Every boxplot means a monitoring point (Ponto de monitoramento (or PM) in portuguese). My goal here is to analyze the evolution between decades of each water quality parameter that compounds the Water Quality Index (WQI).
The river flows in the east-west direction as shown in the image below.
The logic behind the sorting in the boxplots is because of 2 main reasons:
Some features that I want to add:
If the parameter is x, then use x’s classes (with its own classes background color plotted)
Define the timescale, should act just like a filter
# plan_wide_19902020 %>%
# filter(ano_coleta > "1990" &
# ano_coleta <= "2000")87398500, 87398980, 87398900, 87398950, 87405500, 87406900, 87409900
~facet.gridNamon tá com com casa decimal "," e
ptot tá com "."| 1990-2000 | 2000-2010 | 2010-2020 |
|---|---|---|
| 1990-2000 | 2000-2010 | 2010-2020 |
# install.packages(tidyverse)pacman::p_load(readr, rmarkdown, readxl, janitor,
pillar, dplyr, tidyverse,
knitr, kableExtra, see,
gridExtra, #modelsummary,
gtsummary, ggplot2,
ggbeeswarm, GGally, ggtext, cowplot,
report)
# pacman::p_load(tibbletime)
# cite_packages()knitr::knit_hooks$set(time_it = local({
now <- NULL
function(before, options) {
if (before) {
# record the current time before each chunk
now <<- Sys.time()
} else {
# calculate the time difference after a chunk
res <- difftime(Sys.time(), now)
# return a character string to show the time
paste("Tempo para esse code chunk ser rodado:", round(res, digits = 2), "s")
}
}
}))
knitr::opts_chunk$set(time_it = TRUE)version$version.string## [1] "R version 4.2.2 (2022-10-31 ucrt)"
# citation(package = "tidyverse")Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0.97 s
Tempo para esse code chunk ser rodado: 0.48 s
Como há dados faltantes, no cálculo entre o produto das colunas, o R
acaba interpretando como se fosse zero, mas na verdade é
NA.
plan_wide_19902020 <- plan_wide_19902020 %>%
mutate(iqa = ifelse(iqa == 0, NA, iqa))
parametros_IQA <- plan_wide_19902020 %>%
select(
codigo,
ponto_monitoramento,
pH,
oxigenio_dissolvido,
dbo,
fosforo_total,
escherichia_coli,
nitrogenio_amoniacal,
nitrogenio_kjeldahl,
nitrogenio_total,
turbidez,
temperatura_agua,
solidos_totais,
condutividade,
ano_coleta
)
write.csv(parametros_IQA,
"./parametros_IQA.csv",
row.names = FALSE)Tempo para esse code chunk ser rodado: 0.16 s
theme_grafs <- function(bg = "white",
coloracao_letra = "black"){
theme(
plot.title =
element_text(
hjust = 0.5,
color = coloracao_letra,
size = 19),
axis.title.x =
# element_text(
# color = coloracao_letra,
# size = 15,
# angle = 0,),
element_blank(),
axis.title.y = element_text(
color = coloracao_letra,
size = 15,
angle = 90),
axis.text.x = element_text(
color = coloracao_letra,
size = 17),
axis.text.y = element_text(
color = coloracao_letra,
size = 17,
angle = 0),
strip.background = element_rect(fill = bg,
linetype = 1,
size = 0.5,
color = "black"),
strip.text = element_text(size = 17),
panel.background = element_rect(fill = bg),
plot.background = element_rect(fill = bg),
plot.margin = margin(l = 5, r = 10,
b = 5, t = 5)
)
}Tempo para esse code chunk ser rodado: 0.01 s
plan_wide_19902020 <- plan_wide_19902020 %>%
mutate(
periodo = if_else(
ano_coleta <= 2000,
"1990-2000",
if_else(
ano_coleta <= 2010,
"2000-2010",
"2010-2020"
)
)
)Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0 s
f <- function(x) {
r <- quantile(x, probs = c(0.05, 0.20, 0.50, 0.80, 0.95))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
return(r)
}Tempo para esse code chunk ser rodado: 0 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code chunk ser rodado: 0.01 s
Tempo para esse code
chunk ser rodado: 3.68 s
Tempo para esse code
chunk ser rodado: 1.02 s
Tempo
para esse code chunk ser rodado: 1.06 s
Tempo
para esse code chunk ser rodado: 0.89 s
ggsave("od.png",
units = c("px"),
width = 4500,
height = 2993,
plot = od,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("od_p1.png",
plot = od_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("od_p2.png",
plot = od_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("od_p3.png",
plot = od_p3,
path = "./graficos",
dpi = 300,
type = "cairo")Tempo para esse code chunk ser rodado: 7.05 s
Tempo
para esse code chunk ser rodado: 1.28 s
Tempo
para esse code chunk ser rodado: 1.53 s
Tempo
para esse code chunk ser rodado: 1.29 s
## # A tibble: 9 × 8
## par PM1 PM2 PM3 PM4 PM5 PM6 PM7
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 max 10.8 10.5 10.3 12.1 19.9 10.2 11.1
## 2 p95 9.24 9.8 9.16 9.56 8.92 6.45 8.38
## 3 p80 7.76 8.3 7.52 8.42 6.2 5.5 5.7
## 4 median 6.4 6.9 5.95 6.3 4.2 2.6 2.9
## 5 mean 5.99 6.78 5.98 7.01 4.22 2.98 3.60
## 6 p20 3.84 5.2 4.3 5.72 0.760 0.2 0.8
## 7 p05 2 4.3 3.14 4.94 0.28 0.1 0.128
## 8 min 0.8 2 2.5 4.2 0.1 0.1 0.1
## 9 n 101 101 68 30 97 32 65
## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.4 3.5 4.9 5.01 6.65 10.9
## 2 87398900 1.9 4 5.5 5.33 6.6 12
## 3 87398950 1.7 3.2 5.3 5.06 6.18 8.9
## 4 87398980 1.2 3.8 5.6 5.38 6.6 9.2
## 5 87405500 0.2 1.4 2.55 3.28 4 14.2
## 6 87406900 0 1.1 1.9 2.59 3.15 16
## 7 87409900 0 0.7 2.3 3.12 3.7 10.6
## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.38 3.11 4.41 4.57 6.2 12.4
## 2 87398900 3.52 5.25 5.96 6.61 7.3 13.8
## 3 87398950 1.62 3.68 4.92 5.28 6.64 11.9
## 4 87398980 3.37 5.5 6.17 6.48 7.14 13.1
## 5 87405500 0.2 1.3 2.53 2.83 3.66 9.8
## 6 87406900 0.1 0.865 2.4 2.43 3.05 9.1
## 7 87409900 0.1 0.92 2.03 2.43 3.5 8.1
Tempo para esse code chunk ser rodado: 0.7 s
(dbo <- ggplot(plan_wide_19902020,
aes(x = codigo,
y = dbo))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=10,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=5,
ymax=10,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=3,
ymax=5,
alpha=1,
fill="#70c18c")+ #classe 2
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=3,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_summary(
fun.data = f,
geom = 'errorbar',
width = 0.3,
position = position_dodge(width = 0.65),
)+
stat_summary(
fun.data = f,
geom = "boxplot",
width = 0.7,
fill = '#F8F8FF',
color = "black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
)+
facet_wrap(~periodo)+
labs(title = "Demanda Bioquímica de Oxigênio no período 1990-2020",
x="Estação",
y="mg/L",
# caption = "Leonardo Fernandes Wink"
)+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
n.breaks = 8,
limits = c(1,100),
trans = "log10")+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 60 rows containing non-finite values (`stat_summary()`).
## Removed 60 rows containing non-finite values (`stat_summary()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 22 rows containing missing values.
