNCiAgICAgICBwbG90ID0gZGJvLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoImRib19wMS5wbmciLA0KICAgICAgIHBsb3QgPSBkYm9fcDEsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgiZGJvX3AyLnBuZyIsDQogICAgICAgcGxvdCA9IGRib19wMiwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJkYm9fcDMucG5nIiwNCiAgICAgICBwbG90ID0gZGJvX3AzLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KYGBgDQoNCiMjIyBGw7NzZm9ybyB0b3RhbA0KDQpgYGB7ciBHcsOhZmljbyBmw7NzZm9ybyB0b3RhbCBmYWNldHRlZCwgZmlnLmNhcD0iRsOzc2Zvcm8gdG90YWwgbm8gcGVyw61vZG8gMTk5MC0yMDIwIn0NCihwdG90IDwtIGdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAsDQogICAgICAgICAgICAgICAgYWVzKGNvZGlnbywNCiAgICAgICAgICAgICAgICAgICAgZm9zZm9yb190b3RhbCkpKw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTAuMTUsDQogICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0wLjEsDQogICAgICAgICAgICB5bWF4PTAuMTUsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0wLA0KICAgICAgICAgICAgeW1heD0wLjEsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgc3RhdF9zdW1tYXJ5KA0KICAgICBmdW4uZGF0YSA9IGYsDQogICAgIGdlb20gPSAnZXJyb3JiYXInLA0KICAgICB3aWR0aCA9IDAuMywNCiAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgKSsNCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gImJveHBsb3QiLA0KICAgICB3aWR0aCA9IDAuNywNCiAgICAgZmlsbCA9ICcjRjhGOEZGJywNCiAgICAgY29sb3IgPSAiYmxhY2siLA0KICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICkrDQogIGZhY2V0X3dyYXAofnBlcmlvZG8pKw0KICAgIGxhYnModGl0bGUgPSAiRsOzc2Zvcm8gdG90YWwgbm8gcGVyw61vZG8gMTk5MC0yMDIwIiwNCiAgICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgICB5PSJtZy9MIikrDQogICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDMsMC4wMykpLA0KICAgICAgICAgICAgICAgICAgICAgIG4uYnJlYWtzID0gOCwNCiAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKG1pbihwbGFuX3dpZGVfMTk5MDIwMjAkZm9zZm9yb190b3RhbCwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heChwbGFuX3dpZGVfMTk5MDIwMjAkZm9zZm9yb190b3RhbCksIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgdHJhbnMgPSAibG9nMTAiLA0KICAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IHNjYWxlczo6bnVtYmVyX2Zvcm1hdChhY2N1cmFjeSA9IC4wMDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRlY2ltYWwubWFyayA9ICIsIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmlnLm1hcmsgPSAiICIpDQogICAgICAgICAgICAgICAgICAgICAgKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgIHNpemUgPSAxLjIsDQogICAgICAgYWxwaGEgPSAuMjUsDQogICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgICkrDQogICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgICB0aGVtZV9ncmFmcygpDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gRsOzc2Zvcm8gdG90YWwgcGVyaW9kbzEsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKHB0b3RfcDE8LWdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAlPiUgDQogICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMDAiKSwNCiAgICAgICAgICAgICAgICAgYWVzKGNvZGlnbywNCiAgICAgICAgICAgICAgICAgICAgIGZvc2Zvcm9fdG90YWwpKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MC4xNSwNCiAgICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0wLjEsDQogICAgICAgICAgICAgeW1heD0wLjE1LA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MCwNCiAgICAgICAgICAgICB5bWF4PTAuMSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICAgc3RhdF9ib3hwbG90KGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNykrDQogICAgbGFicyh0aXRsZSA9ICJGw7NzZm9ybyB0b3RhbCBubyBwZXLDrW9kbyAxOTkwLTIwMDAiLA0KICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9Im1nL0wiKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgIHNpemUgPSAxLjIsDQogICAgICAgYWxwaGEgPSAuMjUsDQogICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV95X2NvbnRpbnVvdXMoZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAuMDMsMC4wMykpLA0KICAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDgsDQogICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMobWluKHBsYW5fd2lkZV8xOTkwMjAyMCRmb3Nmb3JvX3RvdGFsLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heChwbGFuX3dpZGVfMTk5MDIwMjAkZm9zZm9yb190b3RhbCksIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgIHRyYW5zID0gImxvZzEwIikrDQogICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKCI4NzM5ODUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5ODAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk1MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDU1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwOTkwMCIpLA0KICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICApKw0KICAgIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIsDQogICAgICAgICAgICAgICAgc2U9RkFMU0UsICNzZSBkZWl4YXIgVFJVRSBnZXJhIG8gaW50ZXJ2YWxvIGRlIGNvbmZpYW7Dp2EgZGUgOTUlDQogICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgIGFscGhhPS41LA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSwNCiAgICAgICAgICAgICAgICBzaXplID0gMSkrDQogICAgdGhlbWVfZ3JhZnMoKQ0KKQ0KDQpgYGANCg0KYGBge3IgR3LDoWZpY28gRsOzc2Zvcm8gdG90YWwgcGVyaW9kbzIsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKHB0b3RfcDIgPC0gZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCU+JSANCiAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpLA0KICAgICAgICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICAgICAgIGZvc2Zvcm9fdG90YWwpKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MC4xNSwNCiAgICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0wLjEsDQogICAgICAgICAgICAgeW1heD0wLjE1LA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MCwNCiAgICAgICAgICAgICB5bWF4PTAuMSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICAgc3RhdF9ib3hwbG90KGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNykrDQogICAgbGFicyh0aXRsZSA9ICJGw7NzZm9ybyB0b3RhbCBubyBwZXLDrW9kbyAyMDAwLTIwMTAiLA0KICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9Im1nL0wiKSsNCiAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMC4wMywwLjAzKSksDQogICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA4LA0KICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMobWluKHBsYW5fd2lkZV8xOTkwMjAyMCRmb3Nmb3JvX3RvdGFsLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4KHBsYW5fd2lkZV8xOTkwMjAyMCRmb3Nmb3JvX3RvdGFsKSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICB0cmFucyA9ICJsb2cxMCIpKw0KICAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgICAgc2l6ZSA9IDEuMiwNCiAgICAgICBhbHBoYSA9IC4yNSwNCiAgICAgICB3aWR0aCA9IC4wNywNCiAgICApKw0KICAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNjkwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICAgKSsNCiAgICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgIGFlcyhncm91cD0xKSwNCiAgICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICAgc2l6ZSA9IDEpKw0KICAgIHRoZW1lX2dyYWZzKCkNCikNCg0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIEbDs3Nmb3JvIHRvdGFsIHBlcmlvZG8zLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihwdG90X3AzIDwtIGdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAlPiUgDQogICAgICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSwNCiAgICAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICAgICBmb3Nmb3JvX3RvdGFsKSkrDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTAuMTUsDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MC4xLA0KICAgICAgICAgICAgIHltYXg9MC4xNSwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTAsDQogICAgICAgICAgICAgeW1heD0wLjEsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICAgd2lkdGg9MC4zLA0KICAgICAgICAgICAgICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSkpKw0KICAgIGdlb21fYm94cGxvdChmaWxsPScjRjhGOEZGJywNCiAgICAgICAgICAgICAgICAgY29sb3I9ImJsYWNrIiwNCiAgICAgICAgICAgICAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICAgICAgICAgICAgICAgIHdpZHRoPSAwLjcpKw0KICAgIGxhYnModGl0bGUgPSAiRsOzc2Zvcm8gdG90YWwgbm8gcGVyw61vZG8gMjAxMC0yMDIwIiwNCiAgICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgICB5PSJtZy9MIikrDQogICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLjAzLDAuMDMpKSwNCiAgICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA4LA0KICAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKG1pbihwbGFuX3dpZGVfMTk5MDIwMjAkZm9zZm9yb190b3RhbCwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXgocGxhbl93aWRlXzE5OTAyMDIwJGZvc2Zvcm9fdG90YWwpLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICB0cmFucyA9ICJsb2cxMCIpKw0KICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgc2l6ZSA9IDEuMiwNCiAgICAgYWxwaGEgPSAuMjUsDQogICAgIHdpZHRoID0gLjA3LA0KICAgKSsNCiAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5ODAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDU1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICkrDQogICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgICB0aGVtZV9ncmFmcygpDQopDQoNCmBgYA0KDQpgYGB7ciBTdW3DoXJpbyBGw7NzZm9ybyB0b3RhbCwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFLH0NCihzdW1fcHRvdF9wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgZm9zZm9yb190b3RhbCwgYW5vX2NvbGV0YSkgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIikgJT4lIA0KICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICBzdW1tYXJpemUoDQogICAgIG1pbiA9IA0KICAgICAgIG1pbihmb3Nmb3JvX3RvdGFsLCBuYS5ybSA9IFRSVUUpLA0KICAgICBxMSA9IA0KICAgICAgIHF1YW50aWxlKGZvc2Zvcm9fdG90YWwsIDAuMjUsIG5hLnJtID0gVFJVRSksDQogICAgIG1lZGlhbiA9IA0KICAgICAgIG1lZGlhbihmb3Nmb3JvX3RvdGFsLCBuYS5ybSA9IFRSVUUpLA0KICAgICBtZWFuID0gDQogICAgICAgbWVhbihmb3Nmb3JvX3RvdGFsLCBuYS5ybT0gVFJVRSksDQogICAgIHEzID0gDQogICAgICAgcXVhbnRpbGUoZm9zZm9yb190b3RhbCwgMC43NSwgbmEucm0gPSBUUlVFKSwNCiAgICAgbWF4ID0gDQogICAgICAgbWF4KGZvc2Zvcm9fdG90YWwsIG5hLnJtID0gVFJVRSkpKQ0KDQooc3VtX3B0b3RfcDIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIGZvc2Zvcm9fdG90YWwsIGFub19jb2xldGEpICU+JSANCiAgICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDEwIikgJT4lIA0KICAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgIHN1bW1hcml6ZSgNCiAgICAgIG1pbiA9IA0KICAgICAgICBtaW4oZm9zZm9yb190b3RhbCwgbmEucm0gPSBUUlVFKSwNCiAgICAgIHExID0gDQogICAgICAgIHF1YW50aWxlKGZvc2Zvcm9fdG90YWwsIDAuMjUsIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKGZvc2Zvcm9fdG90YWwsIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4oZm9zZm9yb190b3RhbCwgbmEucm09IFRSVUUpLA0KICAgICAgcTMgPSANCiAgICAgICAgcXVhbnRpbGUoZm9zZm9yb190b3RhbCwgMC43NSwgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgoZm9zZm9yb190b3RhbCwgbmEucm0gPSBUUlVFKSkpDQoNCihzdW1fcHRvdF9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgZm9zZm9yb190b3RhbCwgYW5vX2NvbGV0YSkgJT4lIA0KICAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDEwIiAmDQogICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSAlPiUgDQogICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICAgc3VtbWFyaXplKA0KICAgICAgbWluID0gDQogICAgICAgIG1pbihmb3Nmb3JvX3RvdGFsLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgcTEgPSANCiAgICAgICAgcXVhbnRpbGUoZm9zZm9yb190b3RhbCwgMC4yNSwgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4oZm9zZm9yb190b3RhbCwgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lYW4gPSANCiAgICAgICAgbWVhbihmb3Nmb3JvX3RvdGFsLCBuYS5ybT0gVFJVRSksDQogICAgICBxMyA9IA0KICAgICAgICBxdWFudGlsZShmb3Nmb3JvX3RvdGFsLCAwLjc1LCBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heChmb3Nmb3JvX3RvdGFsLCBuYS5ybSA9IFRSVUUpKSkNCg0KYGBgDQoNCmBgYHtyIFNhbHZhbmRvIFB0b3QsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQpnZ3NhdmUoInB0b3QucG5nIiwNCiAgICAgICB1bml0cyA9IGMoInB4IiksDQogICAgICAgd2lkdGggPSA0NTAwLA0KICAgICAgIGhlaWdodCA9IDI5OTMsDQogICAgICAgcGxvdCA9IHB0b3QsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgicHRvdF9wMS5wbmciLA0KICAgICAgIHBsb3QgPSBwdG90X3AxLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoInB0b3RfcDIucG5nIiwNCiAgICAgICBwbG90ID0gcHRvdF9wMiwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJwdG90X3AzLnBuZyIsDQogICAgICAgcGxvdCA9IHB0b3RfcDMsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQpgYGANCg0KIyMjIEVzY2hlcmljaGlhIGNvbGkNCg0KYGBge3IgR3LDoWZpY28gRWNvbGkgZmFjZXR0ZWQsIGZpZy5jYXA9IkVzY2hlcmljaGlhLWNvbGktZ3JhdmF0YcOtIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCIsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKGVjb2xpIDwtIGJveHBsb3RfZWNvbGkoDQogIHRpdHVsbyA9ICIqRXNjaGVyaWNoaWEgY29saSogbm8gcGVyw61vZG8gMTk5MC0yMDIwIg0KKSsNCiAgZmFjZXRfd3JhcCh+cGVyaW9kbykNCikNCg0KKGVjb2xpIDwtIGdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAsDQogICAgICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICAgICBlc2NoZXJpY2hpYV9jb2xpKSkrDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0zMjAwLCB5bWF4PUluZiwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgIHhtaW49LUluZiwgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTgwMCwgeW1heD0zMjAwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0xNjAsIHltYXg9ODAwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiM3MGMxOGMiKSsgI2NsYXNzZSAyDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsIHhtYXg9SW5mLA0KICAgICAgICAgICAgeW1pbj0wLCB5bWF4PTE2MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgc3RhdF9zdW1tYXJ5KA0KICAgICBmdW4uZGF0YSA9IGYsDQogICAgIGdlb20gPSAnZXJyb3JiYXInLA0KICAgICB3aWR0aCA9IDAuMywNCiAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgKSsNCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gImJveHBsb3QiLA0KICAgICB3aWR0aCA9IDAuNywNCiAgICAgZmlsbCA9ICcjRjhGOEZGJywNCiAgICAgY29sb3IgPSAiYmxhY2siLA0KICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICkrDQogICBmYWNldF93cmFwKH5wZXJpb2RvKSsNCiAgIGxhYnModGl0bGUgPSAiKkVzY2hlcmljaGlhIGNvbGkqIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCIsDQogICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgIHk9Ik5NUC8xMDBtTCIpKw0KICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLjAxLCAwLjAxKSksDQogICAgICAgICAgICAgICAgICAgICAgIyBuLmJyZWFrcyA9IDksDQogICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA2LA0KICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMobWluKHBsYW5fd2lkZV8xOTkwMjAyMCRlc2NoZXJpY2hpYV9jb2xpLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4KHBsYW5fd2lkZV8xOTkwMjAyMCRlc2NoZXJpY2hpYV9jb2xpLCBuYS5ybSA9IFRSVUUpKSwNCiAgICAgICAgICAgICAgICAgICAgICB0cmFucyA9ICJsb2cxMCIsDQogICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gc2NhbGVzOjpudW1iZXJfZm9ybWF0KGFjY3VyYWN5ID0gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVjaW1hbC5tYXJrID0gIiwiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiaWcubWFyayA9ICIgIikpKw0KICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgc2l6ZSA9IDEuMiwNCiAgICAgYWxwaGEgPSAuMjUsDQogICAgIHdpZHRoID0gLjA3LA0KICAgKSsNCiAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5ODAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDU1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICkrDQogICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KICAgICAgICAgICAgICAgc2U9RkFMU0UsICNzZSBkZWl4YXIgVFJVRSBnZXJhIG8gaW50ZXJ2YWxvIGRlIGNvbmZpYW7Dp2EgZGUgOTUlDQogICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICBhbHBoYT0uNSwNCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSwNCiAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgIHRoZW1lX2dyYWZzKCkrDQogICAgdGhlbWUoDQogICAgICAgIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KA0KICAgICAgICAgIGFuZ2xlID0gOTAsIA0KICAgICAgICAgICMgc2l6ZT0xNSwNCiAgICAgICAgICAjIGZhY2U9Mg0KICAgICAgICApLA0KICAgICAgICBwbG90LnRpdGxlID0gDQogICAgICAgICAgZWxlbWVudF9tYXJrZG93bigNCiAgICAgICAgICAgIGhqdXN0ID0gMC41LA0KICAgICAgICAgICAgY29sb3IgPSAiYmxhY2siLA0KICAgICAgICAgICAgc2l6ZSA9IDE5KQ0KICAgICkNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBFY29saSBwZXJpb2RvMSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQooZWNvbGlfcDEgPC0gZ2dwbG90KHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICAgICAgICAgICAgICAgICAgICAgIGZpbHRlcihhbm9fY29sZXRhPiIxOTkwIiAmDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAwMCIpLA0KICAgICAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICAgICAgZXNjaGVyaWNoaWFfY29saSkpKw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0zMjAwLA0KICAgICAgICAgICAgIHltYXg9SW5mLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2FjNTA3OSIpKyAjPnBpb3IgY2xhc3NlDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTgwMCwNCiAgICAgICAgICAgICB5bWF4PTMyMDAsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0xNjAsDQogICAgICAgICAgICAgeW1heD04MDAsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj0wLA0KICAgICAgICAgICAgIHltYXg9MTYwLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgICBzdGF0X2JveHBsb3QoZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgICAgICAgICAgICAgIHdpZHRoPTAuMywNCiAgICAgICAgICAgICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpKSsNCiAgICBnZW9tX2JveHBsb3QoZmlsbD0nI0Y4RjhGRicsDQogICAgICAgICAgICAgICAgIGNvbG9yPSJibGFjayIsDQogICAgICAgICAgICAgICAgIG91dGxpZXIuc2hhcGUgPSBOQSwgI3NlIGRlaXhhciBOQSBmaWNhIHPDsyBvIGppdHRlciwgc2UgbsOjbywgZGVpeGEgMQ0KICAgICAgICAgICAgICAgICB3aWR0aD0gMC43KSsNCiAgICBsYWJzKHRpdGxlID0gIkVzY2hlcmljaGlhIGNvbGkgbm8gcGVyw61vZG8gMTk5MC0yMDAwIiwNCiAgICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgICB5PSJOTVAvMTAwbUwiKSsNCiAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMC4wMSwgMC4wMSkpLA0KICAgICAgICAgICAgICAgICAgICAgIG4uYnJlYWtzID0gOSwNCiAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKG1pbihwbGFuX3dpZGVfMTk5MDIwMjAkZXNjaGVyaWNoaWFfY29saSwgbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heChwbGFuX3dpZGVfMTk5MDIwMjAkZXNjaGVyaWNoaWFfY29saSwgbmEucm0gPSBUUlVFKSksDQogICAgICAgICAgICAgICAgICAgICAgdHJhbnMgPSAibG9nMTAiLA0KICAgICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IHNjYWxlczo6bnVtYmVyX2Zvcm1hdChhY2N1cmFjeSA9IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRlY2ltYWwubWFyayA9ICIsIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmlnLm1hcmsgPSAiICIpKSsNCiAgICBnZ2JlZXN3YXJtOjpnZW9tX3F1YXNpcmFuZG9tKA0KICAgICAgIHNpemUgPSAxLjIsDQogICAgICAgYWxwaGEgPSAuMjUsDQogICAgICAgd2lkdGggPSAuMDcsDQogICAgKSsNCiAgICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzM5ODk4MCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICI4NzQwNTUwMCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJQTTEiLCAiUE0yIiwgIlBNMyIsICJQTTQiLCAiUE01IiwgIlBNNiIsICJQTTciKQ0KICAgICkrDQogICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgICB0aGVtZV9ncmFmcygpDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gRWNvbGkgcGVyaW9kbzIsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKGVjb2xpX3AyIDwtIGdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMTAiKSwNCiAgICAgICAgICAgICAgICAgICAgYWVzKGNvZGlnbywNCiAgICAgICAgICAgICAgICAgICAgICAgIGVzY2hlcmljaGlhX2NvbGkpKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MzIwMCwNCiAgICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgIGFubm90YXRlKCJyZWN0IiwNCiAgICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICAgeW1pbj04MDAsDQogICAgICAgICAgICAgeW1heD0zMjAwLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iI2ZjZjdhYiIpKyAjY2xhc3NlIDMNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MTYwLA0KICAgICAgICAgICAgIHltYXg9ODAwLA0KICAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICAgZmlsbD0iIzcwYzE4YyIpKyAjY2xhc3NlIDINCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49MCwNCiAgICAgICAgICAgICB5bWF4PTE2MCwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQogICAgc3RhdF9ib3hwbG90KGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNykrDQogICAgbGFicyh0aXRsZSA9ICJFc2NoZXJpY2hpYSBjb2xpIG5vIHBlcsOtb2RvIDIwMDAtMjAxMCIsDQogICAgICAgICB4PSJFc3Rhw6fDo28iLA0KICAgICAgICAgeT0iTk1QLzEwMG1MIikrDQogICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLjAxLCAwLjAxKSksDQogICAgICAgICAgICAgICAgICAgICAgIG4uYnJlYWtzID0gOSwNCiAgICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYyhtaW4ocGxhbl93aWRlXzE5OTAyMDIwJGVzY2hlcmljaGlhX2NvbGksIG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4KHBsYW5fd2lkZV8xOTkwMjAyMCRlc2NoZXJpY2hpYV9jb2xpLCBuYS5ybSA9IFRSVUUpKSwNCiAgICAgICAgICAgICAgICAgICAgICAgdHJhbnMgPSAibG9nMTAiLA0KICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBzY2FsZXM6Om51bWJlcl9mb3JtYXQoYWNjdXJhY3kgPSAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZGVjaW1hbC5tYXJrID0gIiwiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmlnLm1hcmsgPSAiICIpKSsNCiAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIsDQogICAgICAgICAgICAgICAgc2U9RkFMU0UsICNzZSBkZWl4YXIgVFJVRSBnZXJhIG8gaW50ZXJ2YWxvIGRlIGNvbmZpYW7Dp2EgZGUgOTUlDQogICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgIGFscGhhPS41LA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSwNCiAgICAgICAgICAgICAgICBzaXplID0gMSkrDQogICAgdGhlbWVfZ3JhZnMoKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIEVjb2xpIHBlcmlvZG8zLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihlY29saV9wMyA8LSBnZ3Bsb3QocGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDIwIiksDQogICAgICAgICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICAgICAgICBlc2NoZXJpY2hpYV9jb2xpKSkrDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTMyMDAsDQogICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjYWM1MDc5IikrICM+cGlvciBjbGFzc2UNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgIHhtYXg9SW5mLA0KICAgICAgICAgICAgIHltaW49ODAwLA0KICAgICAgICAgICAgIHltYXg9MzIwMCwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTE2MCwNCiAgICAgICAgICAgICB5bWF4PTgwMCwNCiAgICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgIGZpbGw9IiM3MGMxOGMiKSsgI2NsYXNzZSAyDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49LUluZiwNCiAgICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgICB5bWluPTAsDQogICAgICAgICAgICAgeW1heD0xNjAsDQogICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICAgd2lkdGg9MC4zLA0KICAgICAgICAgICAgICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSkpKw0KICAgIGdlb21fYm94cGxvdChmaWxsPScjRjhGOEZGJywNCiAgICAgICAgICAgICAgICAgY29sb3I9ImJsYWNrIiwNCiAgICAgICAgICAgICAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICAgICAgICAgICAgICAgIHdpZHRoPSAwLjcpKw0KICAgIGxhYnModGl0bGUgPSAiRXNjaGVyaWNoaWEgY29saSBubyBwZXLDrW9kbyAyMDEwLTIwMjAiLA0KICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiAgICAgICAgIHk9Ik5NUC8xMDBtTCIpKw0KICAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMC4wMSwgMC4wMSkpLA0KICAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDksDQogICAgICAgICAgICAgICAgICAgICAgIGxpbWl0cyA9IGMobWluKHBsYW5fd2lkZV8xOTkwMjAyMCRlc2NoZXJpY2hpYV9jb2xpLCBuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1heChwbGFuX3dpZGVfMTk5MDIwMjAkZXNjaGVyaWNoaWFfY29saSwgbmEucm0gPSBUUlVFKSksDQogICAgICAgICAgICAgICAgICAgICAgIHRyYW5zID0gImxvZzEwIiwNCiAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gc2NhbGVzOjpudW1iZXJfZm9ybWF0KGFjY3VyYWN5ID0gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRlY2ltYWwubWFyayA9ICIsIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJpZy5tYXJrID0gIiAiKSkrDQogICAgZ2diZWVzd2FybTo6Z2VvbV9xdWFzaXJhbmRvbSgNCiAgICAgc2l6ZSA9IDEuMiwNCiAgICAgYWxwaGEgPSAuMjUsDQogICAgIHdpZHRoID0gLjA3LA0KICAgKSsNCiAgIHNjYWxlX3hfZGlzY3JldGUobGltaXRzID0gYygiODczOTg1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5ODAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODczOTg5NTAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDU1MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDY5MDAiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiODc0MDk5MDAiKSwNCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiUE0xIiwgIlBNMiIsICJQTTMiLCAiUE00IiwgIlBNNSIsICJQTTYiLCAiUE03IikNCiAgICkrDQogICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAgICAgICAgICAgICBhZXMoZ3JvdXA9MSksDQogICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KICAgICAgICAgICAgICAgIHNpemUgPSAxKSsNCiAgICB0aGVtZV9ncmFmcygpDQopDQpgYGANCg0KYGBge3IgU3Vtw6FyaW8gRWNvbGksIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQooc3VtX2Vjb2xpX3AxIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUNCiAgICBzZWxlY3QoY29kaWdvLCBlc2NoZXJpY2hpYV9jb2xpLCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMDAiKSAlPiUgDQogICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgIHN1bW1hcml6ZSgNCiAgICAgbWluID0gDQogICAgICAgbWluKGVzY2hlcmljaGlhX2NvbGksIA0KICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBxMSA9IA0KICAgICAgIHF1YW50aWxlKGVzY2hlcmljaGlhX2NvbGksIDAuMjUsIA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lZGlhbiA9IA0KICAgICAgIG1lZGlhbihlc2NoZXJpY2hpYV9jb2xpLCANCiAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgbWVhbiA9IA0KICAgICAgIG1lYW4oZXNjaGVyaWNoaWFfY29saSwgDQogICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgIHEzID0gDQogICAgICAgcXVhbnRpbGUoZXNjaGVyaWNoaWFfY29saSwgMC43NSwgDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgbWF4ID0gDQogICAgICAgbWF4KGVzY2hlcmljaGlhX2NvbGksIA0KICAgICAgICAgICBuYS5ybSA9IFRSVUUpKQ0KKQ0KDQooc3VtX2Vjb2xpX3AyIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUNCiAgICBzZWxlY3QoY29kaWdvLCBlc2NoZXJpY2hpYV9jb2xpLCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKGVzY2hlcmljaGlhX2NvbGksIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIHExID0gDQogICAgICAgIHF1YW50aWxlKGVzY2hlcmljaGlhX2NvbGksIDAuMjUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWVkaWFuID0gDQogICAgICAgIG1lZGlhbihlc2NoZXJpY2hpYV9jb2xpLCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