EXECUTIVE SUMMARY

Background

The Crown Prosecution Service (CPS) prosecutes criminal cases that have been investigated by the police and other investigative organisations in England and Wales. The CPS claims to be independent make her decisions independently of the police and government.

Their duty is to make sure that the right person is prosecuted for the right offence, and to bring offenders to justice wherever possible, hence her core values are fairness, objectivity and independence. According to the CPS website , outcomes are broken down into two categories: convictions and unsuccessful outcomes. The reports sourced show the number (No) and the proportion (%) of defendants falling into each category. There are 13 various principal offences categories which are “Homicide”, “Offences against the person”, “Sexual offences”, “Burglary offences”, “Robbery”, “Theft and handling”, “Fraud and forgery”, “Criminal damage”, “Drugs offences”, “Public order”, “All other offences excluding motoring”, “Motoring offences”, and “Administrative finalisations”.

Project Objective:

The objective of this project is to analyse the datasets from a five-year period of Crown Prosecution Service Case Outcomes by Principal Offence Category by developing a prediction model using using one linear regression technique, one clustering technique and one classification technique.

Data Report:

For the purpose of this project, the dataset was sourced from the data.gov.uk website https://data.gov.uk/dataset/89d0aef9-e2f9-4d1a-b779-5a33707c5f2c/crown-prosecution-service-case-outcomes-by-principal-offence-category-data). This comprised of 2,193 crime cases across 42 areas in the United Kingdom (UK) in a five-year period, between 2014 to 2018.

The R programming language and some of its relevant libraries/packages were used for analysing the dataset for this project. Various packages and libraries, such as “tidyverse”, “ggplot”, “rmarkdown”,“corrplot”, “inspectdf”, etc were installed for the purpose of importing, cleaning, modifying, analysing the dataset and generating the project report.

Analysis Assumptions & Limitation:

  • The data collected seem to be having some missing period for year 2015, 2016, 2017 and 2018. There is one missing month (November) in 2015, two months (February and March) missing in 2016, three months (April, May, June) in 2017 and also three months (April, May, June) in 2018. Hence, for the data analysis is carried out by Areas (Counties) and not dates.

  • For the purpose of analysis, the Principal Offence Category “Offences against the person” was adopted as the dependent variable, while the other Principal Offence Categories are adopted as the independent variables.

Project Analytical Techiques:

The dataset used is an integration of various data stored and arranged in monthly csv files and organised in yearly folders (year 2014 to year 2018). Different techniques related to descriptive and predictive analytics were adopted and applied on the integrated dataset. The variables understand consideration were assessed for correlation using tabular and visualization techniques. Statiscal analysis were conducted through hypothesis testing. Also, visualization tools such as bar charts, correlation charts, etc were used for graphically presenting the data for insights.

The Exploratory and descriptive analytics techniques applied include: - imported and merged the various csv files into a single dataset - Viewed and set the structure of the dataset - Checked for missing values (NA) and treating them - modified the variables in the dataset for proper analysis - Conducted a univariate analysis to understand patterns - Conducted a bivariate analysis between variables to gain insight of any existing relationship. - viewed statistical data

The predictive analytics techniques applied include: - Linear Regression - K-mean Clustering - Decision Tree

EXPLORATORY DATA ANALYSIS (EDA)

Exploratory data analysis (EDA) involves using graphics and visualizations to explore and analyze a data set. The goal is to explore, investigate and learn, as opposed to confirming statistical hypotheses

Loading Libraries

The directories in R where the packages are stored are called the libraries. The terms package and library are sometimes used synonymously. You can also embed plots

library(tinytex)
library(latexpdf)
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(inspectdf)
library(tidyverse)
## ── Attaching packages
## ───────────────────────────────────────
## tidyverse 1.3.2 ──
## âś” tibble  3.1.8     âś” purrr   1.0.0
## âś” tidyr   1.2.1     âś” stringr 1.5.0
## âś” readr   2.1.3     âś” forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## âś– dplyr::filter() masks stats::filter()
## âś– dplyr::lag()    masks stats::lag()
library(gridExtra)
## 
## Attaching package: 'gridExtra'
## 
## The following object is masked from 'package:dplyr':
## 
##     combine
library(plotly)
## 
## Attaching package: 'plotly'
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following object is masked from 'package:graphics':
## 
##     layout
library(cluster)    # algorithms for clustering
library(factoextra) # algorithms & visualization for clustering
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## 
## The following object is masked from 'package:plotly':
## 
##     subplot
## 
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## 
## The following objects are masked from 'package:base':
## 
##     format.pval, units
library(corrplot)
## corrplot 0.92 loaded
library(ggcorrplot)
library('rpart')
library('rpart.plot')
library(Metrics)
library(RWeka)
library(rmarkdown)
library(ggplot2)



options (warn = - 1)