## Warning: Removed 30 rows containing missing values.
## Warning: Removed 8 rows containing missing values.
Tempo para
esse code chunk ser rodado: 2.07 s
Tempo
para esse code chunk ser rodado: 1.04 s
Tempo
para esse code chunk ser rodado: 0.99 s
Tempo
para esse code chunk ser rodado: 0.93 s
Tempo
para esse code chunk ser rodado: 1.12 s
Tempo
para esse code chunk ser rodado: 0.92 s
Tempo
para esse code chunk ser rodado: 0.84 s
(sum_dbo_p1 <- plan_wide_19902020 %>%
select(codigo, dbo, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(dbo,
na.rm = TRUE),
q1 =
quantile(dbo, 0.25,
na.rm = TRUE),
median =
median(dbo,
na.rm = TRUE),
mean =
mean(dbo,
na.rm= TRUE),
q3 =
quantile(dbo, 0.75,
na.rm = TRUE),
max =
max(dbo,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 1 1 2 1.86 2 13
## 2 87398900 1 1 1 1.52 2 6
## 3 87398950 1 1 1 1.66 2 6
## 4 87398980 1 1 1 1.13 1 2
## 5 87405500 1 2 3 5.37 5 64
## 6 87406900 1 4 5 9 11 26
## 7 87409900 2 3 4 6.97 9.5 31
(sum_dbo_p2 <- plan_wide_19902020 %>%
select(codigo, dbo, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(dbo,
na.rm = TRUE),
q1 =
quantile(dbo, 0.25,
na.rm = TRUE),
median =
median(dbo,
na.rm = TRUE),
mean =
mean(dbo,
na.rm= TRUE),
q3 =
quantile(dbo, 0.75,
na.rm = TRUE),
max =
max(dbo,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 1 1 1 1.58 2 5
## 2 87398900 1 1 1 1.40 2 5
## 3 87398950 1 1 1 1.66 2 5
## 4 87398980 1 1 1 1.30 1 5
## 5 87405500 1 2 4 4.67 6.5 14
## 6 87406900 1 3 5 6.53 8 28
## 7 87409900 1 3 6 6.31 9 15
(sum_dbo_p3 <- plan_wide_19902020 %>%
select(codigo, dbo, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(dbo,
na.rm = TRUE),
q1 =
quantile(dbo, 0.25,
na.rm = TRUE),
median =
median(dbo,
na.rm = TRUE),
mean =
mean(dbo,
na.rm= TRUE),
q3 =
quantile(dbo, 0.75,
na.rm = TRUE),
max =
max(dbo,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 1 1 1.5 2.15 3 7
## 2 87398900 1 1 1 1.51 2 5
## 3 87398950 1 1 2 2.65 2 18
## 4 87398980 1 1 1 1.32 2 2
## 5 87405500 1 3 4 5.28 6.25 21
## 6 87406900 1 3 5 6.58 10 24
## 7 87409900 1 3 4.5 6.18 8 18
Tempo para esse code chunk ser rodado: 0.34 s
ggsave("dbo.png",
units = c("px"),
width = 4500,
height = 2993,
plot = dbo,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("dbo_p1.png",
plot = dbo_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("dbo_p2.png",
plot = dbo_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("dbo_p3.png",
plot = dbo_p3,
path = "./graficos",
dpi = 300,
type = "cairo")Tempo para esse code chunk ser rodado: 5.78 s
(ptot <- ggplot(plan_wide_19902020,
aes(codigo,
fosforo_total))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.15,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.1,
ymax=0.15,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=0.1,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_summary(
fun.data = f,
geom = 'errorbar',
width = 0.3,
position = position_dodge(width = 0.65),
)+
stat_summary(
fun.data = f,
geom = "boxplot",
width = 0.7,
fill = '#F8F8FF',
color = "black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
)+
facet_wrap(~periodo)+
labs(title = "Fósforo total no período 1990-2020",
x="Estação",
y="mg/L")+
scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
n.breaks = 8,
limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
trans = "log10",
labels = scales::number_format(accuracy = .001,
decimal.mark = ",",
big.mark = " ")
)+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)## Warning: Transformation introduced infinite values in continuous y-axis
## Warning: Removed 134 rows containing non-finite values (`stat_summary()`).
## Removed 134 rows containing non-finite values (`stat_summary()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 47 rows containing missing values.
## Warning: Removed 31 rows containing missing values.
## Warning: Removed 56 rows containing missing values.
Tempo para esse code chunk
ser rodado: 2.04 s
(ptot_p1<-ggplot(plan_wide_19902020%>%
filter(ano_coleta>"1990" &
ano_coleta<="2000"),
aes(codigo,
fosforo_total))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.15,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.1,
ymax=0.15,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=0.1,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_boxplot(geom = 'errorbar',
width=0.3,
position = position_dodge(width = 0.65))+
geom_boxplot(fill='#F8F8FF',
color="black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
width= 0.7)+
labs(title = "Fósforo total no período 1990-2000",
x="Estação",
y="mg/L")+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
n.breaks = 8,
limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
trans = "log10")+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)Tempo
para esse code chunk ser rodado: 1.04 s
(ptot_p2 <- ggplot(plan_wide_19902020%>%
filter(ano_coleta>"2000" &
ano_coleta<="2010"),
aes(codigo,
fosforo_total))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.15,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.1,
ymax=0.15,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=0.1,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_boxplot(geom = 'errorbar',
width=0.3,
position = position_dodge(width = 0.65))+
geom_boxplot(fill='#F8F8FF',
color="black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
width= 0.7)+
labs(title = "Fósforo total no período 2000-2010",
x="Estação",
y="mg/L")+
scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
n.breaks = 8,
limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
trans = "log10")+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)Tempo
para esse code chunk ser rodado: 1.21 s
(ptot_p3 <- ggplot(plan_wide_19902020%>%
filter(ano_coleta>"2010" &
ano_coleta<="2020"),
aes(codigo,
fosforo_total))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.15,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0.1,
ymax=0.15,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=0.1,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_boxplot(geom = 'errorbar',
width=0.3,
position = position_dodge(width = 0.65))+
geom_boxplot(fill='#F8F8FF',
color="black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
width= 0.7)+
labs(title = "Fósforo total no período 2010-2020",
x="Estação",
y="mg/L")+
scale_y_continuous(expand = expansion(mult = c(0.03,0.03)),
n.breaks = 8,
limits = c(min(plan_wide_19902020$fosforo_total, na.rm = TRUE),
max(plan_wide_19902020$fosforo_total), na.rm = TRUE),
trans = "log10")+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)Tempo
para esse code chunk ser rodado: 1.1 s
(sum_ptot_p1 <- plan_wide_19902020 %>%
select(codigo, fosforo_total, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(fosforo_total, na.rm = TRUE),
q1 =
quantile(fosforo_total, 0.25, na.rm = TRUE),
median =
median(fosforo_total, na.rm = TRUE),
mean =
mean(fosforo_total, na.rm= TRUE),
q3 =
quantile(fosforo_total, 0.75, na.rm = TRUE),
max =
max(fosforo_total, na.rm = TRUE)))## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.0097 0.0593 0.0881 0.123 0.14 0.863
## 2 87398900 0.0023 0.0468 0.0678 0.0747 0.0883 0.247
## 3 87398950 0.0202 0.0544 0.0737 0.0751 0.0904 0.179
## 4 87398980 0.01 0.0254 0.0547 0.0708 0.114 0.189
## 5 87405500 0.017 0.171 0.281 0.417 0.492 2.32
## 6 87406900 0.156 0.270 0.508 0.785 1.07 2.79
## 7 87409900 0.107 0.258 0.384 0.489 0.712 1.53
(sum_ptot_p2 <- plan_wide_19902020 %>%
select(codigo, fosforo_total, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(fosforo_total, na.rm = TRUE),
q1 =
quantile(fosforo_total, 0.25, na.rm = TRUE),
median =
median(fosforo_total, na.rm = TRUE),
mean =
mean(fosforo_total, na.rm= TRUE),
q3 =
quantile(fosforo_total, 0.75, na.rm = TRUE),
max =
max(fosforo_total, na.rm = TRUE)))## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.025 0.094 0.131 0.148 0.16 0.637
## 2 87398900 0.015 0.0764 0.104 0.140 0.164 0.646
## 3 87398950 0.036 0.116 0.171 0.180 0.207 0.485
## 4 87398980 0.0115 0.052 0.076 0.101 0.103 1
## 5 87405500 0.046 0.261 0.406 0.547 0.681 1.98
## 6 87406900 0.056 0.338 0.599 0.752 0.967 3.49
## 7 87409900 0.043 0.325 0.624 0.677 0.989 1.57
(sum_ptot_p3 <- plan_wide_19902020 %>%