4oZXNjaGVyaWNoaWFfY29saSwgDQogICAgICAgICAgICAgbmEucm09IFRSVUUpLA0KICAgICAgcTMgPSANCiAgICAgICAgcXVhbnRpbGUoZXNjaGVyaWNoaWFfY29saSwgMC43NSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtYXggPSANCiAgICAgICAgbWF4KGVzY2hlcmljaGlhX2NvbGksIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCg0KKHN1bV9lY29saV9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgZXNjaGVyaWNoaWFfY29saSwgYW5vX2NvbGV0YSkgJT4lIA0KICAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDEwIiAmDQogICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSAlPiUgDQogICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICAgc3VtbWFyaXplKA0KICAgICAgbWluID0gDQogICAgICAgIG1pbihlc2NoZXJpY2hpYV9jb2xpLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShlc2NoZXJpY2hpYV9jb2xpLCAwLjI1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4oZXNjaGVyaWNoaWFfY29saSwgDQogICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWVhbiA9IA0KICAgICAgICBtZWFuKGVzY2hlcmljaGlhX2NvbGksIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKGVzY2hlcmljaGlhX2NvbGksIDAuNzUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heChlc2NoZXJpY2hpYV9jb2xpLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSkpDQopDQpgYGANCg0KYGBge3IgU2FsdmFuZG8gZWNvbGksIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQpnZ3NhdmUoImVjb2xpLnBuZyIsDQogICAgICAgcGxvdCA9IGVjb2xpLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoImVjb2xpX3AxLnBuZyIsDQogICAgICAgcGxvdCA9IGVjb2xpX3AxLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoImVjb2xpX3AyLnBuZyIsDQogICAgICAgcGxvdCA9IGVjb2xpX3AyLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoImVjb2xpX3AzLnBuZyIsDQogICAgICAgcGxvdCA9IGVjb2xpX3AzLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KYGBgDQoNCiMjIyBOaXRyb2fDqm5pbyBhbW9uaWFjYWwNCg0KYGBge3IgR3LDoWZpY28gTml0cm9nw6puaW8gdG90YWwgZmFjZXR0ZWQsIGZpZy5jYXA9Im5pdHJvZ2VuaW8tZ3JhdmF0YcOtIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCIsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKG5hbW9uIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogIGJveHBsb3RfbmFtb24oDQogICAgZWl4b195ID0gbml0cm9nZW5pb19hbW9uaWFjYWwsDQogICAgdGl0dWxvID0gIk5pdHJvZ8OqbmlvIEFtb2FuaWFjYWwgbm8gcGVyw61vZG8gMTk5MC0yMDIwIg0KICAgICkrDQogIGZhY2V0X3dyYXAofnBlcmlvZG8pDQogKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIE5pdHJvZ8OqbmlvIGxpbmUsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KcGVyaW9kb19pbmljaWFsIDwtIGFzLkRhdGUoIjE5OTAtMDEtMDEiLCAiJVktJW0tJWQiKQ0KcGVyaW9kb19maW5hbCA8LSBhcy5EYXRlKCIyMDIxLTAxLTAxIiwgICIlWS0lbS0lZCIpDQoNCihuaXRyb19saW5lIDwtIA0KICBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogIGZpbHRlcihhbm9fY29sZXRhID4gIjE5OTAiICYNCiAgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAyMCIpICU+JQ0KICBkcGx5cjo6c2VsZWN0KGNvZGlnbywgbml0cm9nZW5pb19hbW9uaWFjYWwsIGRhdGFfY29sZXRhLCBwZXJpb2RvKSAlPiUNCiAgIyBncm91cF9ieShjb2RpZ28pICU+JQ0KICBtdXRhdGUoDQogICAgcG9udG9fbW9uaXRvcmFtZW50byA9IGNhc2Vfd2hlbigNCiAgICAgIGNvZGlnbyA9PSAiODczOTg1MDAiIH4gIlBNMSIsDQogICAgICBjb2RpZ28gPT0gIjg3Mzk4OTgwIiB+ICJQTTIiLA0KICAgICAgY29kaWdvID09ICI4NzM5ODkwMCIgfiAiUE0zIiwNCiAgICAgIGNvZGlnbyA9PSAiODczOTg5NTAiIH4gIlBNNCIsDQogICAgICBjb2RpZ28gPT0gIjg3NDA1NTAwIiB+ICJQTTUiLA0KICAgICAgY29kaWdvID09ICI4NzQwNjkwMCIgfiAiUE02IiwNCiAgICAgIGNvZGlnbyA9PSAiODc0MDk5MDAiIH4gIlBNNyINCiAgICApDQogICkgJT4lIA0KICAgICMgcGl2b3Rfd2lkZXIoDQogICAgIyAgIG5hbWVzX2Zyb20gPSBjb2RpZ28sDQogICAgIyAgIHZhbHVlc19mcm9tID0gbml0cm9fYW1vbiwNCiAgICAjICAgaWRfY29scyA9IGRhdGFfY29sZXRhDQogICAgIyApICU+JSANCiAgICBnZ3Bsb3QoDQogICAgICBhZXMoeCA9IGRhdGFfY29sZXRhLA0KICAgICAgICAgIHkgPSBuaXRyb2dlbmlvX2Ftb25pYWNhbCwNCiAgICAgICAgICAjIGNvbG9yID0gY29kaWdvDQogICAgICApKSsNCiAgICAjIGdlb21fcmVjdCgNCiAgICAjICAgYWVzKHhtaW4gPSBwZXJpb2RvX2luaWNpYWwsIA0KICAgICMgICAgICAgeG1heCA9IHBlcmlvZG9fZmluYWwsDQogICAgIyAgICAgICB5bWluID0gMTMuMywgDQogICAgIyAgICAgICB5bWF4ID0gSW5mLA0KICAgICMgICAgICAgYWxwaGE9IDAuMDA1LA0KICAgICMgICAgICAgZmlsbD0gIiNhYzUwNzkiKSwNCiAgICAjIHNob3cubGVnZW5kID0gRkFMU0UpKyAjPnBpb3IgY2xhc3NlDQogICAgIyBnZW9tX3JlY3QoDQogICAgIyAgIGFlcyh4bWluID0gcGVyaW9kb19pbmljaWFsLCANCiAgICAjICAgICAgIHhtYXggPSBwZXJpb2RvX2ZpbmFsLA0KICAjICAgICAgIHltaW49IDMuNywNCiAgIyAgICAgICB5bWF4PSAxMy4zLA0KICAjICAgICAgIGFscGhhPSAwLjAwNSwNCiAgIyAgICAgICBmaWxsPSAiI2ZjZjdhYiIpLA0KICAjICAgIHNob3cubGVnZW5kID0gRkFMU0UpKyAjY2xhc3NlIDMNCiAgIyBnZW9tX3JlY3QoDQogICMgICBhZXMoeG1pbiA9IHBlcmlvZG9faW5pY2lhbCwgDQogICMgICAgICAgeG1heCA9IHBlcmlvZG9fZmluYWwsDQogICMgICAgICAgeW1pbj0gMCwNCiAgIyAgICAgICB5bWF4PSAzLjcsDQogICMgICAgICAgYWxwaGE9IDAuMDA1LA0KICAjICAgICAgIGZpbGw9ICJibHVlIg0KICAjICAgICAgICAgIyAiIzhkY2RlYiINCiAgIyAgICAgICAgICksDQogICMgICAgc2hvdy5sZWdlbmQgPSBGQUxTRSkrICNjbGFzc2UgMQ0KICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgIHhtaW49IHBlcmlvZG9faW5pY2lhbCwNCiAgICAgICAgICAgeG1heD0gcGVyaW9kb19maW5hbCwNCiAgICAgICAgICAgeW1pbj0xMy4zLA0KICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgYWxwaGE9IDAuNywNCiAgICAgICAgICAgZmlsbD0iI2FjNTA3OSIpKyAjPnBpb3IgY2xhc3NlDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49IHBlcmlvZG9faW5pY2lhbCwNCiAgICAgICAgICAgICB4bWF4PSBwZXJpb2RvX2ZpbmFsLA0KICAgICAgICAgICAgIHltaW49My43LA0KICAgICAgICAgICAgIHltYXg9MTMuMywNCiAgICAgICAgICAgICBhbHBoYT0gMC43LA0KICAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgIHhtaW49IHBlcmlvZG9faW5pY2lhbCwNCiAgICAgICAgICAgICB4bWF4PSBwZXJpb2RvX2ZpbmFsLA0KICAgICAgICAgICAgIHltaW49IC1JbmYsDQogICAgICAgICAgICAgeW1heD0zLjcsDQogICAgICAgICAgICAgYWxwaGE9IDAuNywNCiAgICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgIGdlb21fbGluZSgNCiAgICAgICMgYWVzKGNvbG9yID0gY29kaWdvKSwNCiAgICAgIG5hLnJtID0gVFJVRSkrDQogICAgZ2VvbV9wb2ludCgNCiAgICAgICMgYWVzKGNvbG9yID0gY29kaWdvKSwNCiAgICAgIG5hLnJtID0gVFJVRSkrDQogICAgc2NhbGVfeF9kYXRlKA0KICAgICAgbGltaXRzID0gYXMuRGF0ZShjKA0KICAgICAgICAiMTk5MC0wMS0wMSIsIA0KICAgICAgICAiMjAyMS0wMS0wMSINCiAgICAgICAgIyBOQSAjcG9kZSB1c2FyIE5BIHRhbWLDqW0NCiAgICAgICkpLA0KICAgICAgZXhwYW5kID0gYygwLjAsIDAuMCksDQogICAgICBkYXRlX2JyZWFrcyA9ICIxMCB5ZWFycyIsDQogICAgICBtaW5vcl9icmVha3MgPSAiNSB5ZWFycyIsDQogICAgICBkYXRlX2xhYmVscyA9ICIlWSIsDQogICAgKSsNCiAgICAjIGdlb21fc21vb3RoKA0KICAgICMgICAjIGFlcyhjb2xvciA9IGNvZGlnbyksDQogICAgIyAgIG1ldGhvZCA9ICJsbSIsDQogICAgIyAgICMgZm9ybXVsYSA9IHkgfiBwb2x5KHgsIDIpLA0KICAgICMgICAjIHNwYW4gPSAwLjIsDQogICAgIyAgIHNlID0gVFJVRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiAgICAjICAgYWVzKGdyb3VwID0gMSksDQogICAgIyAgIGFscGhhID0uNSwNCiAgICAjICAgbmEucm0gPSBUUlVFLA0KICAgICMgICBzaXplID0gMC4zLA0KICAgICMgICAjIGZ1bGxyYW5nZSA9IFRSVUUsDQogICMgICAjIHNob3cubGVnZW5kID0gVFJVRQ0KICAjICkrDQogICMgc3RhdF9zbW9vdGgoDQogICMgICBnZW9tID0gInNtb290aCIsDQogICMgICAjIHNwYW4gPSAwLjIsDQogICMgICBzZSA9IEZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAjICAgIyBhZXMoZ3JvdXAgPSAxKSwNCiAgIyAgICMgYWxwaGEgPS41LA0KICAjICAgbmEucm0gPSBUUlVFLA0KICAjICAgIyBzaXplID0gMC4zLA0KICAjICAgZnVsbHJhbmdlID0gVFJVRSwNCiAgIyAgIHNob3cubGVnZW5kID0gVFJVRQ0KICAjICkrDQogIGZhY2V0X3dyYXAoDQogICAgfnBvbnRvX21vbml0b3JhbWVudG8sDQogICAgbnJvdyA9IDQsDQogICkrDQogICAgdGhlbWVfYncoKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIE5pdHJvZ8OqbmlvIHRvdGFsIHBlcmlvZG8xLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihuYW1vbl9wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIikgJT4lIA0KICAgYm94cGxvdF9uYW1vbigNCiAgICAgdGl0dWxvID0gIk5pdHJvZ8OqbmlvIEFtb25pYWNhbCBubyBwZXLDrW9kbyAxOTkwLTIwMDAiDQogICApDQogKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIE5pdHJvZ8OqbmlvIHRvdGFsIHBlcmlvZG8yLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihuYW1vbl9wMiA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDEwIikgJT4lIA0KICAgYm94cGxvdF9uYW1vbigNCiAgICAgdGl0dWxvID0gIk5pdHJvZ8OqbmlvIEFtb25pYWNhbCBubyBwZXLDrW9kbyAyMDAwLTIwMTAiDQogICApDQogKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIE5pdHJvZ8OqbmlvIHRvdGFsIHBlcmlvZG8zLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihuYW1vbl9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDIwIikgJT4lIA0KICAgYm94cGxvdF9uYW1vbigNCiAgICAgdGl0dWxvID0gIk5pdHJvZ8OqbmlvIEFtb25pYWNhbCBubyBwZXLDrW9kbyAyMDEwLTIwMjAiDQogICApDQogKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIE5hbW9uIDMgcGVyaW9kb3MganVudG9zLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQ0KZ3JpZC5hcnJhbmdlKG5hbW9uX3AxLCBuYW1vbl9wMiwgbmFtb25fcDMsIG5jb2wgPSAzKQ0KYGBgDQoNCmBgYHtyIFN1bcOhcmlvIE5pdHJvZ8OqbmlvIHRvdGFsLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlID0gRkFMU0UsfQ0KKHN1bV9uYW1vbl9wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICBzZWxlY3QoY29kaWdvLCBuaXRyb2dlbmlvX2Ftb25pYWNhbCwgYW5vX2NvbGV0YSkgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIikgJT4lIA0KICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICBzdW1tYXJpemUoDQogICAgIG1pbiA9IA0KICAgICAgIG1pbihuaXRyb2dlbmlvX2Ftb25pYWNhbCwgDQogICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIHExID0gDQogICAgICAgcXVhbnRpbGUobml0cm9nZW5pb19hbW9uaWFjYWwsIDAuMjUsIA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lZGlhbiA9IA0KICAgICAgIG1lZGlhbihuaXRyb2dlbmlvX2Ftb25pYWNhbCwgDQogICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lYW4gPSANCiAgICAgICBtZWFuKG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCANCiAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgcTMgPSANCiAgICAgICBxdWFudGlsZShuaXRyb2dlbmlvX2Ftb25pYWNhbCwgMC43NSwgDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgbWF4ID0gDQogICAgICAgbWF4KG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCANCiAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG4gPSANCiAgICAgICBsZW5ndGgobml0cm9nZW5pb19hbW9uaWFjYWwpDQogICApDQopDQoNCihzdW1fbmFtb25fcDIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShuaXRyb2dlbmlvX2Ftb25pYWNhbCwgMC4yNSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4obml0cm9nZW5pb19hbW9uaWFjYWwsIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCAwLjc1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgobml0cm9nZW5pb19hbW9uaWFjYWwsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCg0KKHN1bV9uYW1vbl9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgbml0cm9nZW5pb19hbW9uaWFjYWwsIGFub19jb2xldGEpICU+JSANCiAgICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAxMCIgJg0KICAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDIwIikgJT4lIA0KICAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgIHN1bW1hcml6ZSgNCiAgICAgIG1pbiA9IA0KICAgICAgICBtaW4obml0cm9nZW5pb19hbW9uaWFjYWwsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIHExID0gDQogICAgICAgIHF1YW50aWxlKG5pdHJvZ2VuaW9fYW1vbmlhY2FsLCAwLjI1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4obml0cm9nZW5pb19hbW9uaWFjYWwsIA0KICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lYW4gPSANCiAgICAgICAgbWVhbihuaXRyb2dlbmlvX2Ftb25pYWNhbCwgDQogICAgICAgICAgICAgbmEucm09IFRSVUUpLA0KICAgICAgcTMgPSANCiAgICAgICAgcXVhbnRpbGUobml0cm9nZW5pb19hbW9uaWFjYWwsIDAuNzUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heChuaXRyb2dlbmlvX2Ftb25pYWNhbCwgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpKQ0KKQ0KYGBgDQoNCmBgYHtyIFNhbHZhbmRvIG5hbW9uLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlID0gRkFMU0UsfQ0KZ2dzYXZlKCJuYW1vbi5wbmciLA0KICAgICAgIHVuaXRzID0gYygicHgiKSwNCiAgICAgICB3aWR0aCA9IDQ1MDAsDQogICAgICAgaGVpZ2h0ID0gMjk5MywNCiAgICAgICBwbG90ID0gbmFtb24sDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgibmFtb25fcDEucG5nIiwNCiAgICAgICBwbG90ID0gbmFtb25fcDEsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgibmFtb25fcDIucG5nIiwNCiAgICAgICBwbG90ID0gbmFtb25fcDIsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgibmFtb25fcDMucG5nIiwNCiAgICAgICBwbG90ID0gbmFtb25fcDMsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgibmFtb25fM3BlcmlvZG9zLnBuZyIsDQogICAgICAgdW5pdHMgPSBjKCJweCIpLA0KICAgICAgIHdpZHRoID0gNDUwMCwNCiAgICAgICBoZWlnaHQgPSAyOTkzLA0KICAgICAgIHBsb3QgPSBncmlkLmFycmFuZ2UobmFtb25fcDEsIG5hbW9uX3AyLCBuYW1vbl9wMywgbmNvbCA9IDMpLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KYGBgDQoNCiMjIyBUdXJiaWRleg0KDQpgYGB7ciBHcsOhZmljbyBUdXJiaWRleiBmYWNldHRlZCwgZmlnLmNhcD0idHVyYmlkZXotZ3JhdmF0YcOtIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCIsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKHR1cmIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGJveHBsb3RfdHVyYigNCiAgICAgdGl0dWxvID0gIlR1cmJpZGV6IG5vIHBlcsOtb2RvIDE5OTAtMjAyMCINCiAgICkrDQogICBmYWNldF93cmFwKH5wZXJpb2RvKQ0KICkNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBUdXJiaWRleiBsaW5lLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCih0dXJiX2xpbmUgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgZmlsdGVyKGFub19jb2xldGEgPiAiMTk5MCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAyMCIpICU+JQ0KICAgc2VsZWN0KGNvZGlnbywgdHVyYmlkZXosIGRhdGFfY29sZXRhLCBwZXJpb2RvKSAlPiUNCiAgZ3JvdXBfYnkoY29kaWdvKSAlPiUNCiAgZ2dwbG90KA0KICAgIGFlcyh4ID0gZGF0YV9jb2xldGEsDQogICAgICAgIHkgPSB0dXJiaWRleiwNCiAgICAgICAgY29sb3IgPSBjb2RpZ28NCiAgICApKSsNCiAgICBnZW9tX2xpbmUoDQogICAgICAjIGFlcyhjb2xvciA9IGNvZGlnbyksDQogICAgICBuYS5ybSA9IFRSVUUpKw0KICAgIGdlb21fcG9pbnQoDQogICAgICAjIGFlcyhjb2xvciA9IGNvZGlnbyksDQogICAgICBuYS5ybSA9IFRSVUUpKw0KICAgIHNjYWxlX3hfZGF0ZSgNCiAgICAgIGxpbWl0cyA9IGFzLkRhdGUoYygNCiAgICAgICAgIjE5OTAtMDEtMDEiLCANCiAgICAgICAgIjIwMjEtMDEtMDEiDQogICAgICAgICMgTkEgI3BvZGUgdXNhciBOQSB0YW1iw6ltDQogICAgICApKSwNCiAgICAgIGV4cGFuZCA9IGMoMC4wLCAwLjApLA0KICAgICAgZGF0ZV9icmVha3MgPSAiMTAgeWVhcnMiLA0KICAgICAgbWlub3JfYnJlYWtzID0gIjUgeWVhcnMiLA0KICAgICAgZGF0ZV9sYWJlbHMgPSAiJVkiLA0KICAgICkrDQogICMgZ2VvbV9zbW9vdGgoDQogICMgICAjIGFlcyhjb2xvciA9IGNvZGlnbyksDQogICMgICBtZXRob2QgPSAibG0iLA0KICAjICAgIyBmb3JtdWxhID0geSB+IHBvbHkoeCwgMiksDQogICMgICAjIHNwYW4gPSAwLjIsDQogICMgICBzZSA9IFRSVUUsICNzZSBkZWl4YXIgVFJVRSBnZXJhIG8gaW50ZXJ2YWxvIGRlIGNvbmZpYW7Dp2EgZGUgOTUlDQogICMgICBhZXMoZ3JvdXAgPSAxKSwNCiAgIyAgIGFscGhhID0uNSwNCiAgIyAgIG5hLnJtID0gVFJVRSwNCiAgIyAgIHNpemUgPSAwLjMsDQogICMgICAjIGZ1bGxyYW5nZSA9IFRSVUUsDQogICMgICAjIHNob3cubGVnZW5kID0gVFJVRQ0KICAjICkrDQogICMgc3RhdF9zbW9vdGgoDQogICMgICBnZW9tID0gInNtb290aCIsDQogICMgICAjIHNwYW4gPSAwLjIsDQogICMgICBzZSA9IEZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAjICAgIyBhZXMoZ3JvdXAgPSAxKSwNCiAgIyAgICMgYWxwaGEgPS41LA0KICAjICAgbmEucm0gPSBUUlVFLA0KICAjICAgIyBzaXplID0gMC4zLA0KICAjICAgZnVsbHJhbmdlID0gVFJVRSwNCiAgIyAgIHNob3cubGVnZW5kID0gVFJVRQ0KICAjICkrDQogIGZhY2V0X3dyYXAoDQogICAgfmNvZGlnbywNCiAgICBucm93ID0gNCwNCiAgKSsNCiAgdGhlbWVfYncoKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIFR1cmJpZGV6IHBlcmlvZG8xLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCih0dXJiX3AxIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICBmaWx0ZXIoYW5vX2NvbGV0YT4iMTk5MCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMDAiKSAlPiUgDQogICBib3hwbG90X3R1cmIoDQogICAgIHRpdHVsbyA9ICJUdXJiaWRleiBubyBwZXLDrW9kbyAxOTkwLTIwMDAiDQogICApDQogKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIFR1cmJpZGV6IHBlcmlvZG8yLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCih0dXJiX3AyIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMTAiKSAlPiUgDQogICBib3hwbG90X3R1cmIoDQogICAgIHRpdHVsbyA9ICJUdXJiaWRleiBubyBwZXLDrW9kbyAyMDAwLTIwMTAiDQogICApDQogKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIFR1cmJpZGV6IHBlcmlvZG8zLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCih0dXJiX3AzIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAxMCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSAlPiUgDQogICBib3hwbG90X3R1cmIoDQogICAgIHRpdHVsbyA9ICJUdXJiaWRleiBubyBwZXLDrW9kbyAyMDEwLTIwMjAiDQogICApDQogKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIHR1cmIgMyBwZXJpb2RvcyBqdW50b3MsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9DQpncmlkLmFycmFuZ2UodHVyYl9wMSwgdHVyYl9wMiwgdHVyYl9wMywgbmNvbCA9IDMpDQpgYGANCg0KYGBge3IgU3Vtw6FyaW8gVHVyYmlkZXosIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQooc3VtX3R1cmJfcDEgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgc2VsZWN0KGNvZGlnbywgdHVyYmlkZXosIGFub19jb2xldGEpICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhPiIxOTkwIiAmDQogICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAwMCIpICU+JSANCiAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgc3VtbWFyaXplKA0KICAgICBtaW4gPSANCiAgICAgICBtaW4odHVyYmlkZXosIA0KICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBxMSA9IA0KICAgICAgIHF1YW50aWxlKHR1cmJpZGV6LCAwLjI1LCANCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBtZWRpYW4gPSANCiAgICAgICBtZWRpYW4odHVyYmlkZXosIA0KICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBtZWFuID0gDQogICAgICAgbWVhbih0dXJiaWRleiwgDQogICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgIHEzID0gDQogICAgICAgcXVhbnRpbGUodHVyYmlkZXosIDAuNzUsIA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1heCA9IA0KICAgICAgIG1heCh0dXJiaWRleiwgDQogICAgICAgICAgIG5hLnJtID0gVFJVRSkpDQopDQoNCihzdW1fdHVyYl9wMiA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgdHVyYmlkZXosIGFub19jb2xldGEpICU+JSANCiAgICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDEwIikgJT4lIA0KICAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgIHN1bW1hcml6ZSgNCiAgICAgIG1pbiA9IA0KICAgICAgICBtaW4odHVyYmlkZXosIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIHExID0gDQogICAgICAgIHF1YW50aWxlKHR1cmJpZGV6LCAwLjI1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4odHVyYmlkZXosIA0KICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lYW4gPSANCiAgICAgICAgbWVhbih0dXJiaWRleiwgDQogICAgICAgICAgICAgbmEucm09IFRSVUUpLA0KICAgICAgcTMgPSANCiAgICAgICAgcXVhbnRpbGUodHVyYmlkZXosIDAuNzUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heCh0dXJiaWRleiwgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpKQ0KKQ0KDQooc3VtX3R1cmJfcDMgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIHR1cmJpZGV6LCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAyMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKHR1cmJpZGV6LCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZSh0dXJiaWRleiwgMC4yNSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKHR1cmJpZGV6LCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4odHVyYmlkZXosIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKHR1cmJpZGV6LCAwLjc1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgodHVyYmlkZXosIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikgDQpgYGANCg0KYGBge3IgU2FsdmFuZG8gdHVyYiwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFLH0NCmdnc2F2ZSgidHVyYi5wbmciLA0KICAgICAgIHVuaXRzID0gYygicHgiKSwNCiAgICAgICB3aWR0aCA9IDQ1MDAsDQogICAgICAgaGVpZ2h0ID0gMjk5MywNCiAgICAgICBwbG90ID0gdHVyYiwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJ0dXJiX3AxLnBuZyIsDQogICAgICAgcGxvdCA9IHR1cmJfcDEsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgidHVyYl9wMi5wbmciLA0KICAgICAgIHBsb3QgPSB0dXJiX3AyLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoInR1cmJfcDMucG5nIiwNCiAgICAgICBwbG90ID0gdHVyYl9wMywNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJ0dXJiXzNwZXJpb2Rvcy5wbmciLA0KICAgICAgIHVuaXRzID0gYygicHgiKSwNCiAgICAgICB3aWR0aCA9IDQ1MDAsDQogICAgICAgaGVpZ2h0ID0gMjk5MywNCiAgICAgICBwbG90ID0gZ3JpZC5hcnJhbmdlKHR1cmJfcDEsIHR1cmJfcDIsIHR1cmJfcDMsIG5jb2wgPSAzKSwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCmBgYA0KDQojIyMgcEgNCg0KYGBge3IgR3LDoWZpY28gcEggZmFjZXR0ZWQsIGZpZy5jYXA9InBILWdyYXZhdGHDrSBubyBwZXLDrW9kbyAxOTkwLTIwMjAiLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihwSCA8LSBib3hwbG90X3BIKA0KICB0aXR1bG8gPSAicEggbm8gcGVyw61vZG8gMTk5MC0yMDIwIg0KKSsNCiAgZmFjZXRfd3JhcCh+cGVyaW9kbykNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBwSCBwZXJpb2RvMSwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQoocEhfcDEgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhID4gIjE5OTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGEgPD0gIjIwMDAiKSAlPiUgDQogICBib3hwbG90X3BIKA0KICAgICB0aXR1bG8gPSAicEggbm8gcGVyw61vZG8gMTk5MC0yMDAwIg0KICAgKQ0KICkNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBwSCBwZXJpb2RvMiwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQoocEhfcDIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhID4gIjIwMDAiICYNCiAgICAgICAgICAgIGFub19jb2xldGEgPD0gIjIwMTAiKSAlPiUgDQogICBib3hwbG90X3BIKA0KICAgICB0aXR1bG8gPSAicEggbm8gcGVyw61vZG8gMjAwMC0yMDEwIg0KICAgKQ0KICkNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBwSCBwZXJpb2RvMywgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQoocEhfcDMgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhID4gIjIwMTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGEgPD0gIjIwMjAiKSAlPiUgDQogICBib3hwbG90X3BIKA0KICAgICB0aXR1bG8gPSAicEggbm8gcGVyw61vZG8gMjAxMC0yMDIwIg0KICAgKQ0KICkNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBwSCAzIHBlcmlvZG9zIGp1bnRvcywgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0NCmdyaWQuYXJyYW5nZShwSF9wMSwgcEhfcDIsIHBIX3AzLCBuY29sID0gMykNCmBgYA0KDQpgYGB7ciBTdW3DoXJpbyBwSCwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFLH0NCihzdW1fcEhfcDEgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgc2VsZWN0KGNvZGlnbywgcEgsIGFub19jb2xldGEpICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhPiIxOTkwIiAmDQogICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAwMCIpICU+JSANCiAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgc3VtbWFyaXplKA0KICAgICBtaW4gPSANCiAgICAgICBtaW4ocEgsIA0KICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBxMSA9IA0KICAgICAgIHF1YW50aWxlKHBILCAwLjI1LCANCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBtZWRpYW4gPSANCiAgICAgICBtZWRpYW4ocEgsIA0KICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBtZWFuID0gDQogICAgICAgbWVhbihwSCwgDQogICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgIHEzID0gDQogICAgICAgcXVhbnRpbGUocEgsIDAuNzUsIA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1heCA9IA0KICAgICAgIG1heChwSCwgDQogICAgICAgICAgIG5hLnJtID0gVFJVRSkpDQopDQoNCihzdW1fcEhfcDIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIHBILCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKHBILCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShwSCwgMC4yNSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKHBILCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4ocEgsIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKHBILCAwLjc1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgocEgsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikgDQoNCihzdW1fcEhfcDMgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIHBILCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAyMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKHBILCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShwSCwgMC4yNSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKHBILCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4ocEgsIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKHBILCAwLjc1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgocEgsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCmBgYA0KDQpgYGB7ciBTYWx2YW5kbyBwSCwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFLH0NCmdnc2F2ZSgicEgucG5nIiwNCiAgICAgICB1bml0cyA9IGMoInB4IiksDQogICAgICAgd2lkdGggPSA0NTAwLA0KICAgICAgIGhlaWdodCA9IDI5OTMsDQogICAgICAgcGxvdCA9IHBILA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoInBIX3AxLnBuZyIsDQogICAgICAgcGxvdCA9IHBIX3AxLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoInBIX3AyLnBuZyIsDQogICAgICAgcGxvdCA9IHBIX3AyLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoInBIX3AzLnBuZyIsDQogICAgICAgcGxvdCA9IHBIX3AzLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoInBIXzNwZXJpb2Rvcy5wbmciLA0KICAgICAgIHVuaXRzID0gYygicHgiKSwNCiAgICAgICB3aWR0aCA9IDQ1MDAsDQogICAgICAgaGVpZ2h0ID0gMjk5MywNCiAgICAgICBwbG90ID0gZ3JpZC5hcnJhbmdlKHBIX3AxLCBwSF9wMiwgcEhfcDMsIG5jb2wgPSAzKSwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCmBgYA0KDQojIyMgU8OzbGlkb3MgdG90YWlzDQoNCmBgYHtyIEdyw6FmaWNvIFPDs2xUb3QgZmFjZXR0ZWQsIGZpZy5jYXA9InPDs2xpZG9zLXRvdGFpcy1ncmF2YXRhw60gbm8gcGVyw61vZG8gMTk5MC0yMDIwIiwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQooU29sVG90IDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICBib3hwbG90X3NvbGlkb3NfdG90YWlzKA0KICAgICB0aXR1bG8gPSAiU8OzbGlkb3MgdG90YWlzIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCINCiAgICkrDQogICBmYWNldF93cmFwKH5wZXJpb2RvKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIFPDs2xUb3QgcGVyaW9kbzEsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKFNvbFRvdF9wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICBhbm9fY29sZXRhPD0iMjAwMCIpICU+JSANCiAgIGJveHBsb3Rfc29saWRvc190b3RhaXMoDQogICAgIHRpdHVsbyA9ICJTw7NsaWRvcyB0b3RhaXMgbm8gcGVyw61vZG8gMTk5MC0yMDAwIg0KICAgKQ0KICkNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBTw7NsVG90IHBlcmlvZG8yLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihTb2xUb3RfcDIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDAwIiAmDQogICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpICU+JSANCiAgIGJveHBsb3Rfc29saWRvc190b3RhaXMoDQogICAgIHRpdHVsbyA9ICJTw7NsaWRvcyB0b3RhaXMgbm8gcGVyw61vZG8gMjAwMC0yMDEwIg0KICAgKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIFPDs2xUb3QgcGVyaW9kbzMsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKFNvbFRvdF9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDIwIikgJT4lIA0KICAgYm94cGxvdF9zb2xpZG9zX3RvdGFpcygNCiAgICAgdGl0dWxvID0gIlPDs2xpZG9zIHRvdGFpcyBubyBwZXLDrW9kbyAyMDEwLTIwMjAiDQogICApDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gU8OzbFRvdCAzIHBlcmlvZG9zIGp1bnRvcywgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0NCmdyaWQuYXJyYW5nZShTb2xUb3RfcDEsIFNvbFRvdF9wMiwgU29sVG90X3AzLCBuY29sID0gMykNCmBgYA0KDQpgYGB7ciBTdW3DoXJpbyBTw7NsaWRvcyBUb3RhaXMsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQooc3VtX1NvbFRvdF9wMSA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICBzZWxlY3QoY29kaWdvLCBzb2xpZG9zX3RvdGFpcywgYW5vX2NvbGV0YSkgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIikgJT4lIA0KICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICBzdW1tYXJpemUoDQogICAgIG1pbiA9IA0KICAgICAgIG1pbihzb2xpZG9zX3RvdGFpcywgDQogICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIHExID0gDQogICAgICAgcXVhbnRpbGUoc29saWRvc190b3RhaXMsIDAuMjUsIA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lZGlhbiA9IA0KICAgICAgIG1lZGlhbihzb2xpZG9zX3RvdGFpcywgDQogICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lYW4gPSANCiAgICAgICBtZWFuKHNvbGlkb3NfdG90YWlzLCANCiAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgcTMgPSANCiAgICAgICBxdWFudGlsZShzb2xpZG9zX3RvdGFpcywgMC43NSwgDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgbWF4ID0gDQogICAgICAgbWF4KHNvbGlkb3NfdG90YWlzLCANCiAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCg0KKHN1bV9Tb2xUb3RfcDIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIHNvbGlkb3NfdG90YWlzLCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKHNvbGlkb3NfdG90YWlzLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShzb2xpZG9zX3RvdGFpcywgMC4yNSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKHNvbGlkb3NfdG90YWlzLCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4oc29saWRvc190b3RhaXMsIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKHNvbGlkb3NfdG90YWlzLCAwLjc1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgoc29saWRvc190b3RhaXMsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCg0KKHN1bV9Tb2xUb3RfcDMgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIHNvbGlkb3NfdG90YWlzLCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAyMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKHNvbGlkb3NfdG90YWlzLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShzb2xpZG9zX3RvdGFpcywgMC4yNSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKHNvbGlkb3NfdG90YWlzLCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4oc29saWRvc190b3RhaXMsIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKHNvbGlkb3NfdG90YWlzLCAwLjc1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgoc29saWRvc190b3RhaXMsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCmBgYA0KDQpgYGB7ciBTYWx2YW5kbyBTb2xUb3QsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQpnZ3NhdmUoIlNvbFRvdC5wbmciLA0KICAgICAgIHVuaXRzID0gYygicHgiKSwNCiAgICAgICB3aWR0aCA9IDQ1MDAsDQogICAgICAgaGVpZ2h0ID0gMjk5MywNCiAgICAgICBwbG90ID0gU29sVG90LA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoIlNvbFRvdF9wMS5wbmciLA0KICAgICAgIHBsb3QgPSBTb2xUb3RfcDEsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgiU29sVG90X3AyLnBuZyIsDQogICAgICAgcGxvdCA9IFNvbFRvdF9wMiwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJTb2xUb3RfcDMucG5nIiwNCiAgICAgICBwbG90ID0gU29sVG90X3AzLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoIlNvbFRvdF8zcGVyaW9kb3MucG5nIiwNCiAgICAgICB1bml0cyA9IGMoInB4IiksDQogICAgICAgd2lkdGggPSA0NTAwLA0KICAgICAgIGhlaWdodCA9IDI5OTMsDQogICAgICAgcGxvdCA9IGdyaWQuYXJyYW5nZShTb2xUb3RfcDEsIFNvbFRvdF9wMiwgU29sVG90X3AzLCBuY29sID0gMyksDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQpgYGANCg0KIyMgQ29uZHV0aXZpZGFkZSBlbMOpdHJpY2ENCg0KYGBge3IgR3LDoWZpY28gY29uZF9lbGV0IGZhY2V0dGVkLCBmaWcuY2FwPSJjb25kdXRpdmlkYWRlLWVsZXRyaWNhLWdyYXZhdGHDrSBubyBwZXLDrW9kbyAxOTkwLTIwMjAiLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihjb25kX2VsZXQgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGJveHBsb3RfY29uZF9lbGV0KA0KICAgICB0aXR1bG8gPSAiQ29uZHV0aXZpZGFkZSBlbMOpdHJpY2Egbm8gcGVyw61vZG8gMTk5MC0yMDIwIg0KICAgKSsNCiAgIGZhY2V0X3dyYXAofnBlcmlvZG8pDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gY29uZF9lbGV0IHBlcmlvZG8xLCB3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0NCihjb25kX2VsZXRfcDEgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgIGZpbHRlcihhbm9fY29sZXRhPiIxOTkwIiAmDQogICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAwMCIpICU+JSANCiAgIGJveHBsb3RfY29uZF9lbGV0KA0KICAgICB0aXR1bG8gPSAiQ29uZHV0aXZpZGFkZSBlbMOpdHJpY2Egbm8gcGVyw61vZG8gMTk5MC0yMDAwIg0KICAgKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIGNvbmRfZWxldCBwZXJpb2RvMiwgd2FybmluZyA9IEZBTFNFLCBtZXNzYWdlID0gRkFMU0V9DQooY29uZF9lbGV0X3AyIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQogICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMTAiKSAlPiUgDQogICBib3hwbG90X2NvbmRfZWxldCgNCiAgICAgdGl0dWxvID0gIkNvbmR1dGl2aWRhZGUgZWzDqXRyaWNhIG5vIHBlcsOtb2RvIDIwMDAtMjAxMCINCiAgICkNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBjb25kX2VsZXQgcGVyaW9kbzMsIHdhcm5pbmcgPSBGQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKGNvbmRfZWxldF9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjIwMTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDIwIikgJT4lIA0KICAgYm94cGxvdF9jb25kX2VsZXQoDQogICAgIHRpdHVsbyA9ICJDb25kdXRpdmlkYWRlIGVsw6l0cmljYSBubyBwZXLDrW9kbyAyMDEwLTIwMjAiDQogICApDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gY29uZF9lbGV0IDMgcGVyaW9kb3MganVudG9zLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQ0KZ3JpZC5hcnJhbmdlKGNvbmRfZWxldF9wMSwgY29uZF9lbGV0X3AyLCBjb25kX2VsZXRfcDMsIG5jb2wgPSAzKQ0KYGBgDQoNCmBgYHtyIFN1bcOhcmlvIGNvbmRfZWxldCwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KKHN1bV9jb25kX2VsZXRfcDEgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgc2VsZWN0KGNvZGlnbywgY29uZHV0aXZpZGFkZSwgYW5vX2NvbGV0YSkgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIikgJT4lIA0KICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICBzdW1tYXJpemUoDQogICAgIG1pbiA9IA0KICAgICAgIG1pbihjb25kdXRpdmlkYWRlLCANCiAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgcTEgPSANCiAgICAgICBxdWFudGlsZShjb25kdXRpdmlkYWRlLCAwLjI1LCANCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBtZWRpYW4gPSANCiAgICAgICBtZWRpYW4oY29uZHV0aXZpZGFkZSwgDQogICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lYW4gPSANCiAgICAgICBtZWFuKGNvbmR1dGl2aWRhZGUsIA0KICAgICAgICAgICAgbmEucm09IFRSVUUpLA0KICAgICBxMyA9IA0KICAgICAgIHF1YW50aWxlKGNvbmR1dGl2aWRhZGUsIDAuNzUsIA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1heCA9IA0KICAgICAgIG1heChjb25kdXRpdmlkYWRlLCANCiAgICAgICAgICAgbmEucm0gPSBUUlVFKSkNCikNCg0KKHN1bV9jb25kX2VsZXRfcDIgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIGNvbmR1dGl2aWRhZGUsIGFub19jb2xldGEpICU+JSANCiAgICBmaWx0ZXIoYW5vX2NvbGV0YT4iMjAwMCIgJg0KICAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDEwIikgJT4lIA0KICAgIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICAgIHN1bW1hcml6ZSgNCiAgICAgIG1pbiA9IA0KICAgICAgICBtaW4oY29uZHV0aXZpZGFkZSwgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgcTEgPSANCiAgICAgICAgcXVhbnRpbGUoY29uZHV0aXZpZGFkZSwgMC4yNSwgDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWRpYW4gPSANCiAgICAgICAgbWVkaWFuKGNvbmR1dGl2aWRhZGUsIA0KICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lYW4gPSANCiAgICAgICAgbWVhbihjb25kdXRpdmlkYWRlLCANCiAgICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgICBxMyA9IA0KICAgICAgICBxdWFudGlsZShjb25kdXRpdmlkYWRlLCAwLjc1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1heCA9IA0KICAgICAgICBtYXgoY29uZHV0aXZpZGFkZSwgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpKQ0KKQ0KDQooc3VtX2NvbmRfZWxldF9wMyA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgY29uZHV0aXZpZGFkZSwgYW5vX2NvbGV0YSkgJT4lIA0KICAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDEwIiAmDQogICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSAlPiUgDQogICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICAgc3VtbWFyaXplKA0KICAgICAgbWluID0gDQogICAgICAgIG1pbihjb25kdXRpdmlkYWRlLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBxMSA9IA0KICAgICAgICBxdWFudGlsZShjb25kdXRpdmlkYWRlLCAwLjI1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4oY29uZHV0aXZpZGFkZSwgDQogICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWVhbiA9IA0KICAgICAgICBtZWFuKGNvbmR1dGl2aWRhZGUsIA0KICAgICAgICAgICAgIG5hLnJtPSBUUlVFKSwNCiAgICAgIHEzID0gDQogICAgICAgIHF1YW50aWxlKGNvbmR1dGl2aWRhZGUsIDAuNzUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heChjb25kdXRpdmlkYWRlLCANCiAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBuID0gDQogICAgICAgIGxlbmd0aChjb25kdXRpdmlkYWRlKSkNCikNCg0KIyBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KIyAgICBzZWxlY3QoY29kaWdvLCBJUUEpICU+JSANCiMgICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQojICAgIHN1bW1hcml6ZSgNCiMgICAgICAgbWluID0gDQojICAgICAgICAgIG1pbihJUUEsIA0KIyAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiMgICAgICAgcTEgPSANCiMgICAgICAgICAgcXVhbnRpbGUoSVFBLCAwLjI1LCANCiMgICAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiMgICAgICAgbWVkaWFuID0gDQojICAgICAgICAgIG1lZGlhbihJUUEsIA0KIyAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiMgICAgICAgbWVhbiA9IA0KIyAgICAgICAgICBtZWFuKElRQSwgDQojICAgICAgICAgICAgICAgbmEucm09IFRSVUUpLA0KIyAgICAgICBxMyA9IA0KIyAgICAgICAgICBxdWFudGlsZShJUUEsIDAuNzUsIA0KIyAgICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KIyAgICAgICBtYXggPSANCiMgICAgICAgICAgbWF4KElRQSwgDQojICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpKQ0KYGBgDQoNCmBgYHtyIFNhbHZhbmRvIGNvbmRfZWxldCwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFfQ0KZ2dzYXZlKCJjb25kX2VsZXQucG5nIiwNCiAgICAgICB1bml0cyA9IGMoInB4IiksDQogICAgICAgd2lkdGggPSA0NTAwLA0KICAgICAgIGhlaWdodCA9IDI5OTMsDQogICAgICAgcGxvdCA9IGNvbmRfZWxldCwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJjb25kX2VsZXRfcDEucG5nIiwNCiAgICAgICBwbG90ID0gY29uZF9lbGV0X3AxLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoImNvbmRfZWxldF9wMi5wbmciLA0KICAgICAgIHBsb3QgPSBjb25kX2VsZXRfcDIsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgiY29uZF9lbGV0X3AzLnBuZyIsDQogICAgICAgcGxvdCA9IGNvbmRfZWxldF9wMywNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJjb25kX2VsZXRfM3BlcmlvZG9zLnBuZyIsDQogICAgICAgdW5pdHMgPSBjKCJweCIpLA0KICAgICAgIHdpZHRoID0gNDUwMCwNCiAgICAgICBoZWlnaHQgPSAyOTkzLA0KICAgICAgIHBsb3QgPSBncmlkLmFycmFuZ2UoY29uZF9lbGV0X3AxLCBjb25kX2VsZXRfcDIsIGNvbmRfZWxldF9wMywgbmNvbCA9IDMpLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpgYGANCg0KIyMjIElRQQ0KDQpgYGB7ciBHcsOhZmljbyBJUUEgZmFjZXR0ZWQsIGZpZy5jYXA9ImlxYS1ncmF2YXRhw60gbm8gcGVyw61vZG8gMTk5MC0yMDIwIiwgZWNobyA9IEZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KKGlxYSA8LWdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAsDQogICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICBpcWEsIG5hLnJtID0gVFJVRSkpKw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPS1JbmYsDQogICAgICAgICAgICB5bWF4PTI1LA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTI1LA0KICAgICAgICAgICAgeW1heD01MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZWI1NjYxIikrICNjbGFzc2UgNA0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTUwLA0KICAgICAgICAgICAgeW1heD03MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTcwLA0KICAgICAgICAgICAgeW1heD05MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTkwLA0KICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfc3VtbWFyeSgNCiAgICAgZnVuLmRhdGEgPSBmLA0KICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgd2lkdGggPSAwLjMsDQogICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSwNCiAgICkrDQogICBzdGF0X3N1bW1hcnkoDQogICAgIGZ1bi5kYXRhID0gZiwNCiAgICAgZ2VvbSA9ICJib3hwbG90IiwNCiAgICAgd2lkdGggPSAwLjcsDQogICAgIGZpbGwgPSAnI0Y4RjhGRicsDQogICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgb3V0bGllci5zaGFwZSA9IE5BLCAjc2UgZGVpeGFyIE5BIGZpY2Egc8OzIG8gaml0dGVyLCBzZSBuw6NvLCBkZWl4YSAxDQogICApKw0KICAgZmFjZXRfd3JhcCh+cGVyaW9kbykrDQogICBsYWJzKHRpdGxlID0gIlZhcmlhw6fDo28gZG8gSVFBIG5vIHBlcsOtb2RvIDE5OTAtMjAyMCIsDQogICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgIHk9IklRQSIpKw0KICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLDApKSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDYsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygtMSwxMDEpKSsNCiAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICBzaXplID0gMSkrDQogICB0aGVtZV9ncmFmcygpDQogICAjIHRoZW1lKGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKSkNCikNCmBgYA0KDQpgYGB7ciBHcsOhZmljbyBJUUEgcGVyaW9kbzEsIGVjaG8gPSBGQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0NCihpcWFfcDEgPC1nZ3Bsb3QocGxhbl93aWRlXzE5OTAyMDIwICU+JSANCiAgICAgICAgICAgICAgICAgICBmaWx0ZXIoYW5vX2NvbGV0YSA+ICIxOTkwIiAmDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgYW5vX2NvbGV0YSA8PSAiMjAwMCIpLA0KICAgICAgICAgICAgICAgICBhZXMoY29kaWdvLA0KICAgICAgICAgICAgICAgICAgICAgaXFhLCBuYS5ybSA9IFRSVUUpKSsNCiAgICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgIHltaW49LUluZiwNCiAgICAgICAgICAgIHltYXg9MjUsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iI2FjNTA3OSIpKyAjPnBpb3IgY2xhc3NlDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgIHltaW49MjUsDQogICAgICAgICAgICB5bWF4PTUwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNlYjU2NjEiKSsgI2NsYXNzZSA0DQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgIHltaW49NTAsDQogICAgICAgICAgICB5bWF4PTcwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNmY2Y3YWIiKSsgI2NsYXNzZSAzDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgIHltaW49NzAsDQogICAgICAgICAgICB5bWF4PTkwLA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiM3MGMxOGMiKSsgI2NsYXNzZSAyDQogICBhbm5vdGF0ZSgicmVjdCIsDQogICAgICAgICAgICB4bWluPS1JbmYsDQogICAgICAgICAgICB4bWF4PUluZiwNCiAgICAgICAgICAgIHltaW49OTAsDQogICAgICAgICAgICB5bWF4PUluZiwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjOGRjZGViIikrICNjbGFzc2UgMQ0KICAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICAgd2lkdGg9MC4zLA0KICAgICAgICAgICAgICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICAgZ2VvbV9ib3hwbG90KGZpbGw9JyNGOEY4RkYnLA0KICAgICAgICAgICAgICAgICBjb2xvcj0iYmxhY2siLA0KICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICAgd2lkdGg9IDAuNywNCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSsNCiAgICBsYWJzKHRpdGxlID0gIlZhcmlhw6fDo28gZG8gSVFBIG5vIHBlcsOtb2RvIDE5OTAtMjAwMCIsDQogICAgICAgICB4PSJFc3Rhw6fDo28iLA0KICAgICAgICAgeT0iIikrDQogICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLDApKSwNCiAgICAgICAgICAgICAgICAgICAgICAgbi5icmVha3MgPSA2LA0KICAgICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKC0xLDEwMSkpKw0KICAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIsDQogICAgICAgICAgICAgICAgc2U9RkFMU0UsICNzZSBkZWl4YXIgVFJVRSBnZXJhIG8gaW50ZXJ2YWxvIGRlIGNvbmZpYW7Dp2EgZGUgOTUlDQogICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgIGFscGhhPS41LA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSwNCiAgICAgICAgICAgICAgICBzaXplID0gMSkrDQogICB0aGVtZV9ncmFmcygpKw0KICAgdGhlbWUoYXhpcy50aXRsZS55ID0gZWxlbWVudF9ibGFuaygpKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIElRQSBwZXJpb2RvMiwgZWNobyA9IEZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KKGlxYV9wMiA8LWdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgICAgICAgICAgICAgICAgIGZpbHRlcihhbm9fY29sZXRhID4gIjIwMDAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbm9fY29sZXRhIDw9ICIyMDEwIiksDQogICAgICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICAgICBpcWEsIG5hLnJtID0gVFJVRSkpKw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPS1JbmYsDQogICAgICAgICAgICB5bWF4PTI1LA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTI1LA0KICAgICAgICAgICAgeW1heD01MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZWI1NjYxIikrICNjbGFzc2UgNA0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTUwLA0KICAgICAgICAgICAgeW1heD03MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTcwLA0KICAgICAgICAgICAgeW1heD05MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTkwLA0KICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICBnZW9tX2JveHBsb3QoZmlsbD0nI0Y4RjhGRicsDQogICAgICAgICAgICAgICAgY29sb3I9ImJsYWNrIiwNCiAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICB3aWR0aD0gMC43LA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICBsYWJzKHRpdGxlID0gIlZhcmlhw6fDo28gZG8gSVFBIG5vIHBlcsOtb2RvIDIwMDAtMjAxMCIsDQogICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgIHk9IiIpKw0KICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLDApKSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDYsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygtMSwxMDEpKSsNCiAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICBzaXplID0gMSkrDQogdGhlbWVfZ3JhZnMoKSsNCiAgIHRoZW1lKGF4aXMudGl0bGUueSA9IGVsZW1lbnRfYmxhbmsoKQ0KICAgKQ0KKQ0KYGBgDQoNCmBgYHtyIEdyw6FmaWNvIElRQSBwZXJpb2RvMywgZWNobyA9IEZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KKGlxYV9wMyA8LWdncGxvdChwbGFuX3dpZGVfMTk5MDIwMjAgJT4lIA0KICAgICAgICAgICAgICAgICAgIGZpbHRlcihhbm9fY29sZXRhID4gIjIwMTAiICYNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbm9fY29sZXRhIDw9ICIyMDIwIiksDQogICAgICAgICAgICAgICAgIGFlcyhjb2RpZ28sDQogICAgICAgICAgICAgICAgICAgICBpcWEsIG5hLnJtID0gVFJVRSkpKw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPS1JbmYsDQogICAgICAgICAgICB5bWF4PTI1LA0KICAgICAgICAgICAgYWxwaGE9MSwNCiAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTI1LA0KICAgICAgICAgICAgeW1heD01MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZWI1NjYxIikrICNjbGFzc2UgNA0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTUwLA0KICAgICAgICAgICAgeW1heD03MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTcwLA0KICAgICAgICAgICAgeW1heD05MCwNCiAgICAgICAgICAgIGFscGhhPTEsDQogICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KICAgYW5ub3RhdGUoInJlY3QiLA0KICAgICAgICAgICAgeG1pbj0tSW5mLA0KICAgICAgICAgICAgeG1heD1JbmYsDQogICAgICAgICAgICB5bWluPTkwLA0KICAgICAgICAgICAgeW1heD1JbmYsDQogICAgICAgICAgICBhbHBoYT0xLA0KICAgICAgICAgICAgZmlsbD0iIzhkY2RlYiIpKyAjY2xhc3NlIDENCiAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgICAgICAgICB3aWR0aD0wLjMsDQogICAgICAgICAgICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpLA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICBnZW9tX2JveHBsb3QoZmlsbD0nI0Y4RjhGRicsDQogICAgICAgICAgICAgICAgY29sb3I9ImJsYWNrIiwNCiAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiAgICAgICAgICAgICAgICB3aWR0aD0gMC43LA0KICAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSkrDQogICBsYWJzKHRpdGxlID0gIlZhcmlhw6fDo28gZG8gSVFBIG5vIHBlcsOtb2RvIDIwMTAtMjAyMCIsDQogICAgICAgIHg9IkVzdGHDp8OjbyIsDQogICAgICAgIHk9IiIpKw0KICAgc2NhbGVfeV9jb250aW51b3VzKGV4cGFuZCA9IGV4cGFuc2lvbihtdWx0ID0gYygwLDApKSwNCiAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDYsDQogICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygtMSwxMDEpKSsNCiAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgIHNpemUgPSAxLjIsDQogICAgIGFscGhhID0gLjI1LA0KICAgICB3aWR0aCA9IC4wNywNCiAgICkrDQogICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTgwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3Mzk4OTUwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA1NTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA2OTAwIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjg3NDA5OTAwIiksDQogICAgICAgICAgICAgICAgICAgIGxhYmVscyA9IGMoIlBNMSIsICJQTTIiLCAiUE0zIiwgIlBNNCIsICJQTTUiLCAiUE02IiwgIlBNNyIpDQogICApKw0KICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gImxtIiwNCiAgICAgICAgICAgICAgIHNlPUZBTFNFLCAjc2UgZGVpeGFyIFRSVUUgZ2VyYSBvIGludGVydmFsbyBkZSBjb25maWFuw6dhIGRlIDk1JQ0KICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KICAgICAgICAgICAgICAgYWxwaGE9LjUsDQogICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUsDQogICAgICAgICAgICAgICBzaXplID0gMSkrDQogICAgdGhlbWVfZ3JhZnMoKSsNCiAgICB0aGVtZShheGlzLnRpdGxlLnkgPSBlbGVtZW50X2JsYW5rKCkpDQopDQpgYGANCg0KYGBge3IgR3LDoWZpY28gSVFBIDMgcGVyaW9kb3MganVudG9zLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQ0KZ3JpZC5hcnJhbmdlKGlxYV9wMSwgaXFhX3AyLCBpcWFfcDMsIG5jb2wgPSAzKQ0KYGBgDQoNCmBgYHtyIFN1bcOhcmlvIElRQSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFLH0NCihzdW1fSVFBX3AxIDwtIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUNCiAgIHNlbGVjdChjb2RpZ28sIGlxYSwgYW5vX2NvbGV0YSkgJT4lIA0KICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiAgICAgICAgICAgIGFub19jb2xldGE8PSIyMDAwIikgJT4lIA0KICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogICBzdW1tYXJpemUoDQogICAgIG1pbiA9IA0KICAgICAgIG1pbihpcWEsIA0KICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBxMSA9IA0KICAgICAgIHF1YW50aWxlKGlxYSwgMC4yNSwgDQogICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgbWVkaWFuID0gDQogICAgICAgbWVkaWFuKGlxYSwgDQogICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgIG1lYW4gPSANCiAgICAgICBtZWFuKGlxYSwgDQogICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgIHEzID0gDQogICAgICAgcXVhbnRpbGUoaXFhLCAwLjc1LCANCiAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICBtYXggPSANCiAgICAgICBtYXgoaXFhLCANCiAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgbiA9IA0KICAgICAgICBsZW5ndGgoaXFhKQ0KICAgKQ0KKQ0KDQooc3VtX0lRQV9wMiA8LSBwbGFuX3dpZGVfMTk5MDIwMjAgJT4lDQogICAgc2VsZWN0KGNvZGlnbywgaXFhLCBhbm9fY29sZXRhKSAlPiUgDQogICAgZmlsdGVyKGFub19jb2xldGE+IjIwMDAiICYNCiAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAxMCIpICU+JSANCiAgICBncm91cF9ieShjb2RpZ28pICU+JSANCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKGlxYSwgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgcTEgPSANCiAgICAgICAgcXVhbnRpbGUoaXFhLCAwLjI1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4oaXFhLCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4oaXFhLCANCiAgICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgICBxMyA9IA0KICAgICAgICBxdWFudGlsZShpcWEsIDAuNzUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heChpcWEsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG4gPSANCiAgICAgICAgbGVuZ3RoKGlxYSkNCiAgICAgICkNCikNCg0KKHN1bV9JUUFfcDMgPC0gcGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KICAgIHNlbGVjdChjb2RpZ28sIGlxYSwgYW5vX2NvbGV0YSkgJT4lIA0KICAgIGZpbHRlcihhbm9fY29sZXRhPiIyMDEwIiAmDQogICAgICAgICAgICAgYW5vX2NvbGV0YTw9IjIwMjAiKSAlPiUNCiAgICAjID9hc19mYWN0b3IoY29kaWdvKSAlPiUgDQogICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUNCiAgICBzdW1tYXJpemUoDQogICAgICBtaW4gPSANCiAgICAgICAgbWluKGlxYSwgDQogICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgcTEgPSANCiAgICAgICAgcXVhbnRpbGUoaXFhLCAwLjI1LCANCiAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG1lZGlhbiA9IA0KICAgICAgICBtZWRpYW4oaXFhLCANCiAgICAgICAgICAgICAgIG5hLnJtID0gVFJVRSksDQogICAgICBtZWFuID0gDQogICAgICAgIG1lYW4oaXFhLCANCiAgICAgICAgICAgICBuYS5ybT0gVFJVRSksDQogICAgICBxMyA9IA0KICAgICAgICBxdWFudGlsZShpcWEsIDAuNzUsIA0KICAgICAgICAgICAgICAgICBuYS5ybSA9IFRSVUUpLA0KICAgICAgbWF4ID0gDQogICAgICAgIG1heChpcWEsIA0KICAgICAgICAgICAgbmEucm0gPSBUUlVFKSwNCiAgICAgIG4gPSANCiAgICAgICAgbGVuZ3RoKGlxYSksDQogICAgICBOQXMgPSANCiAgICAgICAgc3VtKGlzLm5hKGlxYSkpDQogICAgICApICU+JSANCiAgbXV0YXRlKA0KICAgICIlTkEiID0gTkFzL24qMTAwDQogICkNCikNCg0KYGBgDQoNCmBgYHtyIFNhbHZhbmRvIGlxYSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFLH0NCmdnc2F2ZSgiaXFhLnBuZyIsDQogICAgICAgdW5pdHMgPSBjKCJweCIpLA0KICAgICAgIHdpZHRoID0gNDUwMCwNCiAgICAgICBoZWlnaHQgPSAyOTkzLA0KICAgICAgIHBsb3QgPSBpcWEsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgiaXFhX3AxLnBuZyIsDQogICAgICAgcGxvdCA9IGlxYV9wMSwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCg0KZ2dzYXZlKCJpcWFfcDIucG5nIiwNCiAgICAgICBwbG90ID0gaXFhX3AyLA0KICAgICAgIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogICAgICAgZHBpID0gMzAwLA0KICAgICAgIHR5cGUgPSAiY2Fpcm8iKQ0KDQpnZ3NhdmUoImlxYV9wMy5wbmciLA0KICAgICAgIHBsb3QgPSBpcWFfcDMsDQogICAgICAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgICAgICBkcGkgPSAzMDAsDQogICAgICAgdHlwZSA9ICJjYWlybyIpDQoNCmdnc2F2ZSgiaXFhXzNwZXJpb2Rvcy5wbmciLA0KICAgICAgIHVuaXRzID0gYygicHgiKSwNCiAgICAgICB3aWR0aCA9IDQ1MDAsDQogICAgICAgaGVpZ2h0ID0gMjk5MywNCiAgICAgICBwbG90ID0gZ3JpZC5hcnJhbmdlKGlxYV9wMSwgaXFhX3AyLCBpcWFfcDMsIG5jb2wgPSAzKSwNCiAgICAgICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICAgICAgIGRwaSA9IDMwMCwNCiAgICAgICB0eXBlID0gImNhaXJvIikNCmBgYA0KDQojIyBUZXN0YW5kbyBjb2lzYXMNCg0KYGBge3IgVGVzdGFuZG8gY29pc2FzLCBpbmNsdWRlID0gRkFMU0UsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSx9DQojIHBsYW5fd2lkZV8xOTkwMjAyMCAlPiUgDQojICAgIHNlbGVjdChjb2RpZ28sIG94aWdlbmlvX2Rpc3NvbHZpZG8sIGFub19jb2xldGEpICU+JSANCiMgICAgZ2dwbG90KGFlcyhhbm9fY29sZXRhLCBveGlnZW5pb19kaXNzb2x2aWRvLCANCiMgICAgICAgY29sID0gY29kaWdvKSkrDQojICAgIGdlb21fbGluZSgpKw0KIyAgICBmYWNldF93cmFwKH4gY29kaWdvLCBuY29sID0gNykNCg0KIyBkZjExMSA8LSBkYXRhLmZyYW1lKHggPSBjKDE6MTAwKSkNCiMgZ2xpbXBzZShkZjExMSkNCiMgZGYxMTEkeSA8LSAyICsgMyAqIGRmMTExJHggKyBybm9ybSgxMDAsIHNkID0gNDApDQojIA0KIyBsbV9lcW4gPC0gZnVuY3Rpb24oZGYxMTEpew0KIyAgICAgbSA8LSBsbSh5IH4geCwgZGYxMTEpOw0KIyAgICAgZXEgPC0gc3Vic3RpdHV0ZSh5ID09IGEgKyBiICUuJSB4KiIsIn5+cl4yfiI9In5yMiwNCiMgICAgICAgICAgbGlzdChhID0gZm9ybWF0KHVubmFtZShjb2VmKG0