Setting and checking the working directory

The working directory in R is the folder where you are working. Hence, it’s the place (the environment) where you have to store your files of your project in order to load them or where your R objects will be saved.

setwd ("/Users/newuser/Desktop/Uniglos Project") #To set the Working directory
getwd() #To confirm the directory is properly set.
## [1] "/Users/newuser/Desktop/Uniglos Project"

Importing Data - Integrating the entire CSV files from 2014 to 2018

Each folder represents month data recorded for each year on a monthly basis. Hence, for the purpose of this project analysis, the entire csv files are integrated into a single data set.

#To integrate all the CSV files in the folders into a single dataset file

CrimeCases_data = list.files(full.names = TRUE, recursive = TRUE, path="/Users/newuser/Desktop/Dataset - Assignment") %>% 
  lapply(read_csv,  col_types = cols( .default = col_character())) %>% 
  bind_rows
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## • `` -> `...1`

To view the Data Dimension

This is to reveal the number of columns and rows of a matrix, array or data frame. Here the dim() function was applied to achieve this.

dim(CrimeCases_data)
## [1] 2193   51

Integrating the entire csv files gave rise to 2,193 rows (observations) with 51 columns (variables)

Converting the integrated dataset to a data frame.

A data frame is a list of variables of the same number of rows with unique row names, given class “data.frame”. It is the most common way of storing data in R and, generally, is the data structure most often used for data analyses.

To be able to keep the data in the appropriate structure for this analysis, the data imported was converted to a dataframe.

CrimeCases_data = as.data.frame(CrimeCases_data)
class(CrimeCases_data)
## [1] "data.frame"

This confirms that the integrated dataset is now a dataframe.

Data frame Check

In order to confirm that the entire data as captured have been imported for analysis, a view of the first and last 6 rows of the data set were made.