select(codigo, fosforo_total, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(fosforo_total, na.rm = TRUE),
q1 =
quantile(fosforo_total, 0.25, na.rm = TRUE),
median =
median(fosforo_total, na.rm = TRUE),
mean =
mean(fosforo_total, na.rm= TRUE),
q3 =
quantile(fosforo_total, 0.75, na.rm = TRUE),
max =
max(fosforo_total, na.rm = TRUE)))## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.061 0.118 0.163 0.166 0.186 0.381
## 2 87398900 0.057 0.0935 0.130 0.163 0.168 0.444
## 3 87398950 0.07 0.132 0.156 0.292 0.221 3.11
## 4 87398980 0.019 0.0625 0.106 0.144 0.170 0.59
## 5 87405500 0.013 0.187 0.332 0.361 0.45 0.803
## 6 87406900 0.089 0.254 0.364 0.448 0.560 1.26
## 7 87409900 0.203 0.259 0.369 0.488 0.564 1.7
Tempo para esse code chunk ser rodado: 0.61 s
ggsave("ptot.png",
units = c("px"),
width = 4500,
height = 2993,
plot = ptot,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("ptot_p1.png",
plot = ptot_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("ptot_p2.png",
plot = ptot_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("ptot_p3.png",
plot = ptot_p3,
path = "./graficos",
dpi = 300,
type = "cairo")Tempo para esse code chunk ser rodado: 5.63 s
(ecoli <- boxplot_ecoli(
titulo = "*Escherichia coli* no período 1990-2020"
)+
facet_wrap(~periodo)
)Escherichia-coli-gravataí no período 1990-2020
(ecoli <- ggplot(plan_wide_19902020,
aes(codigo,
escherichia_coli))+
annotate("rect",
xmin=-Inf, xmax=Inf,
ymin=3200, ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf, xmax=Inf,
ymin=800, ymax=3200,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf, xmax=Inf,
ymin=160, ymax=800,
alpha=1,
fill="#70c18c")+ #classe 2
annotate("rect",
xmin=-Inf, xmax=Inf,
ymin=0, ymax=160,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_summary(
fun.data = f,
geom = 'errorbar',
width = 0.3,
position = position_dodge(width = 0.65),
)+
stat_summary(
fun.data = f,
geom = "boxplot",
width = 0.7,
fill = '#F8F8FF',
color = "black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
)+
facet_wrap(~periodo)+
labs(title = "*Escherichia coli* no período 1990-2020",
x="Estação",
y="NMP/100mL")+
scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
# n.breaks = 9,
n.breaks = 6,
limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
trans = "log10",
labels = scales::number_format(accuracy = 1,
decimal.mark = ",",
big.mark = " "))+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()+
theme(
axis.text.y = element_text(
angle = 90,
# size=15,
# face=2
),
plot.title =
element_markdown(
hjust = 0.5,
color = "black",
size = 19)
)
)Tempo para esse
code chunk ser rodado: 4.16 s
(ecoli_p1 <- ggplot(plan_wide_19902020 %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000"),
aes(codigo,
escherichia_coli))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=3200,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=800,
ymax=3200,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=160,
ymax=800,
alpha=1,
fill="#70c18c")+ #classe 2
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=160,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_boxplot(geom = 'errorbar',
width=0.3,
position = position_dodge(width = 0.65))+
geom_boxplot(fill='#F8F8FF',
color="black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
width= 0.7)+
labs(title = "Escherichia coli no período 1990-2000",
x="Estação",
y="NMP/100mL")+
scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
n.breaks = 9,
limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
trans = "log10",
labels = scales::number_format(accuracy = 1,
decimal.mark = ",",
big.mark = " "))+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)Tempo
para esse code chunk ser rodado: 1.07 s
(ecoli_p2 <- ggplot(plan_wide_19902020 %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010"),
aes(codigo,
escherichia_coli))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=3200,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=800,
ymax=3200,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=160,
ymax=800,
alpha=1,
fill="#70c18c")+ #classe 2
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=160,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_boxplot(geom = 'errorbar',
width=0.3,
position = position_dodge(width = 0.65))+
geom_boxplot(fill='#F8F8FF',
color="black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
width= 0.7)+
labs(title = "Escherichia coli no período 2000-2010",
x="Estação",
y="NMP/100mL")+
scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
n.breaks = 9,
limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
trans = "log10",
labels = scales::number_format(accuracy = 1,
decimal.mark = ",",
big.mark = " "))+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)Tempo
para esse code chunk ser rodado: 1.01 s
(ecoli_p3 <- ggplot(plan_wide_19902020 %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020"),
aes(codigo,
escherichia_coli))+
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=3200,
ymax=Inf,
alpha=1,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=800,
ymax=3200,
alpha=1,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=160,
ymax=800,
alpha=1,
fill="#70c18c")+ #classe 2
annotate("rect",
xmin=-Inf,
xmax=Inf,
ymin=0,
ymax=160,
alpha=1,
fill="#8dcdeb")+ #classe 1
stat_boxplot(geom = 'errorbar',
width=0.3,
position = position_dodge(width = 0.65))+
geom_boxplot(fill='#F8F8FF',
color="black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
width= 0.7)+
labs(title = "Escherichia coli no período 2010-2020",
x="Estação",
y="NMP/100mL")+
scale_y_continuous(expand = expansion(mult = c(0.01, 0.01)),
n.breaks = 9,
limits = c(min(plan_wide_19902020$escherichia_coli, na.rm = TRUE),
max(plan_wide_19902020$escherichia_coli, na.rm = TRUE)),
trans = "log10",
labels = scales::number_format(accuracy = 1,
decimal.mark = ",",
big.mark = " "))+
ggbeeswarm::geom_quasirandom(
size = 1.2,
alpha = .25,
width = .07,
)+
scale_x_discrete(limits = c("87398500",
"87398980",
"87398900",
"87398950",
"87405500",
"87406900",
"87409900"),
labels = c("PM1", "PM2", "PM3", "PM4", "PM5", "PM6", "PM7")
)+
geom_smooth(method = "lm",
se=FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
aes(group=1),
alpha=.5,
na.rm = TRUE,
size = 1)+
theme_grafs()
)Tempo
para esse code chunk ser rodado: 1.11 s
(sum_ecoli_p1 <- plan_wide_19902020 %>%
select(codigo, escherichia_coli, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(escherichia_coli,
na.rm = TRUE),
q1 =
quantile(escherichia_coli, 0.25,
na.rm = TRUE),
median =
median(escherichia_coli,
na.rm = TRUE),
mean =
mean(escherichia_coli,
na.rm= TRUE),
q3 =
quantile(escherichia_coli, 0.75,
na.rm = TRUE),
max =
max(escherichia_coli,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 32 136 240 854. 720 19200
## 2 87398900 16 68 160 548. 480 7760
## 3 87398950 2.4 12.8 268 4039. 10000 28000
## 4 87398980 4 160 243. 2907. 446 25600
## 5 87405500 1.6 12.8 24 545. 128 18400
## 6 87406900 13.6 61.6 192 718. 414 12800
## 7 87409900 2.4 12.8 64 97.7 128 720
(sum_ecoli_p2 <- plan_wide_19902020 %>%
select(codigo, escherichia_coli, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(escherichia_coli,
na.rm = TRUE),
q1 =
quantile(escherichia_coli, 0.25,
na.rm = TRUE),
median =
median(escherichia_coli,
na.rm = TRUE),
mean =
mean(escherichia_coli,
na.rm= TRUE),
q3 =
quantile(escherichia_coli, 0.75,
na.rm = TRUE),
max =
max(escherichia_coli,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 21.6 91 150 1335. 308 27200
## 2 87398900 11 70 133. 444. 414. 2600
## 3 87398950 20 400 720 935. 1120 5500
## 4 87398980 24 110. 195 410. 289. 8800
## 5 87405500 4.7 162 2400 25445. 12950 490000
## 6 87406900 8 172 12800 66370. 62300 650000
## 7 87409900 16 7355. 35500 72440. 68750 460000
(sum_ecoli_p3 <- plan_wide_19902020 %>%
select(codigo, escherichia_coli, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(escherichia_coli,
na.rm = TRUE),
q1 =
quantile(escherichia_coli, 0.25,
na.rm = TRUE),
median =
median(escherichia_coli,
na.rm = TRUE),
mean =
mean(escherichia_coli,
na.rm= TRUE),
q3 =
quantile(escherichia_coli, 0.75,
na.rm = TRUE),
max =
max(escherichia_coli,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 90 155. 260 409. 451 2420