pWzFdKSwgZGlnaXRzID0gMiksDQojICAgICAgICAgICAgICAgYiA9IGZvcm1hdCh1bm5hbWUoY29lZihtKVsyXSksIGRpZ2l0cyA9IDIpLA0KIyAgICAgICAgICAgICAgcjIgPSBmb3JtYXQoc3VtbWFyeShtKSRyLnNxdWFyZWQsIGRpZ2l0cyA9IDMpKSkNCiMgICAgIGFzLmNoYXJhY3Rlcihhcy5leHByZXNzaW9uKGVxKSk7DQojIH0gDQojIHAyIDwtIHAxMTEgKw0KIyAgIGdlb21fdGV4dCh4ID0gMjUsIHkgPSAzMDAsDQojICAgICAgICAgICAgIGxhYmVsID0gbG1fZXFuKGRmMTExKSwNCiMgICAgICAgICAgICAgcGFyc2UgPSBUUlVFKQ0KIyBwMg0KIyANCiMgDQojIGxtX2VxYyA8LSBmdW5jdGlvbihwbGFuX3dpZGVfMTk5MDIwMjApew0KIyAgICBtIDwtIGxtKG94aWdlbmlvX2Rpc3NvbHZpZG8gfiBjb2RpZ28sIHBsYW5fd2lkZV8xOTkwMjAyMCk7DQojICAgIGVxIDwtIHN1YnN0aXR1dGUoeSA9PSBhICsgYiAlLiUgeCoiLCJ+fnJeMn4iPSJ+cjIsDQojICAgICAgICAgICAgICAgICAgICAgbGlzdChhID0gZm9ybWF0KHVubmFtZShjb2VmKG0pWzFdKSwgZGlnaXRzID0gMiksDQojICAgICAgICAgICAgICAgICAgICAgICAgICBiID0gZm9ybWF0KHVubmFtZShjb2VmKG0pWzJdKSwgZGlnaXRzID0gMiksDQojICAgICAgICAgICAgICAgICAgICAgICAgICByMiA9IGZvcm1hdChzdW1tYXJ5KG0pJHIuc3F1YXJlZCwgZGlnaXRzID0gMykpKQ0KIyAgICBhcy5jaGFyYWN0ZXIoYXMuZXhwcmVzc2lvbihlcSkpOw0KIyB9DQojIA0KIyAob2RfcDEgPC1nZ3Bsb3QocGxhbl93aWRlXzE5OTAyMDIwICU+JQ0KIyAgICAgICAgICAgICAgICAgICAgZmlsdGVyKGFub19jb2xldGE+IjE5OTAiICYNCiMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbm9fY29sZXRhPD0iMjAwMCIpLA0KIyAgICAgICAgICAgICAgICAgYWVzKGNvZGlnbywNCiMgICAgICAgICAgICAgICAgICAgICBveGlnZW5pb19kaXNzb2x2aWRvKSkrDQojICAgICAgIGFubm90YXRlKCJyZWN0IiwNCiMgICAgICAgICAgICAgICAgeG1pbj0tSW5mLA0KIyAgICAgICAgICAgICAgICB4bWF4PUluZiwNCiMgICAgICAgICAgICAgICAgeW1pbj0tSW5mLA0KIyAgICAgICAgICAgICAgICB5bWF4PTIsDQojICAgICAgICAgICAgICAgIGFscGhhPTEsDQojICAgICAgICAgICAgICAgIGZpbGw9IiNhYzUwNzkiKSsgIz5waW9yIGNsYXNzZQ0KIyAgICAgICBhbm5vdGF0ZSgicmVjdCIsDQojICAgICAgICAgICAgICAgIHhtaW49LUluZiwNCiMgICAgICAgICAgICAgICAgeG1heD1JbmYsDQojICAgICAgICAgICAgICAgIHltaW49MiwNCiMgICAgICAgICAgICAgICAgeW1heD00LA0KIyAgICAgICAgICAgICAgICBhbHBoYT0xLA0KIyAgICAgICAgICAgICAgICBmaWxsPSIjZWI1NjYxIikrICNjbGFzc2UgNA0KIyAgICAgICBhbm5vdGF0ZSgicmVjdCIsDQojICAgICAgICAgICAgICAgIHhtaW49LUluZiwNCiMgICAgICAgICAgICAgICAgeG1heD1JbmYsDQojICAgICAgICAgICAgICAgIHltaW49NCwNCiMgICAgICAgICAgICAgICAgeW1heD01LA0KIyAgICAgICAgICAgICAgICBhbHBoYT0xLA0KIyAgICAgICAgICAgICAgICBmaWxsPSIjZmNmN2FiIikrICNjbGFzc2UgMw0KIyAgICAgICBhbm5vdGF0ZSgicmVjdCIsDQojICAgICAgICAgICAgICAgIHhtaW49LUluZiwNCiMgICAgICAgICAgICAgICAgeG1heD1JbmYsDQojICAgICAgICAgICAgICAgIHltaW49NSwNCiMgICAgICAgICAgICAgICAgeW1heD02LA0KIyAgICAgICAgICAgICAgICBhbHBoYT0xLA0KIyAgICAgICAgICAgICAgICBmaWxsPSIjNzBjMThjIikrICNjbGFzc2UgMg0KIyAgICAgICBhbm5vdGF0ZSgicmVjdCIsDQojICAgICAgICAgICAgICAgIHhtaW49LUluZiwNCiMgICAgICAgICAgICAgICAgeG1heD1JbmYsDQojICAgICAgICAgICAgICAgIHltaW49NiwNCiMgICAgICAgICAgICAgICAgeW1heD1JbmYsDQojICAgICAgICAgICAgICAgIGFscGhhPTEsDQojICAgICAgICAgICAgICAgIGZpbGw9IiM4ZGNkZWIiKSsgI2NsYXNzZSAxDQojICAgICAgIHN0YXRfYm94cGxvdChnZW9tID0gJ2Vycm9yYmFyJywNCiMgICAgICAgICAgICAgICAgICAgIHdpZHRoPTAuMywNCiMgICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkrDQojICAgICAgIGdlb21fYm94cGxvdChmaWxsPScjRjhGOEZGJywNCiMgICAgICAgICAgICAgICAgICAgIGNvbG9yPSJibGFjayIsDQojICAgICAgICAgICAgICAgICAgICBvdXRsaWVyLnNoYXBlID0gTkEsICNzZSBkZWl4YXIgTkEgZmljYSBzw7MgbyBqaXR0ZXIsIHNlIG7Do28sIGRlaXhhIDENCiMgICAgICAgICAgICAgICAgICAgIHdpZHRoPSAwLjcpKw0KIyAgICAgICBsYWJzKHRpdGxlID0gIk94aWfDqm5pbyBEaXNzb2x2aWRvIG5vIHBlcsOtb2RvIDE5OTAtMjAwMCIsDQojICAgICAgICAgICAgeD0iRXN0YcOnw6NvIiwNCiMgICAgICAgICAgICB5PSJtZy9MIikrDQojICAgICAgICMgZ2VvbV9qaXR0ZXIod2lkdGggPSAuMDUsDQojICAgICAgICMgICAgICAgICAgICAgYWxwaGE9LjIsDQojICAgICAgICMgICAgICAgICAgICAgc2l6ZT0xLjUsDQojICAgICAgICMgICAgICAgICAgICAgY29sb3I9ImJsYWNrIikrDQojICAgICAgIHNjYWxlX3lfY29udGludW91cyhleHBhbmQgPSBleHBhbnNpb24obXVsdCA9IGMoMCwwKSksDQojICAgICAgICAgICAgICAgICAgICAgICAgICBuLmJyZWFrcyA9IDExLA0KIyAgICAgICAgICAgICAgICAgICAgICAgICAgbGltaXRzID0gYygtMSwyMSkpKw0KIyAgICAgICBzY2FsZV94X2Rpc2NyZXRlKGxpbWl0cyA9IGMoIjg3Mzk4NTAwIiwgIjg3Mzk4OTgwIiwgIjg3Mzk4OTAwIiwgIjg3Mzk4OTUwIiwgIjg3NDA1NTAwIiwgIjg3NDA2OTAwIiwgIjg3NDA5OTAwIikpKw0KIyAgICAgICBnZW9tX3Ntb290aChtZXRob2QgPSAibG0iLA0KIyAgICAgICAgICAgICAgICAgICBzZT1GQUxTRSwgI3NlIGRlaXhhciBUUlVFIGdlcmEgbyBpbnRlcnZhbG8gZGUgY29uZmlhbsOnYSBkZSA5NSUNCiMgICAgICAgICAgICAgICAgICAgYWVzKGdyb3VwPTEpLA0KIyAgICAgICAgICAgICAgICAgICBhbHBoYT0uNSwNCiMgICAgICAgICAgICAgICAgICAgbmEucm0gPSBUUlVFLA0KIyAgICAgICAgICAgICAgICAgICBzaXplID0gMSkrDQojICAgICAgICMgYW5ub3RhdGUoZ2VvbV90ZXh0KGFlcyh4ID0gIjg3NDA1NTAwIiwgeSA9IDE1KSwNCiMgICAgICAgIyAgICAgICAgICAgICAgICAgICAgbGFiZWwgPSBsbV9lcWMocGxhbl93aWRlXzE5OTAyMDIwKSwNCiMgICAgICAgIyAgICAgICAgICAgICAgICAgICAgcGFyc2UgPSBUUlVFLA0KIyAgICAgICAjICAgICAgICAgICAgICAgICAgICBpbmhlcml0LmFlcyA9IFRSVUUsDQojICAgICAgICMgICAgICAgICAgICAgICAgICAgIGNoZWNrX292ZXJsYXAgPSBUUlVFKSkrDQojICAgICAgICMgIGdlb21fbGluZSgNCiMgICAgICAgIyAgICAgYWVzKGNvbG9yPSJyZWQiKSwNCiMgICAgICAgIyAgICAgYWxwaGE9LjAsDQojICAgICAgICMgKSsNCiMgICAgICAgIyBzY2FsZV9jb2xvcl9tYW51YWwoIkxlZ2VuZGEiLA0KIyAgICAgICAjICAgICAgICAgICAgICAgICAgICBndWlkZT0ibGVnZW5kIiwNCiMgICAgICAgIyAgICAgICAgICAgICAgICAgICAgdmFsdWVzID0gYygiQ2xhc3NlIDEiPSIjOGRjZGViIiwNCiMgICAgICAgIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ2xhc3NlIDIiPSIjNzBjMThjIiwNCiMgICAgICAgIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ2xhc3NlIDMiPSIjZmNmN2FiIiwNCiMgICAgICAgIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ2xhc3NlIDQiPSIjZWI1NjYxIiwNCiMgICAgICAgIyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiUGlvciBDbGFzc2UiPSIjYWM1MDc5IikpKw0KIyAgICAjIGd1aWRlcyhjb2xvcj1ndWlkZV9sZWdlbmQob3ZlcnJpZGUuYWVzID0gbGlzdChsaW5ldHlwZT1jKDEsMSwxLDEsMSksDQojICAgICMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGx3ZD1jKDIsMiwyLDIsMiksDQojICAgICMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNoYXBlPWMoTkEsTkEsTkEsTkEsTkEpLA0KIyAgICAjICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBhbHBoYT0xKSkpKw0KIyAgICAgICB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAiYm90dG9tIikrDQojICAgICAgIHRoZW1lX2NsYXNzaWMoKSkNCg0KIyBsaXN0MTExMSA8LSBzZXNzaW9uSW5mbygpDQojIGxpc3QxMTExJGxvYWRlZE9ubHkNCg0KIyBpbnN0YWxsLnBhY2thZ2VzKCJnZ3BtaXNjIikNCiMgbGlicmFyeShnZ3BtaXNjKQ0KDQojIHN1bW1hcnkobG0ocGxhbl93aWRlXzE5OTAyMDIwJGNvZGlnb35wbGFuX3dpZGVfMTk5MDIwMjAkZGJvKSkNCiMgDQojIA0KIyBwIDwtIGdncGxvdChkYXRhLCBhZXMoeT1udW1iZXIsIHg9cG9kKSkgKw0KIyAgIGdlb21fYm94cGxvdCgpDQojIHByaW50KHApDQoNCiMgaW5zdGFsbC5wYWNrYWdlcygiR0dhbGx5IikNCg0KDQojIGZpdCA9IGxtKHBsYW5fd2lkZV8xOTkwMjAyMCRveGlnZW5pb19kaXNzb2x2aWRvfiBwbGFuX3dpZGVfMTk5MDIwMjAkY29kaWdvKQ0KIyBzdW1tYXJ5KGZpdCkNCiMgc3VtbWFyeS5sbShmaXQpDQojIA0KIyBwYWNtYW46OnBfbG9hZChlc3F1aXNzZSkNCg0KIyBzdW1hcmlvIDwtIGZ1bmN0aW9uKHgsIHkpew0KIyAgIHggJT4lIA0KIyAgICAgZ3JvdXBfYnkoY29kaWdvKSAlPiUNCiMgICAgIHN1bW1hcmlzZSgNCiMgICAgICAgbGlzdChtaW49IH5taW4oeSwgbmEucm0gPSBUUlVFKSwgDQojICAgICAgICAgICAgUTE9IH5xdWFudGlsZSh5LCBwcm9icyA9IDAuMjUpLA0KIyAgICAgICAgICAgIG1lZGlhbj0gfm1lZGlhbih5LCBuYS5ybSA9IFRSVUUpLCANCiMgICAgICAgICAgICBRMz0gfnF1YW50aWxlKHksIHByb2JzID0gMC43NSksDQojICAgICAgICAgICAgbWF4PSB+bWF4KHksIG5hLnJtID0gVFJVRSkpLA0KIyAgICAgICAuZ3JvdXBzID0gImRyb3AiDQojICAgICAgICkNCiMgfQ0KYGBgDQoNCiMjIENvcnJlbGHDp8Ojbw0KDQpgYGB7ciBDb3JyZWxhw6fDo28sIGZpZy5jYXA9ImNvcnJlbGHDp8Ojby1wYXJhbWV0cm9zLXF1YWxpZGFkZS1hZ3VhLWdyYXZhdGHDrSBubyBwZXLDrW9kbyAxOTkwLTIwMjAiLCB0aW1lX2l0ID0gVFJVRSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZSA9IEZBTFNFLH0NCnBhcmFtZXRyb3NfSVFBICU+JSANCiAgZHBseXI6OnNlbGVjdCgNCiAgICAtY29kaWdvLA0KICAgIC1hbm9fY29sZXRhLA0KICAgIC1uaXRyb2dlbmlvX3RvdGFsDQogICAgKSAlPiUgDQogICMgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogIHJlbmFtZSgNCiAgICBDRSA9IGNvbmR1dGl2aWRhZGUsDQogICAgRV9jb2xpID0gZXNjaGVyaWNoaWFfY29saSwNCiAgICBPRCA9IG94aWdlbmlvX2Rpc3NvbHZpZG8sDQogICAgU1QgPSBzb2xpZG9zX3RvdGFpcywNCiAgICBUdXJiID0gdHVyYmlkZXosDQogICAgVGVtcCA9IHRlbXBlcmF0dXJhX2FndWEsDQogICAgUHRvdCA9IGZvc2Zvcm9fdG90YWwsDQogICAgIyBOVG90ID0gbml0cm9nZW5pb190b3RhbCwNCiAgICBOQW1vbiA9IG5pdHJvZ2VuaW9fYW1vbmlhY2FsLA0KICAgIE5USyA9IG5pdHJvZ2VuaW9fa2plbGRhaGwNCiAgKSAlPiUgDQogIGdnY29ycigNCiAgICBtZXRob2QgPSAiY29tcGxldGUub2JzIiwNCiAgICAjICJwZWFyc29uIiwNCiAgICAjICJwYWlyd2lzZSIsDQogICAgbmFtZSA9ICJDb3JyZWxhw6fDo28iLA0KICAgIGxhYmVsID0gVFJVRSwNCiAgICBsYWJlbF9hbHBoYSA9IFRSVUUsDQogICAgZGlnaXRzID0gMywNCiAgICBsb3cgPSAiIzNCOUFCMiIsDQogICAgbWlkID0gIiNFRUVFRUUiLA0KICAgIGhpZ2ggPSAiI0YyMUEwMCIsDQogICAgIyBwYWxldHRlID0gIlJkWWxCdSIsDQogICAgbGF5b3V0LmV4cCA9IDAsDQogICAgbGVnZW5kLnBvc2l0aW9uID0gImxlZnQiLA0KICAgIGxhYmVsX3JvdW5kID0gMywNCiAgICAjIGxlZ2VuZC5zaXplID0gMTgsDQogICAgZ2VvbSA9ICJ0aWxlIiwNCiAgICBuYnJlYWtzID0gMTAsDQogICkrDQogIGxhYnModGl0bGUgPSAiQ29ycmVsYcOnw6NvIGVudHJlIHBhcsOibWV0cm9zIGbDrXNpY28tcXXDrW1pY29zIG5hXG5CYWNpYSBIaWRyb2dyw6FmaWNhIGRvIHJpbyBHcmF2YXRhw60gbm8gcGVyw61vZG8gMTk5MC0yMDIwIikrDQogIHRoZW1lX2xpbmVkcmF3KCkrDQogIHRoZW1lKA0KICAgIGxlZ2VuZC5wb3NpdGlvbiA9IGMoMC4xNSwgMC42KSwNCiAgICBsZWdlbmQudGl0bGUgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE2KSwNCiAgICBsZWdlbmQudGV4dCA9IGVsZW1lbnRfdGV4dChzaXplID0gMTQpLA0KICAgICMgbGVnZW5kLnNwYWNpbmcgPSB1bml0KGVsZW1lbnRfdGV4dCgpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAjIHVuaXRzID0gNSkNCiAgICBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGhqdXN0ID0gMC41LA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IDE2KQ0KICApDQoNCiMgR3LDoWZpY28gZGFzIGNvcnJlbGHDp8O1ZXMgZW50cmUgdG9kb3Mgb3MgcGFyw6JtZXRyb3MgY29tIHNpZ25pZmljw6JuY2lhDQpjb3JyZWxfSVFBIDwtIHBhcmFtZXRyb3NfSVFBICU+JQ0KICBkcGx5cjo6c2VsZWN0KC1jb2RpZ28pICU+JQ0KICBnZ3BhaXJzKHRpdGxlID0gIkNvcnJlbGHDp8OjbyBlbnRyZSBwYXLDom1ldHJvcyBxdWUgY29tcMO1ZW0gbyBJUUEiLA0KICAgICAgICAgIGF4aXNMYWJlbHMgPSAic2hvdyIpDQoNCmNvcnJlbGFjYW9fcElRQSA8LSBwYXJhbWV0cm9zX0lRQSAlPiUgDQogIGdyb3VwX2J5KGNvZGlnbykgJT4lIA0KICBjb3JyZWxhdGlvbjo6Y29ycmVsYXRpb24oKQ0KDQpjb3JyZWxhY2FvX3BJUUEgJT4lIA0KICAjIGdsaW1wc2UoKQ0KICBmaWx0ZXIoDQogICAgcCA8IDAuMDAxDQogICkgJT4lIA0KICBhc190aWJibGUoKSAlPiUgDQogICMgZmlsdGVyKA0KICAjICAgUGFyYW1ldGVyMSA9PSAib3hpZ2VuaW9fZGlzc29sdmlkbyINCiAgIyApICU+JSANCiAgYXJyYW5nZShkZXNjKHIpKSANCiAgDQpwYXJhbWV0cm9zX0lRQSAlPiUgDQogICMgZ3JvdXBfYnkoY29kaWdvKSAlPiUgDQogIGRwbHlyOjpzZWxlY3QoDQogICAgbml0cm9nZW5pb19ramVsZGFobCwgY29uZHV0aXZpZGFkZQ0KICApICU+JSANCiAgIyBjb3JyZWxhdGlvbjo6Y29yX3Rlc3QoKSAlPiUgDQogIHBsb3QoKQ0KYGBgDQoNCiMgVGV4dGFuZG8gbyB0ZXh0bw0KDQotICAgwqcgZmFsYXIgZG8gY29tcG9ydGFtZW50byBnZXJhbCBkb3MgZGFkb3MNCi0gICAywrogwqcgLSB4wrogwqcgLVw+IGFib3JkYXIgb3MgcHJpbmNpcGFpcyBwYXLDom1ldHJvcyBxdWUgZXN0w6NvIHNlbmRvIGltcGFjdGFkb3MsIGRldGFsaGFuZG8sIG5hcyBlc3Rhw6fDtWVzIG1haXMgcmVsZXZhbnRlcywgY29tbyBmaWNhcmFtIG9zIHF1YXJ0aXMvbWVkaWFuYSBldGMuDQoNCmByIHN1bV9vZF9wMSRQTTFbMV1gDQoNCk9zIHJlc3VsdGFkb3MgYXBvbnRhbSBxdWUgcGFyYSBvIHBhcsOibWV0cm8gT0QNCg0KIyBHcsOhZmljb3MgZXhlbXBsb3MgYm94cGxvdA0KDQpgYGB7ciBlbGVtZW50b3MgZG8gYm94cGxvdH0NCnNldC5zZWVkKDIwMjMpDQpleGVtcGxvX2JveHBsb3RfZGYgPC0gZGF0YS5mcmFtZSgNCiAgUE0gPSBjKCJQTTEiKSwNCiAgIyBsZXRyYXMgPSBsZXR0ZXJzW3NlcSggZnJvbSA9IDEsIHRvID0gMSApXSwNCiAgU3RhdDEgPSBybm9ybSgxMDAsIA0KICAgICAgICAgICAgICAgIG1lYW4gPSA1LCANCiAgICAgICAgICAgICAgICBzZCA9IDEuOCkNCikNCg0KKHN1bWFyaW9fZXhlbXBsb19icCA8LSBleGVtcGxvX2JveHBsb3RfZGYgJT4lIA0KICAgIGdyb3VwX2J5KFBNKSAlPiUgDQogICAgc3VtbWFyaXplKA0KICAgICAgbWF4ID0gbWF4KFN0YXQxKSwNCiAgICAgIHA5NSA9IHF1YW50aWxlKFN0YXQxLCAwLjk1KSwNCiAgICAgIHA4MCA9IHF1YW50aWxlKFN0YXQxLCAwLjgpLA0KICAgICAgbWVkaWFuID0gbWVkaWFuKFN0YXQxKSwNCiAgICAgIHAyMCA9IHF1YW50aWxlKFN0YXQxLCAwLjIpLA0KICAgICAgcDA1ID0gcXVhbnRpbGUoU3RhdDEsIDAuMDUpLA0KICAgICAgbWluID0gbWluKFN0YXQxKSwNCiAgICApICU+JSANCiAgICB0KCkgJT4lIA0KICAgIHJvd190b19uYW1lcyhyb3dfbnVtYmVyID0gMSkgJT4lIA0KICAgIGFzLm51bWVyaWMoKQ0KKQ0KDQoNCihib3hwbG90X2V4YW1wbGUgPC0gZXhlbXBsb19ib3hwbG90X2RmICU+JSANCiAgICBnZ3Bsb3QoDQogICAgICBhZXMoDQogICAgICAgIHggPSBQTSwNCiAgICAgICAgeSA9IFN0YXQxLA0KICAgICAgKQ0KICAgICkrDQogICAgc3RhdF9zdW1tYXJ5KA0KICAgICAgZnVuLmRhdGEgPSBmLA0KICAgICAgZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgICB3aWR0aCA9IDAuMTUsDQogICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICAgKSsNCiAgICBzdGF0X3N1bW1hcnkoDQogICAgICBmdW4uZGF0YSA9IGYsDQogICAgICBnZW9tID0gImJveHBsb3QiLA0KICAgICAgd2lkdGggPSAwLjQwLA0KICAgICAgZmlsbCA9ICcjRjhGOEZGJywNCiAgICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgIG91dGxpZXIuc2hhcGUgPSBOQSwgI3NlIGRlaXhhciBOQSBmaWNhIHPDsyBvIGppdHRlciwgc2UgbsOjbywgZGVpeGEgMQ0KICAgICkrDQogICAgbGFicygNCiAgICAgIHRpdGxlID0gIkVsZW1lbnRvcyBkbyAqYm94cGxvdCoiLA0KICAgICAgeD0gTlVMTCwNCiAgICAgIHk9IE5VTEwNCiAgICApKw0KICAgIGdnYmVlc3dhcm06Omdlb21fcXVhc2lyYW5kb20oDQogICAgICBzaXplID0gMS40LA0KICAgICAgYWxwaGEgPSAuMywNCiAgICAgIHdpZHRoID0gLjA3LA0KICAgICkrDQogICAgc2NhbGVfeV9jb250aW51b3VzKA0KICAgICAgZXhwYW5kID0gZXhwYW5zaW9uKG11bHQgPSBjKDAsMCkpLA0KICAgICAgbi5icmVha3