head(CrimeCases_data)
##                ...1 Number of Homicide Convictions
## 1          National                             81
## 2 Avon and Somerset                              1
## 3      Bedfordshire                              0
## 4    Cambridgeshire                              0
## 5          Cheshire                              1
## 6         Cleveland                              0
##   Percentage of Homicide Convictions Number of Homicide Unsuccessful
## 1                              85.3%                              14
## 2                             100.0%                               0
## 3                                  -                               0
## 4                                  -                               0
## 5                              50.0%                               1
## 6                                  -                               0
##   Percentage of Homicide Unsuccessful
## 1                               14.7%
## 2                                0.0%
## 3                                   -
## 4                                   -
## 5                               50.0%
## 6                                   -
##   Number of Offences Against The Person Convictions
## 1                                             7,805
## 2                                               167
## 3                                                69
## 4                                                99
## 5                                               140
## 6                                                85
##   Percentage of Offences Against The Person Convictions
## 1                                                 74.1%
## 2                                                 78.8%
## 3                                                 75.0%
## 4                                                 81.1%
## 5                                                 74.9%
## 6                                                 67.5%
##   Number of Offences Against The Person Unsuccessful
## 1                                              2,722
## 2                                                 45
## 3                                                 23
## 4                                                 23
## 5                                                 47
## 6                                                 41
##   Percentage of Offences Against The Person Unsuccessful
## 1                                                  25.9%
## 2                                                  21.2%
## 3                                                  25.0%
## 4                                                  18.9%
## 5                                                  25.1%
## 6                                                  32.5%
##   Number of Sexual Offences Convictions
## 1                                   698
## 2                                    36
## 3                                     5
## 4                                     6
## 5                                    17
## 6                                    11
##   Percentage of Sexual Offences Convictions
## 1                                     72.2%
## 2                                     81.8%
## 3                                     83.3%
## 4                                     66.7%
## 5                                     85.0%
## 6                                     73.3%
##   Number of Sexual Offences Unsuccessful
## 1                                    269
## 2                                      8
## 3                                      1
## 4                                      3
## 5                                      3
## 6                                      4
##   Percentage of Sexual Offences Unsuccessful Number of Burglary Convictions
## 1                                      27.8%                          1,470
## 2                                      18.2%                             37
## 3                                      16.7%                             16
## 4                                      33.3%                              8
## 5                                      15.0%                             26
## 6                                      26.7%                             25
##   Percentage of Burglary Convictions Number of Burglary Unsuccessful
## 1                              86.7%                             226
## 2                              94.9%                               2
## 3                              94.1%                               1
## 4                             100.0%                               0
## 5                              89.7%                               3
## 6                              71.4%                              10
##   Percentage of Burglary Unsuccessful Number of Robbery Convictions
## 1                               13.3%                           517
## 2                                5.1%                             9
## 3                                5.9%                             4
## 4                                0.0%                             6
## 5                               10.3%                             1
## 6                               28.6%                             5
##   Percentage of Robbery Convictions Number of Robbery Unsuccessful
## 1                             81.7%                            116
## 2                             75.0%                              3
## 3                            100.0%                              0
## 4                             85.7%                              1
## 5                            100.0%                              0
## 6                             71.4%                              2
##   Percentage of Robbery Unsuccessful Number of Theft And Handling Convictions
## 1                              18.3%                                   10,045
## 2                              25.0%                                      266
## 3                               0.0%                                       98
## 4                              14.3%                                      107
## 5                               0.0%                                      206
## 6                              28.6%                                      254
##   Percentage of Theft And Handling Convictions
## 1                                        92.3%
## 2                                        92.7%
## 3                                        91.6%
## 4                                        91.5%
## 5                                        98.1%
## 6                                        88.8%
##   Number of Theft And Handling Unsuccessful
## 1                                       840
## 2                                        21
## 3                                         9
## 4                                        10
## 5                                         4
## 6                                        32
##   Percentage of Theft And Handling Unsuccessful
## 1                                          7.7%
## 2                                          7.3%
## 3                                          8.4%
## 4                                          8.5%
## 5                                          1.9%
## 6                                         11.2%
##   Number of Fraud And Forgery Convictions
## 1                                     666
## 2                                      11
## 3                                       8
## 4                                       7
## 5                                      16
## 6                                       6
##   Percentage of Fraud And Forgery Convictions
## 1                                       86.0%
## 2                                      100.0%
## 3                                       80.0%
## 4                                      100.0%
## 5                                       88.9%
## 6                                       75.0%
##   Number of Fraud And Forgery Unsuccessful
## 1                                      108
## 2                                        0
## 3                                        2
## 4                                        0
## 5                                        2
## 6                                        2
##   Percentage of Fraud And Forgery Unsuccessful
## 1                                        14.0%
## 2                                         0.0%
## 3                                        20.0%
## 4                                         0.0%
## 5                                        11.1%
## 6                                        25.0%
##   Number of Criminal Damage Convictions
## 1                                 2,259
## 2                                    54
## 3                                    20
## 4                                    21
## 5                                    35
## 6                                    32
##   Percentage of Criminal Damage Convictions
## 1                                     85.2%
## 2                                     90.0%
## 3                                     76.9%
## 4                                     95.5%
## 5                                     79.5%
## 6                                     80.0%
##   Number of Criminal Damage Unsuccessful
## 1                                    391
## 2                                      6
## 3                                      6
## 4                                      