## 2 87398900 10 52.8 107 245. 313 1553.
## 3 87398950 108. 250 487 1424. 1553. 10462
## 4 87398980 40.8 140. 242. 529. 738. 2400
## 5 87405500 632 8965 19232. 109992. 70750 1400000
## 6 87406900 1440 23100 34500 230828. 140500 3400000
## 7 87409900 2000 20100 38400 83128. 83680 345000
Tempo para esse code chunk ser rodado: 0.33 s
ggsave("ecoli.png",
plot = ecoli,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("ecoli_p1.png",
plot = ecoli_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("ecoli_p2.png",
plot = ecoli_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("ecoli_p3.png",
plot = ecoli_p3,
path = "./graficos",
dpi = 300,
type = "cairo")Tempo para esse code chunk ser rodado: 5.56 s
(namon <- plan_wide_19902020 %>%
boxplot_namon(
eixo_y = nitrogenio_amoniacal,
titulo = "Nitrogênio Amoaniacal no período 1990-2020"
)+
facet_wrap(~periodo)
)Tempo para esse code
chunk ser rodado: 1.92 s
periodo_inicial <- as.Date("1990-01-01", "%Y-%m-%d")
periodo_final <- as.Date("2021-01-01", "%Y-%m-%d")
(nitro_line <-
plan_wide_19902020 %>%
filter(ano_coleta > "1990" &
ano_coleta <= "2020") %>%
dplyr::select(codigo, nitrogenio_amoniacal, data_coleta, periodo) %>%
# group_by(codigo) %>%
mutate(
ponto_monitoramento = case_when(
codigo == "87398500" ~ "PM1",
codigo == "87398980" ~ "PM2",
codigo == "87398900" ~ "PM3",
codigo == "87398950" ~ "PM4",
codigo == "87405500" ~ "PM5",
codigo == "87406900" ~ "PM6",
codigo == "87409900" ~ "PM7"
)
) %>%
# pivot_wider(
# names_from = codigo,
# values_from = nitro_amon,
# id_cols = data_coleta
# ) %>%
ggplot(
aes(x = data_coleta,
y = nitrogenio_amoniacal,
# color = codigo
))+
# geom_rect(
# aes(xmin = periodo_inicial,
# xmax = periodo_final,
# ymin = 13.3,
# ymax = Inf,
# alpha= 0.005,
# fill= "#ac5079"),
# show.legend = FALSE)+ #>pior classe
# geom_rect(
# aes(xmin = periodo_inicial,
# xmax = periodo_final,
# ymin= 3.7,
# ymax= 13.3,
# alpha= 0.005,
# fill= "#fcf7ab"),
# show.legend = FALSE)+ #classe 3
# geom_rect(
# aes(xmin = periodo_inicial,
# xmax = periodo_final,
# ymin= 0,
# ymax= 3.7,
# alpha= 0.005,
# fill= "blue"
# # "#8dcdeb"
# ),
# show.legend = FALSE)+ #classe 1
annotate("rect",
xmin= periodo_inicial,
xmax= periodo_final,
ymin=13.3,
ymax=Inf,
alpha= 0.7,
fill="#ac5079")+ #>pior classe
annotate("rect",
xmin= periodo_inicial,
xmax= periodo_final,
ymin=3.7,
ymax=13.3,
alpha= 0.7,
fill="#fcf7ab")+ #classe 3
annotate("rect",
xmin= periodo_inicial,
xmax= periodo_final,
ymin= -Inf,
ymax=3.7,
alpha= 0.7,
fill="#8dcdeb")+ #classe 1
geom_line(
# aes(color = codigo),
na.rm = TRUE)+
geom_point(
# aes(color = codigo),
na.rm = TRUE)+
scale_x_date(
limits = as.Date(c(
"1990-01-01",
"2021-01-01"
# NA #pode usar NA também
)),
expand = c(0.0, 0.0),
date_breaks = "10 years",
minor_breaks = "5 years",
date_labels = "%Y",
)+
# geom_smooth(
# # aes(color = codigo),
# method = "lm",
# # formula = y ~ poly(x, 2),
# # span = 0.2,
# se = TRUE, #se deixar TRUE gera o intervalo de confiança de 95%
# aes(group = 1),
# alpha =.5,
# na.rm = TRUE,
# size = 0.3,
# # fullrange = TRUE,
# # show.legend = TRUE
# )+
# stat_smooth(
# geom = "smooth",
# # span = 0.2,
# se = FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
# # aes(group = 1),
# # alpha =.5,
# na.rm = TRUE,
# # size = 0.3,
# fullrange = TRUE,
# show.legend = TRUE
# )+
facet_wrap(
~ponto_monitoramento,
nrow = 4,
)+
theme_bw()
)Tempo
para esse code chunk ser rodado: 1.34 s
(namon_p1 <- plan_wide_19902020 %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
boxplot_namon(
titulo = "Nitrogênio Amoniacal no período 1990-2000"
)
)Tempo
para esse code chunk ser rodado: 0.98 s
(namon_p2 <- plan_wide_19902020 %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
boxplot_namon(
titulo = "Nitrogênio Amoniacal no período 2000-2010"
)
)Tempo
para esse code chunk ser rodado: 1.62 s
(namon_p3 <- plan_wide_19902020 %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
boxplot_namon(
titulo = "Nitrogênio Amoniacal no período 2010-2020"
)
)Tempo
para esse code chunk ser rodado: 1.33 s
grid.arrange(namon_p1, namon_p2, namon_p3, ncol = 3)Tempo
para esse code chunk ser rodado: 3.61 s
(sum_namon_p1 <- plan_wide_19902020 %>%
select(codigo, nitrogenio_amoniacal, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(nitrogenio_amoniacal,
na.rm = TRUE),
q1 =
quantile(nitrogenio_amoniacal, 0.25,
na.rm = TRUE),
median =
median(nitrogenio_amoniacal,
na.rm = TRUE),
mean =
mean(nitrogenio_amoniacal,
na.rm= TRUE),
q3 =
quantile(nitrogenio_amoniacal, 0.75,
na.rm = TRUE),
max =
max(nitrogenio_amoniacal,
na.rm = TRUE),
n =
length(nitrogenio_amoniacal)
)
)## # A tibble: 7 × 8
## codigo min q1 median mean q3 max n
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 87398500 0.08 0.165 0.205 0.246 0.28 0.91 101
## 2 87398900 0.087 0.17 0.2 0.248 0.242 1.13 101
## 3 87398950 Inf NA NA NaN NA -Inf 68
## 4 87398980 0.027 0.12 0.15 0.158 0.188 0.3 30
## 5 87405500 0.43 0.875 1.74 4.28 5.88 17.7 97
## 6 87406900 0.51 1.14 2.78 5.35 7.50 26 32
## 7 87409900 Inf NA NA NaN NA -Inf 65
(sum_namon_p2 <- plan_wide_19902020 %>%
select(codigo, nitrogenio_amoniacal, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(nitrogenio_amoniacal,
na.rm = TRUE),
q1 =
quantile(nitrogenio_amoniacal, 0.25,
na.rm = TRUE),
median =
median(nitrogenio_amoniacal,
na.rm = TRUE),
mean =
mean(nitrogenio_amoniacal,
na.rm= TRUE),
q3 =
quantile(nitrogenio_amoniacal, 0.75,
na.rm = TRUE),
max =
max(nitrogenio_amoniacal,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.031 0.16 0.21 0.259 0.29 1.22
## 2 87398900 0.03 0.16 0.21 0.284 0.342 2.77
## 3 87398950 0.044 0.214 0.276 0.268 0.349 0.413
## 4 87398980 0.024 0.098 0.14 0.161 0.21 0.551
## 5 87405500 0.038 0.79 2.09 3.49 4.54 18
## 6 87406900 0.03 1.05 2.66 4.27 5.62 19.4
## 7 87409900 0.453 0.78 2.46 3.84 4.77 16.6
(sum_namon_p3 <- plan_wide_19902020 %>%
select(codigo, nitrogenio_amoniacal, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(nitrogenio_amoniacal,
na.rm = TRUE),
q1 =
quantile(nitrogenio_amoniacal, 0.25,
na.rm = TRUE),
median =
median(nitrogenio_amoniacal,
na.rm = TRUE),
mean =
mean(nitrogenio_amoniacal,
na.rm= TRUE),
q3 =
quantile(nitrogenio_amoniacal, 0.75,
na.rm = TRUE),
max =
max(nitrogenio_amoniacal,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 0.03 0.085 0.1 0.150 0.198 0.419
## 2 87398900 0.03 0.1 0.192 0.213 0.248 0.699
## 3 87398950 0.02 0.165 0.263 0.315 0.4 0.951
## 4 87398980 0.02 0.06 0.1 0.179 0.235 0.717
## 5 87405500 0.05 0.808 1.60 2.55 3.78 9.12
## 6 87406900 0.03 1.09 2.16 3.61 5.02 21.2
## 7 87409900 0.04 1.44 2.5 3.40 4.39 18.8
Tempo para esse code chunk ser rodado: 0.55 s
ggsave("namon.png",
units = c("px"),
width = 4500,
height = 2993,
plot = namon,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("namon_p1.png",
plot = namon_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("namon_p2.png",
plot = namon_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("namon_p3.png",
plot = namon_p3,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("namon_3periodos.png",
units = c("px"),
width = 4500,
height = 2993,
plot = grid.arrange(namon_p1, namon_p2, namon_p3, ncol = 3),
path = "./graficos",
dpi = 300,
type = "cairo")Tempo
para esse code chunk ser rodado: 11.92 s
(turb <- plan_wide_19902020 %>%
boxplot_turb(
titulo = "Turbidez no período 1990-2020"
)+
facet_wrap(~periodo)
)Tempo para esse code
chunk ser rodado: 1.95 s
(turb_line <- plan_wide_19902020 %>%
filter(ano_coleta > "1990" &
ano_coleta <= "2020") %>%
select(codigo, turbidez, data_coleta, periodo) %>%
group_by(codigo) %>%
ggplot(
aes(x = data_coleta,
y = turbidez,
color = codigo
))+
geom_line(
# aes(color = codigo),
na.rm = TRUE)+
geom_point(
# aes(color = codigo),
na.rm = TRUE)+
scale_x_date(
limits = as.Date(c(
"1990-01-01",
"2021-01-01"
# NA #pode usar NA também
)),
expand = c(0.0, 0.0),
date_breaks = "10 years",
minor_breaks = "5 years",
date_labels = "%Y",
)+
# geom_smooth(
# # aes(color = codigo),
# method = "lm",
# # formula = y ~ poly(x, 2),
# # span = 0.2,
# se = TRUE, #se deixar TRUE gera o intervalo de confiança de 95%
# aes(group = 1),
# alpha =.5,
# na.rm = TRUE,
# size = 0.3,
# # fullrange = TRUE,
# # show.legend = TRUE
# )+
# stat_smooth(
# geom = "smooth",
# # span = 0.2,
# se = FALSE, #se deixar TRUE gera o intervalo de confiança de 95%
# # aes(group = 1),
# # alpha =.5,
# na.rm = TRUE,
# # size = 0.3,
# fullrange = TRUE,
# show.legend = TRUE
# )+
facet_wrap(
~codigo,
nrow = 4,
)+
theme_bw()
)Tempo
para esse code chunk ser rodado: 1.38 s
(turb_p1 <- plan_wide_19902020 %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
boxplot_turb(
titulo = "Turbidez no período 1990-2000"
)
)Tempo
para esse code chunk ser rodado: 0.89 s
(turb_p2 <- plan_wide_19902020 %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
boxplot_turb(
titulo = "Turbidez no período 2000-2010"
)
)Tempo
para esse code chunk ser rodado: 1.02 s
(turb_p3 <- plan_wide_19902020 %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
boxplot_turb(
titulo = "Turbidez no período 2010-2020"
)
)Tempo
para esse code chunk ser rodado: 0.97 s
grid.arrange(turb_p1, turb_p2, turb_p3, ncol = 3)Tempo
para esse code chunk ser rodado: 2.62 s
(sum_turb_p1 <- plan_wide_19902020 %>%
select(codigo, turbidez, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(turbidez,
na.rm = TRUE),
q1 =
quantile(turbidez, 0.25,
na.rm = TRUE),
median =
median(turbidez,
na.rm = TRUE),
mean =
mean(turbidez,
na.rm= TRUE),
q3 =
quantile(turbidez, 0.75,
na.rm = TRUE),
max =
max(turbidez,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 6.2 19 34.5 63.5 67 461
## 2 87398900 9 19 49.5 61.5 73.8 460
## 3 87398950 9.6 16 22 33.3 48.8 144
## 4 87398980 16 32.8 43 66.8 90.5 190
## 5 87405500 8.5 23.5 47 47.5 58 159
## 6 87406900 33 54.8 67 77.7 81.5 199
## 7 87409900 5.8 15 25 32.2 48 76
(sum_turb_p2 <- plan_wide_19902020 %>%
select(codigo, turbidez, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(turbidez,
na.rm = TRUE),
q1 =
quantile(turbidez, 0.25,
na.rm = TRUE),
median =
median(turbidez,
na.rm = TRUE),
mean =
mean(turbidez,
na.rm= TRUE),
q3 =
quantile(turbidez, 0.75,
na.rm = TRUE),
max =
max(turbidez,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 9 41.2 55.5 71.1 74.2 428
## 2 87398900 39 57 78 107. 116. 475
## 3 87398950 39 47 64 96.5 90 330
## 4 87398980 24 37 50 64.5 87 176
## 5 87405500 32 46 63.5 70.3 76 341
## 6 87406900 35 49 62 69.9 75.5 284
## 7 87409900 40 45 60 70.4 90 151
(sum_turb_p3 <- plan_wide_19902020 %>%
select(codigo, turbidez, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(turbidez,
na.rm = TRUE),
q1 =
quantile(turbidez, 0.25,
na.rm = TRUE),
median =
median(turbidez,
na.rm = TRUE),
mean =
mean(turbidez,
na.rm= TRUE),
q3 =
quantile(turbidez, 0.75,
na.rm = TRUE),
max =
max(turbidez,
na.rm = TRUE))
) ## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 8.52 16.4 29 33.3 43 85