MgPSA4LA0KICAgICAgbGltaXRzID0gYygtMC4zLDEyKQ0KICAgICkrDQogICAgYW5ub3RhdGUoDQogICAgICBnZW9tID0gInRleHQiLA0KICAgICAgeCA9IDEuNTUsDQogICAgICBoanVzdCA9ICJyaWdodCIsDQogICAgICB5ID0gc3VtYXJpb19leGVtcGxvX2JwLA0KICAgICAgbGFiZWwgPSBjKCJWYWxvciBtw6F4aW1vIiwgIlA5NSIsICJQODAiLCAiTWVkaWFuYSIsICJQMjAiLCAiUDA1IiwgIlZhbG9yIG3DrW5pbW8iKSwNCiAgICAgICMgZm9udGZhY2UgPSAzDQogICAgKSsNCiAgICBnZW9tX3JpY2h0ZXh0KA0KICAgICAgeCA9IDAuNTYsDQogICAgICB5ID0gOS4xMDM5OTgsDQogICAgICBsYWJlbC5jb2xvciA9IE5BLA0KICAgICAgaGp1c3QgPSAiY2VudGVyIiwNCiAgICAgIGxhYmVsID0gIjxpPk91dGxpZXJzPC9pPiINCiAgICApKw0KICAgIGdlb21fY3VydmUoDQogICAgICBhZXMoDQogICAgICAgIHggPSAwLjYsIHhlbmQgPSAwLjk4LA0KICAgICAgICB5ID0gOS4xMDM5OTggLCB5ZW5kID0gOS4xMDM5OTggLCAjT3V0bGllcnMNCiAgICAgICksDQogICAgICBjdXJ2YXR1cmUgPSAwLA0KICAgICAgc2l6ZSA9IDEuMCwNCiAgICAgIGFycm93ID0gYXJyb3cobGVuZ3RoID0gdW5pdCgwLjA1LCAibnBjIikpLA0KICAgICAgbGluZWVuZCA9ICJyb3VuZCINCiAgICApKw0KICAgICNkZWZpbmluZG8gbyBbDQogICAgZ2VvbV9jdXJ2ZSgNCiAgICAgIGFlcygNCiAgICAgICAgeCA9IDAuNzQsIHhlbmQgPSAwLjc4LA0KICAgICAgICB5ID0gNi42ODM4MjgsIHllbmQgPSA2LjY4MzgyOCwNCiAgICAgICksDQogICAgICBjdXJ2YXR1cmUgPSAwLA0KICAgICAgc2l6ZSA9IDEuMCwNCiAgICAgIGxpbmVlbmQgPSAiYnV0dCINCiAgICApKw0KICAgIGdlb21fY3VydmUoDQogICAgICBhZXMoDQogICAgICAgIHggPSAwLjc0LCB4ZW5kID0gMC43NCwNCiAgICAgICAgeSA9IDMuNTQ1NzcxLCB5ZW5kID0gNi42ODM4MjgsDQogICAgICApLA0KICAgICAgY3VydmF0dXJlID0gMCwNCiAgICAgIHNpemUgPSAxLjAsDQogICAgICBsaW5lZW5kID0gImJ1dHQiDQogICAgKSsNCiAgICBhbm5vdGF0ZSgNCiAgICAgIGdlb20gPSAidGV4dCIsDQogICAgICB4ID0gMC41NiwNCiAgICAgIGhqdXN0ID0gImNlbnRlciIsDQogICAgICB5ID0gNS4xMSwNCiAgICAgIGxhYmVsID0gIkFtcGxpdHVkZVxuKFA4MC1QMjApIg0KICAgICkrDQogICAgZ2VvbV9jdXJ2ZSgNCiAgICAgIGFlcygNCiAgICAgICAgeCA9IDAuNzQsIHhlbmQgPSAwLjc4LA0KICAgICAgICB5ID0gMy41NDU3NzEgLCB5ZW5kID0gMy41NDU3NzEgLA0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgbGluZWVuZCA9ICJidXR0Ig0KICAgICkrDQogICAgIyBmaW0gZG8gWw0KICAgIGdlb21fY3VydmUoDQogICAgICBhZXMoDQogICAgICAgIHggPSAwLjYsIHhlbmQgPSAwLjkwLA0KICAgICAgICB5ID0gNy44NjY5MjcgLCB5ZW5kID0gNy44NjY5MjcgLCAjd2hpc2tlciBzdXBlcmlvcg0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgYW5ub3RhdGUoDQogICAgICBnZW9tID0gInRleHQiLA0KICAgICAgeCA9IDAuNTYsDQogICAgICBoanVzdCA9ICJjZW50ZXIiLA0KICAgICAgeSA9IDcuODY2OTI3LA0KICAgICAgbGFiZWwgPSAiV2hpc2tlclxuc3VwZXJpb3IiDQogICAgKSsNCiAgICBnZW9tX2N1cnZlKA0KICAgICAgYWVzKA0KICAgICAgICB4ID0gMC42LCB4ZW5kID0gMC45MCwNCiAgICAgICAgeSA9IDIuMjc3MTA0ICAsIHllbmQgPSAyLjI3NzEwNCAgLCAjd2hpc2tlciBpbmZlcmlvcg0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgYW5ub3RhdGUoDQogICAgICBnZW9tID0gInRleHQiLA0KICAgICAgeCA9IDAuNTYsDQogICAgICBoanVzdCA9ICJjZW50ZXIiLA0KICAgICAgeSA9IDIuMjc3MTA0LA0KICAgICAgbGFiZWwgPSAiV2hpc2tlclxuaW5mZXJpb3IiDQogICAgKSsNCiAgICBnZW9tX2N1cnZlKA0KICAgICAgYWVzKA0KICAgICAgICB4ID0gMS40LCB4ZW5kID0gMS4wMSwNCiAgICAgICAgeSA9IDkuOTIzNDMsIHllbmQgPSA5LjkyMzQzLCAjdmFsb3IgbcOheGltbw0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgZ2VvbV9jdXJ2ZSgNCiAgICAgIGFlcygNCiAgICAgICAgeCA9IDEuNDUsIHhlbmQgPSAxLjExLA0KICAgICAgICB5ID0gNy44NjY5MjcgLCB5ZW5kID0gNy44NjY5MjcgLCAjUDk1DQogICAgICApLA0KICAgICAgY3VydmF0dXJlID0gMCwNCiAgICAgIHNpemUgPSAxLjAsDQogICAgICBhcnJvdyA9IGFycm93KGxlbmd0aCA9IHVuaXQoMC4wNSwgIm5wYyIpKSwNCiAgICAgIGxpbmVlbmQgPSAicm91bmQiDQogICAgKSsNCiAgICBnZW9tX2N1cnZlKA0KICAgICAgYWVzKA0KICAgICAgICB4ID0gMS40NSwgeGVuZCA9IDEuMjIsDQogICAgICAgIHkgPSA2LjY4MzgyOCAgLCB5ZW5kID0gNi42ODM4MjggICwgI1A4MA0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgZ2VvbV9jdXJ2ZSgNCiAgICAgIGFlcygNCiAgICAgICAgeCA9IDEuNDUsIHhlbmQgPSAxLjIyLA0KICAgICAgICB5ID0gNC44ODY5MzUgICAsIHllbmQgPSA0Ljg4NjkzNSAgICwgI1A1MA0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgZ2VvbV9jdXJ2ZSgNCiAgICAgIGFlcygNCiAgICAgICAgeCA9IDEuNDUsIHhlbmQgPSAxLjIyLA0KICAgICAgICB5ID0gMy41NDU3NzEsIHllbmQgPSAzLjU0NTc3MSwgI1AyMA0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgZ2VvbV9jdXJ2ZSgNCiAgICAgIGFlcygNCiAgICAgICAgeCA9IDEuNDUsIHhlbmQgPSAxLjExLA0KICAgICAgICB5ID0gMi4yNzcxMDQsIHllbmQgPSAyLjI3NzEwNCwgI1AwNQ0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgZ2VvbV9jdXJ2ZSgNCiAgICAgIGFlcygNCiAgICAgICAgeCA9IDEuNCwgeGVuZCA9IDEuMDEsDQogICAgICAgIHkgPSAxLjI4MjE3NywgeWVuZCA9IDEuMjgyMTc3LCAjdmFsb3IgbcOtbmltbw0KICAgICAgKSwNCiAgICAgIGN1cnZhdHVyZSA9IDAsDQogICAgICBzaXplID0gMS4wLA0KICAgICAgYXJyb3cgPSBhcnJvdyhsZW5ndGggPSB1bml0KDAuMDUsICJucGMiKSksDQogICAgICBsaW5lZW5kID0gInJvdW5kIg0KICAgICkrDQogICAgIyB0aGVtZV9ncmFmcygpKw0KICAgIHRoZW1lX2J3KCkrDQogICAgdGhlbWUoDQogICAgICBwbG90LnRpdGxlID0gDQogICAgICAgIGVsZW1lbnRfbWFya2Rvd24oDQogICAgICAgICAgaGp1c3QgPSAwLjUsDQogICAgICAgICAgY29sb3IgPSAiYmxhY2siLA0KICAgICAgICAgIHNpemUgPSAxOSksDQogICAgKQ0KKQ0KYGBgDQoNCmBgYHtyIHNhbHZhbmRvIGdyYWYgZWxlbWVudG9zIGJveHBsb3R9DQpnZ3NhdmUoDQogIGZpbGVuYW1lID0gImV4ZW1wbG9fYm94cGxvdC5wbmciLA0KICBwbG90ID0gYm94cGxvdF9leGFtcGxlLA0KICB1bml0cyA9IGMoInB4IiksDQogIHdpZHRoID0gKDQ1MDApLzEuNSwNCiAgaGVpZ2h0ID0gKDI5OTMpLzEuNSwNCiAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgZHBpID0gMzAwLA0KICAjIHR5cGUgPSAiY2Fpcm8iDQopDQpgYGANCg0KYGBge3IgY3JpYW5kbyBleGVtcGxvIHRpcG9zIGJveHBsb3QgdHVrZXkgeCBnYXJyZXR0fQ0Kc2V0LnNlZWQoMjAyMSkNCg0KZGF0YSA8LSB0aWJibGUoDQogIGdydXBvID0gZmFjdG9yKA0KICAgIGMocmVwKA0KICAgICAgIkdydXBvIDEiLCAxMDApLCANCiAgICAgIHJlcCgiR3J1cG8gMiIsIDI1MCksIA0KICAgICAgcmVwKCJHcnVwbyAzIiwgMjUpDQogICAgKQ0KICApLA0KICB2YWxvciA9IGMoc2VxKDAsIDIwLCBsZW5ndGgub3V0ID0gMTAwKSwNCiAgICAgICAgICAgIGMocmVwKDAsIDUpLCANCiAgICAgICAgICAgICAgcm5vcm0oMzAsIDIsIC4xKSwgDQogICAgICAgICAgICAgIHJub3JtKDkwLCA1LjQsIC4xKSwgDQogICAgICAgICAgICAgIHJub3JtKDkwLCAxNC42LCAuMSksIA0KICAgICAgICAgICAgICBybm9ybSgzMCwgMTgsIC4xKSwgDQogICAgICAgICAgICAgIHJlcCgyMCwgNSkNCiAgICAgICAgICAgICksDQogICAgICAgICAgICByZXAoc2VxKDAsIDIwLCBsZW5ndGgub3V0ID0gNSksIDUpKQ0KKSAlPiUgDQogIHJvd3dpc2UoKSAlPiUNCiAgbXV0YXRlKA0KICAgIHZhbG9yID0gaWZfZWxzZSgNCiAgICAgIGdydXBvID09ICJHcnVwbyAyIiwgdmFsb3IgKyBybm9ybSgxLCAwLCAuNCksIA0KICAgICAgdmFsb3INCiAgICAgICkNCiAgICApDQoNCiMjIGZ1bmN0aW9uIHRvIHJldHVybiBtZWRpYW4gYW5kIGxhYmVscw0Kbl9mdW4gPC0gZnVuY3Rpb24oeCl7DQogIHJldHVybigNCiAgICBkYXRhLmZyYW1lKA0KICAgICAgeSA9IG1lZGlhbih4KSAtIDEuMjUsIA0KICAgICAgbGFiZWwgPSBwYXN0ZTAoDQogICAgICAgICJuID0gIixsZW5ndGgoeCkNCiAgICAgICkNCiAgICApDQogICkNCn0NCmBgYA0KDQpgYGB7ciB0dWtleSBib3hwbG90fQ0KKHR1a2V5X25fYm94cGxvdCA8LSBnZ3Bsb3QoZGF0YSwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICBhZXMoeCA9IGdydXBvLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB5ID0gdmFsb3IpDQopKw0KICBzdGF0X2JveHBsb3QoZ2VvbSA9ICdlcnJvcmJhcicsDQogICAgICAgICAgICAgICB3aWR0aCA9IDAuMTUsDQogICAgICAgICAgICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSkpKw0KICBnZW9tX2JveHBsb3QoZmlsbCA9ICJncmV5OTIiLA0KICAgICAgICAgICAgICAgd2lkdGggPSAwLjQwLA0KICAgICAgICAgICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpKSsNCiAgIyMgdXNlIHN1bW1hcnkgZnVuY3Rpb24gdG8gYWRkIHRleHQgbGFiZWxzDQogIHN0YXRfc3VtbWFyeSgNCiAgICBnZW9tID0gInRleHQiLA0KICAgIGZ1bi5kYXRhID0gbl9mdW4sDQogICAgIyBmYW1pbHkgPSAiT3N3YWxkIiwNCiAgICBzaXplID0gNQ0KICApKw0KICBsYWJzKA0KICAgIHRpdGxlID0gIlR1a2V5ICpib3hwbG90KiIsDQogICAgeD0gTlVMTCwNCiAgICAjIHk9Im1nL0wiDQogICkrDQogICMgdGhlbWVfZ3JhZnMoKSsNCiAgdGhlbWVfYncoKSsNCiAgdGhlbWUoDQogICAgYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoDQogICAgICBhbmdsZSA9IDkwLCANCiAgICAgICMgc2l6ZT0xNSwNCiAgICAgICMgZmFjZT0yDQogICAgKSwNCiAgICBwbG90LnRpdGxlID0gDQogICAgICBlbGVtZW50X21hcmtkb3duKA0KICAgICAgICBoanVzdCA9IDAuNSwNCiAgICAgICAgY29sb3IgPSAiYmxhY2siLA0KICAgICAgICBzaXplID0gMTkpDQogICkNCikNCg0KDQoodHVrZXlfYm94cGxvdCA8LSBnZ3Bsb3QoZGF0YSwgYWVzKHggPSBncnVwbywgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHkgPSB2YWxvcikpICsNCiAgc3RhdF9ib3hwbG90KGdlb20gPSAnZXJyb3JiYXInLA0KICAgICAgICAgICAgICAgd2lkdGggPSAwLjE1LA0KICAgICAgICAgICAgICAgcG9zaXRpb24gPSBwb3NpdGlvbl9kb2RnZSh3aWR0aCA9IDAuNjUpKSsNCiAgZ2VvbV9ib3hwbG90KGZpbGwgPSAiZ3JleTkyIiwNCiAgICAgICAgICAgICAgIHdpZHRoID0gMC40MCwNCiAgICAgICAgICAgICAgIHBvc2l0aW9uID0gcG9zaXRpb25fZG9kZ2Uod2lkdGggPSAwLjY1KSkgKw0KICAjIyB1c2UgZWl0aGVyIGdlb21fcG9pbnQoKSBvciBnZW9tX2ppdHRlcigpDQogIGdlb21fcG9pbnQoDQogICAgIyMgZHJhdyBiaWdnZXIgcG9pbnRzDQogICAgc2l6ZSA9IDIsDQogICAgIyMgYWRkIHNvbWUgdHJhbnNwYXJlbmN5DQogICAgYWxwaGEgPSAuMjUsDQogICAgIyMgYWRkIHNvbWUgaml0dGVyaW5nDQogICAgcG9zaXRpb24gPSBwb3NpdGlvbl9qaXR0ZXIoDQogICAgICAjIyBjb250cm9sIHJhbmRvbW5lc3MgYW5kIHJhbmdlIG9mIGppdHRlcg0KICAgICAgc2VlZCA9IDEsIHdpZHRoID0gLjINCiAgICApDQogICkrDQogIHRoZW1lX2J3KCkrDQogIGxhYnMoDQogICAgICB0aXRsZSA9ICJUdWtleSAqYm94cGxvdCoiLA0KICAgICAgeD0gTlVMTCwNCiAgICAgICMgeT0ibWcvTCINCiAgICApKw0KICAjIHRoZW1lX2dyYWZzKCkrDQogIHRoZW1lX2J3KCkrDQogIHRoZW1lKA0KICAgICAgICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dCgNCiAgICAgICAgICBhbmdsZSA9IDkwLCANCiAgICAgICAgICAjIHNpemU9MTUsDQogICAgICAgICAgIyBmYWNlPTINCiAgICAgICAgKSwNCiAgICAgICAgcGxvdC50aXRsZSA9IA0KICAgICAgICAgIGVsZW1lbnRfbWFya2Rvd24oDQogICAgICAgICAgICBoanVzdCA9IDAuNSwNCiAgICAgICAgICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgICAgICAgIHNpemUgPSAxOSkNCiAgICApKQ0KYGBgDQoNCmBgYHtyIGdhcnJldHQgYm94cGxvdH0NCmRhdGEgJT4lIA0KICBncm91cF9ieShncnVwbykgJT4lIA0KICBzdW1tYXJpemUoDQogICAgbWluID0gbWluKHZhbG9yKSwNCiAgICBQMjAgPSBxdWFudGlsZSh2YWxvciwgMC4yMCksDQogICAgcTEgPSBxdWFudGlsZSh2YWxvciwgMC4yNSksDQogICAgbWVkaWFuYSA9IG1lZGlhbih2YWxvciksDQogICAgcTMgPSBxdWFudGlsZSh2YWxvciwgMC43NSksDQogICAgUDgwID0gcXVhbnRpbGUodmFsb3IsIDAuODApLA0KICAgIG1heCA9IG1heCh2YWxvcikNCiAgKSAlPiUgDQogIHQoKSAlPiUgDQogIHJvd190b19uYW1lcyhyb3dfbnVtYmVyID0gMSkNCiAgDQogIA0KKGJveF9wZXJjZW50aWxlX3Bsb3QgPC0gZ2dwbG90KGRhdGEsIA0KICAgICAgIGFlcyh4ID0gZ3J1cG8sIHkgPSB2YWxvcikNCiAgICAgICApICsNCiAgICAgIHN0YXRfc3VtbWFyeSgNCiAgICAgICAgZnVuLmRhdGEgPSBmLA0KICAgICAgICBnZW9tID0gJ2Vycm9yYmFyJywNCiAgICAgICAgd2lkdGggPSAwLjE1LA0KICAgICAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2RvZGdlKHdpZHRoID0gMC42NSksDQogICAgICApKw0KICAgICAgc3RhdF9zdW1tYXJ5KA0KICAgICAgICBmdW4uZGF0YSA9IGYsDQogICAgICAgIGdlb20gPSAiYm94cGxvdCIsDQogICAgICAgIHdpZHRoID0gMC40MCwNCiAgICAgICAgZmlsbCA9ICdncmV5OTInLA0KICAgICAgICBjb2xvciA9ICJibGFjayIsDQogICAgICAgIG91dGxpZXIuc2hhcGUgPSBOQSwgI3NlIGRlaXhhciBOQSBmaWNhIHPDsyBvIGppdHRlciwgc2UgbsOjbywgZGVpeGEgMQ0KICAgICAgKSsNCiAgIyBnZW9tX2JveHBsb3QoZmlsbCA9ICJncmV5OTIiKSArDQogICMjIHVzZSBlaXRoZXIgZ2VvbV9wb2ludCgpIG9yIGdlb21faml0dGVyKCkNCiAgZ2VvbV9wb2ludCgNCiAgICAjIyBkcmF3IGJpZ2dlciBwb2ludHMNCiAgICBzaXplID0gMiwNCiAgICAjIyBhZGQgc29tZSB0cmFuc3BhcmVuY3kNCiAgICBhbHBoYSA9IC4yNSwNCiAgICAjIyBhZGQgc29tZSBqaXR0ZXJpbmcNCiAgICBwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcigNCiAgICAgICMjIGNvbnRyb2wgcmFuZG9tbmVzcyBhbmQgcmFuZ2Ugb2Ygaml0dGVyDQogICAgICBzZWVkID0gMSwgd2lkdGggPSAuMg0KICAgICkNCiAgKSsNCiAgbGFicygNCiAgICAgIHRpdGxlID0gIipCb3ggUGVyY2VudGlsZS1QbG90KiIsDQogICAgICB4PSBOVUxMLA0KICAgICAgIyB5PSJtZy9MIg0KICAgICkrDQogICMgdGhlbWVfZ3JhZnMoKSsNCiAgdGhlbWVfYncoKSsNCiAgdGhlbWUoDQogICAgICAgIGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KA0KICAgICAgICAgIGFuZ2xlID0gOTAsIA0KICAgICAgICAgICMgc2l6ZSA9IDE1LA0KICAgICAgICAgICMgZmFjZSA9IDINCiAgICAgICAgKSwNCiAgICAgICAgcGxvdC50aXRsZSA9IA0KICAgICAgICAgIGVsZW1lbnRfbWFya2Rvd24oDQogICAgICAgICAgICBoanVzdCA9IDAuNSwNCiAgICAgICAgICAgIGNvbG9yID0gImJsYWNrIiwNCiAgICAgICAgICAgIHNpemUgPSAxOSkNCiAgICApDQogICkNCmdyaWQuYXJyYW5nZSgNCiAgdHVrZXlfYm94cGxvdCwgYm94X3BlcmNlbnRpbGVfcGxvdCwgDQogIG5jb2wgPSAyDQogICkNCmZpZ190dWtleV9nYXJyZXR0IDwtIHBsb3RfZ3JpZCh0dWtleV9ib3hwbG90LCBib3hfcGVyY2VudGlsZV9wbG90LCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSAiQVVUTyIpDQpgYGANCg0KYGBge3Igc2FsdmFuZG8gZ3JhZiBleGVtcGxvIGJveHBsb3R9DQpnZ3NhdmUoDQogIGZpbGVuYW1lID0gInR1a2V5X25fYm94cGxvdC5wbmciLA0KICBwbG90ID0gdHVrZXlfbl9ib3hwbG90LA0KICB1bml0cyA9IGMoInB4IiksDQogIHdpZHRoID0gNDUwMCwNCiAgaGVpZ2h0ID0gMjk5MywNCiAgcGF0aCA9ICIuL2dyYWZpY29zIiwNCiAgZHBpID0gMzAwLA0KICAjIHR5cGUgPSAiY2Fpcm8iDQopDQoNCmdnc2F2ZSgNCiAgZmlsZW5hbWUgPSAidHVrZXlfYm94cGxvdC5wbmciLA0KICBwbG90ID0gdHVrZXlfYm94cGxvdCwNCiAgdW5pdHMgPSBjKCJweCIpLA0KICB3aWR0aCA9IDQ1MDAsDQogIGhlaWdodCA9IDI5OTMsDQogIHBhdGggPSAiLi9ncmFmaWNvcyIsDQogIGRwaSA9IDMwMCwNCiAgIyB0eXBlID0gImNhaXJvIg0KKQ0KDQpnZ3NhdmUoDQogIGZpbGVuYW1lID0gImJveF9wZXJjZW50aWxlX3Bsb3QucG5nIiwNCiAgcGxvdCA9IGJveF9wZXJjZW50aWxlX3Bsb3QsDQogIHVuaXRzID0gYygicHgiKSwNCiAgd2lkdGggPSA0NTAwLA0KICBoZWlnaHQgPSAyOTkzLA0KICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICBkcGkgPSAzMDAsDQogICMgdHlwZSA9ICJjYWlybyINCikNCg0KZ2dzYXZlKA0KICBmaWxlbmFtZSA9ICJmaWdfdHVrZXlfZ2FycmV0dC5wbmciLA0KICBwbG90ID0gZmlnX3R1a2V5X2dhcnJldHQsDQogIHVuaXRzID0gYygicHgiKSwNCiAgd2lkdGggPSA0NTAwLA0KICBoZWlnaHQgPSAyOTkzLA0KICBwYXRoID0gIi4vZ3JhZmljb3MiLA0KICBkcGkgPSAzMDAsDQogICMgdHlwZSA9ICJjYWlybyINCikNCmBgYA0K