1
## 5                                      9
## 6                                      8
##   Percentage of Criminal Damage Unsuccessful
## 1                                      14.8%
## 2                                      10.0%
## 3                                      23.1%
## 4                                       4.5%
## 5                                      20.5%
## 6                                      20.0%
##   Number of Drugs Offences Convictions Percentage of Drugs Offences Convictions
## 1                                4,536                                    94.2%
## 2                                  135                                    98.5%
## 3                                   45                                    95.7%
## 4                                   40                                    95.2%
## 5                                   75                                    88.2%
## 6                                   63                                    90.0%
##   Number of Drugs Offences Unsuccessful
## 1                                   279
## 2                                     2
## 3                                     2
## 4                                     2
## 5                                    10
## 6                                     7
##   Percentage of Drugs Offences Unsuccessful
## 1                                      5.8%
## 2                                      1.5%
## 3                                      4.3%
## 4                                      4.8%
## 5                                     11.8%
## 6                                     10.0%
##   Number of Public Order Offences Convictions
## 1                                       3,549
## 2                                          68
## 3                                          29
## 4                                          45
## 5                                          86
## 6                                          74
##   Percentage of Public Order Offences Convictions
## 1                                           84.4%
## 2                                           86.1%
## 3                                           82.9%
## 4                                           83.3%
## 5                                           92.5%
## 6                                           73.3%
##   Number of Public Order Offences Unsuccessful
## 1                                          654
## 2                                           11
## 3                                            6
## 4                                            9
## 5                                            7
## 6                                           27
##   Percentage of Public Order Offences Unsuccessful
## 1                                            15.6%
## 2                                            13.9%
## 3                                            17.1%
## 4                                            16.7%
## 5                                             7.5%
## 6                                            26.7%
##   Number of All Other Offences (excluding Motoring) Convictions
## 1                                                         2,640
## 2                                                            66
## 3                                                            11
## 4                                                             6
## 5                                                            50
## 6                                                            28
##   Percentage of All Other Offences (excluding Motoring) Convictions
## 1                                                             83.7%
## 2                                                             80.5%
## 3                                                             64.7%
## 4                                                             75.0%
## 5                                                             89.3%
## 6                                                             84.8%
##   Number of All Other Offences (excluding Motoring) Unsuccessful
## 1                                                            513
## 2                                                             16
## 3                                                              6
## 4                                                              2
## 5                                                              6
## 6                                                              5
##   Percentage of All Other Offences (excluding Motoring) Unsuccessful
## 1                                                              16.3%
## 2                                                              19.5%
## 3                                                              35.3%
## 4                                                              25.0%
## 5                                                              10.7%
## 6                                                              15.2%
##   Number of Motoring Offences Convictions
## 1                                   8,283
## 2                                     188
## 3                                      40
## 4                                      79
## 5                                     209
## 6                                     124
##   Percentage of Motoring Offences Convictions
## 1                                       86.3%
## 2                                       83.6%
## 3                                       88.9%
## 4                                       92.9%
## 5                                       94.6%
## 6                                       87.9%
##   Number of Motoring Offences Unsuccessful
## 1                                    1,314
## 2                                       37
## 3                                        5
## 4                                        6
## 5                                       12
## 6                                       17
##   Percentage of Motoring Offences Unsuccessful
## 1                                        13.7%
## 2                                        16.4%
## 3                                        11.1%
## 4                                         7.1%
## 5                                         5.4%
## 6                                        12.1%
##   Number of Admin Finalised Unsuccessful
## 1                                    718
## 2                                     24
## 3                                     16
## 4                                      4
## 5                                      1
## 6                                     10
##   Percentage of L Motoring Offences Unsuccessful
## 1                                         100.0%
## 2                                         100.0%
## 3                                         100.0%
## 4                                         100.0%
## 5                                         100.0%
## 6                                         100.0%
tail(CrimeCases_data)
##                ...1 Number of Homicide Convictions
## 2188  Thames Valley                              4
## 2189   Warwickshire                              0
## 2190    West Mercia                              6
## 2191  West Midlands                             11
## 2192 West Yorkshire                              5
## 2193      Wiltshire                              0
##      Percentage of Homicide Convictions Number of Homicide Unsuccessful
## 2188                              80.0%                               1
## 2189                                  -                               0
## 2190                             100.0%                               0
## 2191                              91.7%                               1
## 2192                              71.4%                               2
## 2193                                  -                               0
##      Percentage of Homicide Unsuccessful
## 2188                               20.0%
## 2189                                   -
## 2190                                0.0%
## 2191                                8.3%
## 2192                               28.6%
## 2193                                   -
##      Number of Offences Against The Person Convictions
## 2188                                               333
## 2189                                                65
## 2190                                               220
## 2191                                               609
## 2192                                               446
## 2193                                                85
##      Percentage of Offences Against The Person Convictions
## 2188                                                 76.4%
## 2189                                                 80.2%
## 2190                                                 78.6%
## 2191                                                 78.0%
## 2192                                                 85.9%
## 2193                                                 86.7%
##      Number of Offences Against The Person Unsuccessful
## 2188                                                103
## 2189                                                 16
## 2190                                                 60
## 2191                                                172
## 2192                                                 73
## 2193                                                 13
##      Percentage of