## 2 87398900 14.8 39.2 48.3 66.7 73.4 299
## 3 87398950 16 29.9 41 51.6 65 230
## 4 87398980 11 19.4 33.6 39.5 42.2 110.
## 5 87405500 10.0 29.0 41 42.9 54.5 131
## 6 87406900 9.62 23 39 41.2 52 122
## 7 87409900 9.68 22.0 34.0 40.5 47 182.
Tempo para esse code chunk ser rodado: 0.28 s
ggsave("turb.png",
units = c("px"),
width = 4500,
height = 2993,
plot = turb,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("turb_p1.png",
plot = turb_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("turb_p2.png",
plot = turb_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("turb_p3.png",
plot = turb_p3,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("turb_3periodos.png",
units = c("px"),
width = 4500,
height = 2993,
plot = grid.arrange(turb_p1, turb_p2, turb_p3, ncol = 3),
path = "./graficos",
dpi = 300,
type = "cairo")Tempo
para esse code chunk ser rodado: 9.06 s
(pH <- boxplot_pH(
titulo = "pH no período 1990-2020"
)+
facet_wrap(~periodo)
)Tempo para esse code chunk ser
rodado: 1.84 s
(pH_p1 <- plan_wide_19902020 %>%
filter(ano_coleta > "1990" &
ano_coleta <= "2000") %>%
boxplot_pH(
titulo = "pH no período 1990-2000"
)
)Tempo
para esse code chunk ser rodado: 0.89 s
(pH_p2 <- plan_wide_19902020 %>%
filter(ano_coleta > "2000" &
ano_coleta <= "2010") %>%
boxplot_pH(
titulo = "pH no período 2000-2010"
)
)Tempo
para esse code chunk ser rodado: 0.87 s
(pH_p3 <- plan_wide_19902020 %>%
filter(ano_coleta > "2010" &
ano_coleta <= "2020") %>%
boxplot_pH(
titulo = "pH no período 2010-2020"
)
)Tempo
para esse code chunk ser rodado: 0.85 s
grid.arrange(pH_p1, pH_p2, pH_p3, ncol = 3)Tempo
para esse code chunk ser rodado: 2.32 s
(sum_pH_p1 <- plan_wide_19902020 %>%
select(codigo, pH, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(pH,
na.rm = TRUE),
q1 =
quantile(pH, 0.25,
na.rm = TRUE),
median =
median(pH,
na.rm = TRUE),
mean =
mean(pH,
na.rm= TRUE),
q3 =
quantile(pH, 0.75,
na.rm = TRUE),
max =
max(pH,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 5 6.18 6.59 6.51 6.82 7.9
## 2 87398900 5.2 6 6.3 6.33 6.63 7.9
## 3 87398950 5.4 6.29 6.4 6.49 6.72 8.1
## 4 87398980 5.3 5.93 6.2 6.16 6.3 7.3
## 5 87405500 5 6.3 6.4 6.47 6.7 9.3
## 6 87406900 5.5 6.18 6.45 6.43 6.8 7.3
## 7 87409900 4.5 6.2 6.4 6.44 6.7 7.4
(sum_pH_p2 <- plan_wide_19902020 %>%
select(codigo, pH, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(pH,
na.rm = TRUE),
q1 =
quantile(pH, 0.25,
na.rm = TRUE),
median =
median(pH,
na.rm = TRUE),
mean =
mean(pH,
na.rm= TRUE),
q3 =
quantile(pH, 0.75,
na.rm = TRUE),
max =
max(pH,
na.rm = TRUE))
) ## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 5.3 6.3 6.6 6.59 6.88 7.9
## 2 87398900 5.5 6.4 6.65 6.63 6.9 7.5
## 3 87398950 6 6.6 6.8 6.89 7.25 7.6
## 4 87398980 5.8 6.3 6.5 6.63 7 7.5
## 5 87405500 5.2 6.4 6.6 6.68 6.9 8.3
## 6 87406900 5.5 6.4 6.7 6.66 6.9 8.6
## 7 87409900 5.8 6.5 6.8 6.77 7 8.4
(sum_pH_p3 <- plan_wide_19902020 %>%
select(codigo, pH, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(pH,
na.rm = TRUE),
q1 =
quantile(pH, 0.25,
na.rm = TRUE),
median =
median(pH,
na.rm = TRUE),
mean =
mean(pH,
na.rm= TRUE),
q3 =
quantile(pH, 0.75,
na.rm = TRUE),
max =
max(pH,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 5.47 6.28 6.42 6.47 6.60 7.3
## 2 87398900 5.68 6.36 6.5 6.57 6.84 7.4
## 3 87398950 5.71 6.28 6.46 6.46 6.68 7
## 4 87398980 5.42 6.10 6.36 6.39 6.6 7.2
## 5 87405500 5.64 6.34 6.5 6.49 6.7 7.01
## 6 87406900 5.6 6.4 6.48 6.51 6.77 7.3
## 7 87409900 5.59 6.46 6.6 6.57 6.76 7.2
Tempo para esse code chunk ser rodado: 0.36 s
ggsave("pH.png",
units = c("px"),
width = 4500,
height = 2993,
plot = pH,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("pH_p1.png",
plot = pH_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("pH_p2.png",
plot = pH_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("pH_p3.png",
plot = pH_p3,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("pH_3periodos.png",
units = c("px"),
width = 4500,
height = 2993,
plot = grid.arrange(pH_p1, pH_p2, pH_p3, ncol = 3),
path = "./graficos",
dpi = 300,
type = "cairo")Tempo
para esse code chunk ser rodado: 8.59 s
(SolTot <- plan_wide_19902020 %>%
boxplot_solidos_totais(
titulo = "Sólidos totais no período 1990-2020"
)+
facet_wrap(~periodo)
)Tempo para esse
code chunk ser rodado: 1.92 s
(SolTot_p1 <- plan_wide_19902020 %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
boxplot_solidos_totais(
titulo = "Sólidos totais no período 1990-2000"
)
)Tempo
para esse code chunk ser rodado: 1.03 s
(SolTot_p2 <- plan_wide_19902020 %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
boxplot_solidos_totais(
titulo = "Sólidos totais no período 2000-2010"
)
)Tempo
para esse code chunk ser rodado: 0.94 s
(SolTot_p3 <- plan_wide_19902020 %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
boxplot_solidos_totais(
titulo = "Sólidos totais no período 2010-2020"
)
)Tempo
para esse code chunk ser rodado: 0.91 s
grid.arrange(SolTot_p1, SolTot_p2, SolTot_p3, ncol = 3)Tempo
para esse code chunk ser rodado: 2.48 s
(sum_SolTot_p1 <- plan_wide_19902020 %>%
select(codigo, solidos_totais, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(solidos_totais,
na.rm = TRUE),
q1 =
quantile(solidos_totais, 0.25,
na.rm = TRUE),
median =
median(solidos_totais,
na.rm = TRUE),
mean =
mean(solidos_totais,
na.rm= TRUE),
q3 =
quantile(solidos_totais, 0.75,
na.rm = TRUE),
max =
max(solidos_totais,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 46 84.5 95 122. 120 510
## 2 87398900 18 74.5 97 111. 122. 474
## 3 87398950 10 76.5 91 90.9 106. 155
## 4 87398980 48 63.5 81.5 104. 126. 337
## 5 87405500 70 101 121 133. 151 361
## 6 87406900 89 118 155 165. 210 279
## 7 87409900 20 99.5 122 128. 143 381
(sum_SolTot_p2 <- plan_wide_19902020 %>%
select(codigo, solidos_totais, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(solidos_totais,
na.rm = TRUE),
q1 =
quantile(solidos_totais, 0.25,
na.rm = TRUE),
median =
median(solidos_totais,
na.rm = TRUE),
mean =
mean(solidos_totais,
na.rm= TRUE),
q3 =
quantile(solidos_totais, 0.75,
na.rm = TRUE),
max =
max(solidos_totais,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 28 80 100 111. 123. 412
## 2 87398900 42 82 102. 128. 140. 489
## 3 87398950 46 94.2 108. 126. 127. 318
## 4 87398980 40 61 77 85.3 96 228
## 5 87405500 48 102 133 148. 170. 522
## 6 87406900 50 109 134. 154. 170. 670
## 7 87409900 56 112. 156 167. 190. 599
(sum_SolTot_p3 <- plan_wide_19902020 %>%
select(codigo, solidos_totais, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(solidos_totais,
na.rm = TRUE),
q1 =
quantile(solidos_totais, 0.25,
na.rm = TRUE),
median =
median(solidos_totais,
na.rm = TRUE),
mean =
mean(solidos_totais,
na.rm= TRUE),
q3 =
quantile(solidos_totais, 0.75,
na.rm = TRUE),
max =
max(solidos_totais,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 61 69 90 82.8 96 101
## 2 87398900 41 77 104 120. 127 308
## 3 87398950 45 93 101 109. 117 221
## 4 87398980 55 62.8 80 79.9 95 109
## 5 87405500 83 89.2 108. 124. 162. 195
## 6 87406900 50 106 117 135. 163 246
## 7 87409900 75 103 115 131. 145 251
Tempo para esse code chunk ser rodado: 0.33 s
ggsave("SolTot.png",
units = c("px"),
width = 4500,
height = 2993,
plot = SolTot,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("SolTot_p1.png",
plot = SolTot_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("SolTot_p2.png",
plot = SolTot_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("SolTot_p3.png",
plot = SolTot_p3,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("SolTot_3periodos.png",
units = c("px"),
width = 4500,
height = 2993,
plot = grid.arrange(SolTot_p1, SolTot_p2, SolTot_p3, ncol = 3),
path = "./graficos",
dpi = 300,
type = "cairo")Tempo
para esse code chunk ser rodado: 10.19 s
(cond_elet <- plan_wide_19902020 %>%
boxplot_cond_elet(
titulo = "Condutividade elétrica no período 1990-2020"
)+
facet_wrap(~periodo)
)Tempo para
esse code chunk ser rodado: 3.2 s
(cond_elet_p1 <- plan_wide_19902020 %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
boxplot_cond_elet(
titulo = "Condutividade elétrica no período 1990-2000"
)
)Tempo
para esse code chunk ser rodado: 1.31 s
(cond_elet_p2 <- plan_wide_19902020 %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
boxplot_cond_elet(
titulo = "Condutividade elétrica no período 2000-2010"
)
)Tempo
para esse code chunk ser rodado: 1 s
(cond_elet_p3 <- plan_wide_19902020 %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
boxplot_cond_elet(
titulo = "Condutividade elétrica no período 2010-2020"
)
)Tempo
para esse code chunk ser rodado: 0.83 s
grid.arrange(cond_elet_p1, cond_elet_p2, cond_elet_p3, ncol = 3)Tempo
para esse code chunk ser rodado: 2.34 s
(sum_cond_elet_p1 <- plan_wide_19902020 %>%
select(codigo, condutividade, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(condutividade,
na.rm = TRUE),
q1 =
quantile(condutividade, 0.25,
na.rm = TRUE),
median =
median(condutividade,
na.rm = TRUE),
mean =
mean(condutividade,
na.rm= TRUE),
q3 =
quantile(condutividade, 0.75,
na.rm = TRUE),
max =
max(condutividade,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 9.4 51.1 67 75.1 83.2 340
## 2 87398900 10 41.5 51 55.3 64.2 160
## 3 87398950 9 41.5 51.5 60.1 69.5 160
## 4 87398980 11.3 42.4 52.0 53.0 67.0 83.8
## 5 87405500 25 68.7 88.2 130. 170 560
## 6 87406900 52 88.4 133. 193. 256. 576
## 7 87409900 29 80 110. 134. 168. 460
(sum_cond_elet_p2 <- plan_wide_19902020 %>%
select(codigo, condutividade, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(condutividade,
na.rm = TRUE),
q1 =
quantile(condutividade, 0.25,
na.rm = TRUE),
median =
median(condutividade,
na.rm = TRUE),
mean =
mean(condutividade,
na.rm= TRUE),
q3 =
quantile(condutividade, 0.75,
na.rm = TRUE),
max =
max(condutividade,
na.rm = TRUE))
)## # A tibble: 7 × 7
## codigo min q1 median mean q3 max
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 87398500 11.9 67.0 82.6 84.8 102. 164.
## 2 87398900 11 44.4 52.3 57.1 72.6 136.
## 3 87398950 39.8 58.4 76 82.3 98.3 160
## 4 87398980 9.4 42.4 49.7 51.5 62 114.
## 5 87405500 17 77.5 107 142. 171. 679
## 6 87406900 23.1 85.6 124. 164. 199. 619
## 7 87409900 56.1 114. 177 200. 242 454
(sum_cond_elet_p3 <- plan_wide_19902020 %>%
select(codigo, condutividade, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
group_by(codigo) %>%
summarize(
min =
min(condutividade,
na.rm = TRUE),
q1 =
quantile(condutividade, 0.25,
na.rm = TRUE),
median =
median(condutividade,
na.rm = TRUE),
mean =
mean(condutividade,
na.rm= TRUE),
q3 =
quantile(condutividade, 0.75,
na.rm = TRUE),
max =
max(condutividade,
na.rm = TRUE),
n =
length(condutividade))
)## # A tibble: 7 × 8
## codigo min q1 median mean q3 max n
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 87398500 0.01 68.5 80.2 80.4 99.5 125. 34
## 2 87398900 39.7 53.4 58.3 61.1 65.5 103 36
## 3 87398950 40.9 64.7 70.1 76.1 82.5 195. 35
## 4 87398980 43.2 51.7 54.0 56.3 61.0 78.9 28
## 5 87405500 47 85.8 121. 146. 209. 286 33
## 6 87406900 62.7 95.9 142. 163. 216. 354. 35
## 7 87409900 65.7 121. 159. 179. 245. 498. 37
# plan_wide_19902020 %>%
# select(codigo, IQA) %>%
# group_by(codigo) %>%
# summarize(
# min =
# min(IQA,
# na.rm = TRUE),
# q1 =
# quantile(IQA, 0.25,
# na.rm = TRUE),
# median =
# median(IQA,
# na.rm = TRUE),
# mean =
# mean(IQA,
# na.rm= TRUE),
# q3 =
# quantile(IQA, 0.75,
# na.rm = TRUE),
# max =
# max(IQA,
# na.rm = TRUE))Tempo para esse code chunk ser rodado: 0.33 s
ggsave("cond_elet.png",
units = c("px"),
width = 4500,
height = 2993,
plot = cond_elet,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("cond_elet_p1.png",
plot = cond_elet_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("cond_elet_p2.png",
plot = cond_elet_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("cond_elet_p3.png",
plot = cond_elet_p3,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("cond_elet_3periodos.png",
units = c("px"),
width = 4500,
height = 2993,
plot = grid.arrange(cond_elet_p1, cond_elet_p2, cond_elet_p3, ncol = 3),
path = "./graficos",
dpi = 300,
type = "cairo")Tempo
para esse code chunk ser rodado: 9.35 s
Tempo para esse code chunk ser
rodado: 2.45 s
Tempo
para esse code chunk ser rodado: 1.38 s
Tempo
para esse code chunk ser rodado: 1.06 s
Tempo
para esse code chunk ser rodado: 0.92 s
grid.arrange(iqa_p1, iqa_p2, iqa_p3, ncol = 3)Tempo
para esse code chunk ser rodado: 3.76 s
(sum_IQA_p1 <- plan_wide_19902020 %>%
select(codigo, iqa, ano_coleta) %>%
filter(ano_coleta>"1990" &
ano_coleta<="2000") %>%
group_by(codigo) %>%
summarize(
min =
min(iqa,
na.rm = TRUE),
q1 =
quantile(iqa, 0.25,
na.rm = TRUE),
median =
median(iqa,
na.rm = TRUE),
mean =
mean(iqa,
na.rm= TRUE),
q3 =
quantile(iqa, 0.75,
na.rm = TRUE),
max =
max(iqa,
na.rm = TRUE),
n =
length(iqa)
)
)## # A tibble: 7 × 8
## codigo min q1 median mean q3 max n
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 87398500 27.0 35.7 40.9 40.7 46.2 52.2 101
## 2 87398900 27.8 37.9 42.9 43.0 48.0 58.5 101
## 3 87398950 32.8 36.8 41.4 43.2 48.6 61.9 68
## 4 87398980 29.2 35.8 40.4 40.3 44.8 51.9 30
## 5 87405500 24.8 34.9 41.2 40.3 46.9 57.6 97
## 6 87406900 24.7 31.3 37.8 37.4 44.4 49.0 32
## 7 87409900 23.6 31.9 37.1 38.8 46.2 55.4 65
(sum_IQA_p2 <- plan_wide_19902020 %>%
select(codigo, iqa, ano_coleta) %>%
filter(ano_coleta>"2000" &
ano_coleta<="2010") %>%
group_by(codigo) %>%
summarize(
min =
min(iqa,
na.rm = TRUE),
q1 =
quantile(iqa, 0.25,
na.rm = TRUE),
median =
median(iqa,
na.rm = TRUE),
mean =
mean(iqa,
na.rm= TRUE),
q3 =
quantile(iqa, 0.75,
na.rm = TRUE),
max =
max(iqa,
na.rm = TRUE),
n =
length(iqa)
)
)## # A tibble: 7 × 8
## codigo min q1 median mean q3 max n
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
## 1 87398500 27.8 34.6 40.0 39.5 43.5 48.7 75
## 2 87398900 28.5 35.1 37.6 38.3 40.6 48.5 77
## 3 87398950 21.1 29.4 32.7 32.8 36.8 44.0 30
## 4 87398980 24.5 35.7 39.4 39.5 43.4 52.1 66
## 5 87405500 19.8 28.7 31.5 31.9 35.7 48.8 78
## 6 87406900 17.1 25.3 29.0 29.5 32.8 44.1 79
## 7 87409900 16.2 20.5 26.1 25.0 29.8 33.1 31
(sum_IQA_p3 <- plan_wide_19902020 %>%
select(codigo, iqa, ano_coleta) %>%
filter(ano_coleta>"2010" &
ano_coleta<="2020") %>%
# ?as_factor(codigo) %>%
group_by(codigo) %>%
summarize(
min =
min(iqa,
na.rm = TRUE),
q1 =
quantile(iqa, 0.25,
na.rm = TRUE),
median =
median(iqa,
na.rm = TRUE),
mean =
mean(iqa,
na.rm= TRUE),
q3 =
quantile(iqa, 0.75,
na.rm = TRUE),
max =
max(iqa,
na.rm = TRUE),
n =
length(iqa),
NAs =
sum(is.na(iqa))
) %>%
mutate(
"%NA" = NAs/n*100
)
)## # A tibble: 7 × 10
## codigo min q1 median mean q3 max n NAs `%NA`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> <dbl>
## 1 87398500 40.2 42.5 45.4 44.2 45.5 47.2 34 29 85.3
## 2 87398900 34.1 38.6 41.2 40.2 42.9 44.4 36 32 88.9
## 3 87398950 36.7 39.5 42.4 41.5 44.4 44.6 35 31 88.6
## 4 87398980 40.0 40.0 40.0 40.0 40.0 40.0 28 27 96.4
## 5 87405500 30.8 31.6 32.5 32.5 33.3 34.1 33 31 93.9
## 6 87406900 22.9 24.4 25.9 25.3 26.5 27.2 35 32 91.4
## 7 87409900 24.1 25.1 27.3 26.9 28.2 29.7 37 32 86.5
Tempo para esse code chunk ser rodado: 0.33 s
ggsave("iqa.png",
units = c("px"),
width = 4500,
height = 2993,
plot = iqa,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("iqa_p1.png",
plot = iqa_p1,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("iqa_p2.png",
plot = iqa_p2,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("iqa_p3.png",
plot = iqa_p3,
path = "./graficos",
dpi = 300,
type = "cairo")
ggsave("iqa_3periodos.png",
units = c("px"),
width = 4500,
height = 2993,
plot = grid.arrange(iqa_p1, iqa_p2, iqa_p3, ncol = 3),
path = "./graficos",
dpi = 300,
type = "cairo")Tempo
para esse code chunk ser rodado: 10.33 s
parametros_IQA %>%
dplyr::select(
-codigo,
-ano_coleta,
-nitrogenio_total
) %>%
# group_by(codigo) %>%
rename(
CE = condutividade,
E_coli = escherichia_coli,
OD = oxigenio_dissolvido,
ST = solidos_totais,
Turb = turbidez,
Temp = temperatura_agua,
Ptot = fosforo_total,
# NTot = nitrogenio_total,
NAmon = nitrogenio_amoniacal,
NTK = nitrogenio_kjeldahl
) %>%
ggcorr(
method = "complete.obs",
# "pearson",
# "pairwise",
name = "Correlação",
label = TRUE,
label_alpha = TRUE,
digits = 3,
low = "#3B9AB2",
mid = "#EEEEEE",
high = "#F21A00",
# palette = "RdYlBu",
layout.exp = 0,
legend.position = "left",
label_round = 3,
# legend.size = 18,
geom = "tile",
nbreaks = 10,
)+
labs(title = "Correlação entre parâmetros físico-químicos na\nBacia Hidrográfica do rio Gravataí no período 1990-2020")+
theme_linedraw()+
theme(
legend.position = c(0.15, 0.6),
legend.title = element_text(size = 16),
legend.text = element_text(size = 14),
# legend.spacing = unit(element_text(),
# units = 5)
plot.title = element_text(hjust = 0.5,
size = 16)
)correlação-parametros-qualidade-agua-gravataí no período 1990-2020
# Gráfico das correlações entre todos os parâmetros com significância
correl_IQA <- parametros_IQA %>%
dplyr::select(-codigo) %>%
ggpairs(title = "Correlação entre parâmetros que compõem o IQA",
axisLabels = "show")
correlacao_pIQA <- parametros_IQA %>%
group_by(codigo) %>%
correlation::correlation()
correlacao_pIQA %>%
# glimpse()
filter(
p < 0.001
) %>%
as_tibble() %>%
# filter(
# Parameter1 == "oxigenio_dissolvido"
# ) %>%
arrange(desc(r)) ## # A tibble: 129 × 12
## Group Param…¹ Param…² r CI CI_low CI_high t df_er…³ p
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
## 1 873985… nitrog… nitrog… 1 0.95 1 1 Inf 115 0
## 2 873989… nitrog… nitrog… 1 0.95 1 1 Inf 60 0
## 3 874069… nitrog… nitrog… 1 0.95 1 1 3.88e8 67 0
## 4 874099… nitrog… nitrog… 1.00 0.95 1.00 1.00 7.91e2 71 6.50e-140
## 5 873989… nitrog… nitrog… 0.998 0.95 0.997 0.999 1.81e2 116 2.92e-142
## 6 873989… nitrog… nitrog… 0.991 0.95 0.986 0.994 6.11e1 68 2.83e- 59
## 7 874055… nitrog… nitrog… 0.988 0.95 0.982 0.992 6.64e1 110 1.05e- 88
## 8 874099… nitrog… nitrog… 0.976 0.95 0.934 0.992 1.75e1 15 1.51e- 9
## 9 874055… nitrog… nitrog… 0.932 0.95 0.891 0.958 2.07e1 65 1.83e- 28
## 10 874069… nitrog… nitrog… 0.930 0.95 0.890 0.957 2.08e1 67 4.70e- 29
## # … with 119 more rows, 2 more variables: Method <chr>, n_Obs <int>, and
## # abbreviated variable names ¹Parameter1, ²Parameter2, ³df_error
parametros_IQA %>%
# group_by(codigo) %>%
dplyr::select(
nitrogenio_kjeldahl, condutividade
) %>%
# correlation::cor_test() %>%
plot()Tempo
para esse code chunk ser rodado: 4.08 s
10.8
Os resultados apontam que para o parâmetro OD
set.seed(2023)
exemplo_boxplot_df <- data.frame(
PM = c("PM1"),
# letras = letters[seq( from = 1, to = 1 )],
Stat1 = rnorm(100,
mean = 5,
sd = 1.8)
)
(sumario_exemplo_bp <- exemplo_boxplot_df %>%
group_by(PM) %>%
summarize(
max = max(Stat1),
p95 = quantile(Stat1, 0.95),
p80 = quantile(Stat1, 0.8),
median = median(Stat1),
p20 = quantile(Stat1, 0.2),
p05 = quantile(Stat1, 0.05),
min = min(Stat1),
) %>%
t() %>%
row_to_names(row_number = 1) %>%
as.numeric()
)## [1] 9.923430 7.866927 6.683828 4.886935 3.545771 2.277104 1.282177
(boxplot_example <- exemplo_boxplot_df %>%
ggplot(
aes(
x = PM,
y = Stat1,
)
)+
stat_summary(
fun.data = f,
geom = 'errorbar',
width = 0.15,
position = position_dodge(width = 0.65),
)+
stat_summary(
fun.data = f,
geom = "boxplot",
width = 0.40,
fill = '#F8F8FF',
color = "black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
)+
labs(
title = "Elementos do *boxplot*",
x= NULL,
y= NULL
)+
ggbeeswarm::geom_quasirandom(
size = 1.4,
alpha = .3,
width = .07,
)+
scale_y_continuous(
expand = expansion(mult = c(0,0)),
n.breaks = 8,
limits = c(-0.3,12)
)+
annotate(
geom = "text",
x = 1.55,
hjust = "right",
y = sumario_exemplo_bp,
label = c("Valor máximo", "P95", "P80", "Mediana", "P20", "P05", "Valor mínimo"),
# fontface = 3
)+
geom_richtext(
x = 0.56,
y = 9.103998,
label.color = NA,
hjust = "center",
label = "<i>Outliers</i>"
)+
geom_curve(
aes(
x = 0.6, xend = 0.98,
y = 9.103998 , yend = 9.103998 , #Outliers
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
#definindo o [
geom_curve(
aes(
x = 0.74, xend = 0.78,
y = 6.683828, yend = 6.683828,
),
curvature = 0,
size = 1.0,
lineend = "butt"
)+
geom_curve(
aes(
x = 0.74, xend = 0.74,
y = 3.545771, yend = 6.683828,
),
curvature = 0,
size = 1.0,
lineend = "butt"
)+
annotate(
geom = "text",
x = 0.56,
hjust = "center",
y = 5.11,
label = "Amplitude\n(P80-P20)"
)+
geom_curve(
aes(
x = 0.74, xend = 0.78,
y = 3.545771 , yend = 3.545771 ,
),
curvature = 0,
size = 1.0,
lineend = "butt"
)+
# fim do [
geom_curve(
aes(
x = 0.6, xend = 0.90,
y = 7.866927 , yend = 7.866927 , #whisker superior
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
annotate(
geom = "text",
x = 0.56,
hjust = "center",
y = 7.866927,
label = "Whisker\nsuperior"
)+
geom_curve(
aes(
x = 0.6, xend = 0.90,
y = 2.277104 , yend = 2.277104 , #whisker inferior
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
annotate(
geom = "text",
x = 0.56,
hjust = "center",
y = 2.277104,
label = "Whisker\ninferior"
)+
geom_curve(
aes(
x = 1.4, xend = 1.01,
y = 9.92343, yend = 9.92343, #valor máximo
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
geom_curve(
aes(
x = 1.45, xend = 1.11,
y = 7.866927 , yend = 7.866927 , #P95
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
geom_curve(
aes(
x = 1.45, xend = 1.22,
y = 6.683828 , yend = 6.683828 , #P80
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
geom_curve(
aes(
x = 1.45, xend = 1.22,
y = 4.886935 , yend = 4.886935 , #P50
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
geom_curve(
aes(
x = 1.45, xend = 1.22,
y = 3.545771, yend = 3.545771, #P20
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
geom_curve(
aes(
x = 1.45, xend = 1.11,
y = 2.277104, yend = 2.277104, #P05
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
geom_curve(
aes(
x = 1.4, xend = 1.01,
y = 1.282177, yend = 1.282177, #valor mínimo
),
curvature = 0,
size = 1.0,
arrow = arrow(length = unit(0.05, "npc")),
lineend = "round"
)+
# theme_grafs()+
theme_bw()+
theme(
plot.title =
element_markdown(
hjust = 0.5,
color = "black",
size = 19),
)
)Tempo
para esse code chunk ser rodado: 3.22 s
ggsave(
filename = "exemplo_boxplot.png",
plot = boxplot_example,
units = c("px"),
width = (4500)/1.5,
height = (2993)/1.5,
path = "./graficos",
dpi = 300,
# type = "cairo"
)Tempo para esse code chunk ser rodado: 2.93 s
set.seed(2021)
data <- tibble(
grupo = factor(
c(rep(
"Grupo 1", 100),
rep("Grupo 2", 250),
rep("Grupo 3", 25)
)
),
valor = c(seq(0, 20, length.out = 100),
c(rep(0, 5),
rnorm(30, 2, .1),
rnorm(90, 5.4, .1),
rnorm(90, 14.6, .1),
rnorm(30, 18, .1),
rep(20, 5)
),
rep(seq(0, 20, length.out = 5), 5))
) %>%
rowwise() %>%
mutate(
valor = if_else(
grupo == "Grupo 2", valor + rnorm(1, 0, .4),
valor
)
)
## function to return median and labels
n_fun <- function(x){
return(
data.frame(
y = median(x) - 1.25,
label = paste0(
"n = ",length(x)
)
)
)
}Tempo para esse code chunk ser rodado: 0.06 s
(tukey_n_boxplot <- ggplot(data,
aes(x = grupo,
y = valor)
)+
stat_boxplot(geom = 'errorbar',
width = 0.15,
position = position_dodge(width = 0.65))+
geom_boxplot(fill = "grey92",
width = 0.40,
position = position_dodge(width = 0.65))+
## use summary function to add text labels
stat_summary(
geom = "text",
fun.data = n_fun,
# family = "Oswald",
size = 5
)+
labs(
title = "Tukey *boxplot*",
x= NULL,
# y="mg/L"
)+
# theme_grafs()+
theme_bw()+
theme(
axis.text.y = element_text(
angle = 90,
# size=15,
# face=2
),
plot.title =
element_markdown(
hjust = 0.5,
color = "black",
size = 19)
)
)(tukey_boxplot <- ggplot(data, aes(x = grupo,
y = valor)) +
stat_boxplot(geom = 'errorbar',
width = 0.15,
position = position_dodge(width = 0.65))+
geom_boxplot(fill = "grey92",
width = 0.40,
position = position_dodge(width = 0.65)) +
## use either geom_point() or geom_jitter()
geom_point(
## draw bigger points
size = 2,
## add some transparency
alpha = .25,
## add some jittering
position = position_jitter(
## control randomness and range of jitter
seed = 1, width = .2
)
)+
theme_bw()+
labs(
title = "Tukey *boxplot*",
x= NULL,
# y="mg/L"
)+
# theme_grafs()+
theme_bw()+
theme(
axis.text.y = element_text(
angle = 90,
# size=15,
# face=2
),
plot.title =
element_markdown(
hjust = 0.5,
color = "black",
size = 19)
))Tempo
para esse code chunk ser rodado: 1.31 s
data %>%
group_by(grupo) %>%
summarize(
min = min(valor),
P20 = quantile(valor, 0.20),
q1 = quantile(valor, 0.25),
mediana = median(valor),
q3 = quantile(valor, 0.75),
P80 = quantile(valor, 0.80),
max = max(valor)
) %>%
t() %>%
row_to_names(row_number = 1)## Grupo 1 Grupo 2 Grupo 3
## min " 0.0000000" "-0.6345142" " 0.0000000"
## P20 "4.000000" "5.057189" "4.000000"
## q1 "5.000000" "5.245691" "5.000000"
## mediana "10.00000" "10.01593" "10.00000"
## q3 "15.00000" "14.81205" "15.00000"
## P80 "16.00000" "15.04351" "16.00000"
## max "20.0000" "20.3882" "20.0000"
(box_percentile_plot <- ggplot(data,
aes(x = grupo, y = valor)
) +
stat_summary(
fun.data = f,
geom = 'errorbar',
width = 0.15,
position = position_dodge(width = 0.65),
)+
stat_summary(
fun.data = f,
geom = "boxplot",
width = 0.40,
fill = 'grey92',
color = "black",
outlier.shape = NA, #se deixar NA fica só o jitter, se não, deixa 1
)+
# geom_boxplot(fill = "grey92") +
## use either geom_point() or geom_jitter()
geom_point(
## draw bigger points
size = 2,
## add some transparency
alpha = .25,
## add some jittering
position = position_jitter(
## control randomness and range of jitter
seed = 1, width = .2
)
)+
labs(
title = "*Box Percentile-Plot*",
x= NULL,
# y="mg/L"
)+
# theme_grafs()+
theme_bw()+
theme(
axis.text.y = element_text(
angle = 90,
# size = 15,
# face = 2
),
plot.title =
element_markdown(
hjust = 0.5,
color = "black",
size = 19)
)
)grid.arrange(
tukey_boxplot, box_percentile_plot,
ncol = 2
)fig_tukey_garrett <- plot_grid(tukey_boxplot, box_percentile_plot,
labels = "AUTO")Tempo para esse code chunk ser rodado: 4.2 s
ggsave(
filename = "tukey_n_boxplot.png",
plot = tukey_n_boxplot,
units = c("px"),
width = 4500,
height = 2993,
path = "./graficos",
dpi = 300,
# type = "cairo"
)
ggsave(
filename = "tukey_boxplot.png",
plot = tukey_boxplot,
units = c("px"),
width = 4500,
height = 2993,
path = "./graficos",
dpi = 300,
# type = "cairo"
)
ggsave(
filename = "box_percentile_plot.png",
plot = box_percentile_plot,
units = c("px"),
width = 4500,
height = 2993,
path = "./graficos",
dpi = 300,
# type = "cairo"
)
ggsave(
filename = "fig_tukey_garrett.png",
plot = fig_tukey_garrett,
units = c("px"),
width = 4500,
height = 2993,
path = "./graficos",
dpi = 300,
# type = "cairo"
)Tempo para esse code chunk ser rodado: 4.8 s