Offences Against The Person Unsuccessful
## 2188                                                  23.6%
## 2189                                                  19.8%
## 2190                                                  21.4%
## 2191                                                  22.0%
## 2192                                                  14.1%
## 2193                                                  13.3%
##      Number of Sexual Offences Convictions
## 2188                                    46
## 2189                                     9
## 2190                                    20
## 2191                                    66
## 2192                                    71
## 2193                                    12
##      Percentage of Sexual Offences Convictions
## 2188                                     75.4%
## 2189                                     69.2%
## 2190                                     69.0%
## 2191                                     74.2%
## 2192                                     68.3%
## 2193                                    100.0%
##      Number of Sexual Offences Unsuccessful
## 2188                                     15
## 2189                                      4
## 2190                                      9
## 2191                                     23
## 2192                                     33
## 2193                                      0
##      Percentage of Sexual Offences Unsuccessful Number of Burglary Convictions
## 2188                                      24.6%                             58
## 2189                                      30.8%                             13
## 2190                                      31.0%                             25
## 2191                                      25.8%                             63
## 2192                                      31.7%                             84
## 2193                                       0.0%                              7
##      Percentage of Burglary Convictions Number of Burglary Unsuccessful
## 2188                              96.7%                               2
## 2189                              92.9%                               1
## 2190                              83.3%                               5
## 2191                              82.9%                              13
## 2192                              94.4%                               5
## 2193                              87.5%                               1
##      Percentage of Burglary Unsuccessful Number of Robbery Convictions
## 2188                                3.3%                             7
## 2189                                7.1%                             3
## 2190                               16.7%                             4
## 2191                               17.1%                            30
## 2192                                5.6%                            15
## 2193                               12.5%                             0
##      Percentage of Robbery Convictions Number of Robbery Unsuccessful
## 2188                             70.0%                              3
## 2189                            100.0%                              0
## 2190                             66.7%                              2
## 2191                             76.9%                              9
## 2192                             93.8%                              1
## 2193                                 0                              0
##      Percentage of Robbery Unsuccessful
## 2188                              30.0%
## 2189                               0.0%
## 2190                              33.3%
## 2191                              23.1%
## 2192                               6.3%
## 2193                                  0
##      Number of Theft And Handling Convictions
## 2188                                      233
## 2189                                       42
## 2190                                      112
## 2191                                      446
## 2192                                      243
## 2193                                       58
##      Percentage of Theft And Handling Convictions
## 2188                                        91.4%
## 2189                                        82.4%
## 2190                                        93.3%
## 2191                                        94.5%
## 2192                                        94.2%
## 2193                                        98.3%
##      Number of Theft And Handling Unsuccessful
## 2188                                        22
## 2189                                         9
## 2190                                         8
## 2191                                        26
## 2192                                        15
## 2193                                         1
##      Percentage of Theft And Handling Unsuccessful
## 2188                                          8.6%
## 2189                                         17.6%
## 2190                                          6.7%
## 2191                                          5.5%
## 2192                                          5.8%
## 2193                                          1.7%
##      Number of Fraud And Forgery Convictions
## 2188                                      36
## 2189                                      10
## 2190                                      16
## 2191                                      59
## 2192                                      34
## 2193                                       8
##      Percentage of Fraud And Forgery Convictions
## 2188                                       87.8%
## 2189                                       90.9%
## 2190                                       80.0%
## 2191                                       84.3%
## 2192                                       85.0%
## 2193                                      100.0%
##      Number of Fraud And Forgery Unsuccessful
## 2188                                        5
## 2189                                        1
## 2190                                        4
## 2191                                       11
## 2192                                        6
## 2193                                        0
##      Percentage of Fraud And Forgery Unsuccessful
## 2188                                        12.2%
## 2189                                         9.1%
## 2190                                        20.0%
## 2191                                        15.7%
## 2192                                        15.0%
## 2193                                         0.0%
##      Number of Criminal Damage Convictions
## 2188                                    73
## 2189                                     9
## 2190                                    41
## 2191                                    89
## 2192                                    70
## 2193                                    13
##      Percentage of Criminal Damage Convictions
## 2188                                     89.0%
## 2189                                     69.2%
## 2190                                     89.1%
## 2191                                     84.8%
## 2192                                     84.3%
## 2193                                     92.9%
##      Number of Criminal Damage Unsuccessful
## 2188                                      9
## 2189                                      4
## 2190                                      5
## 2191                                     16
## 2192                                     13
## 2193                                      1
##      Percentage of Criminal Damage Unsuccessful
## 2188                                      11.0%
## 2189                                      30.8%
## 2190                                      10.9%
## 2191                                      15.2%
## 2192                                      15.7%
## 2193                                       7.1%
##      Number of Drugs Offences Convictions
## 2188                                   98
## 2189                                   21
## 2190                                   56
## 2191                                  211
## 2192                                  137
## 2193                                   25
##      Percentage of Drugs Offences Convictions
## 2188                                    93.3%
## 2189                                    91.3%
## 2190                                    96.6%
## 2191                                    94.2%
## 2192                                    96.5%
## 2193                                   100.0%
##      Number of Drugs Offences Unsuccessful
## 2188                                     7
## 2189                                     2
## 2190                                     2
## 2191                                    13
## 2192                                     5
## 2193                                     0
##      Percentage of Drugs Offences Unsuccessful
## 2188                                      6.7%
## 2189                                      8.7%
## 2190                                      3.4%
## 2191                                      5.8%
## 2192                                      3.5%
## 2193                                      0.0%
##      Number of Public Order Offences Convictions
## 2188                                          81
## 2189                                          19
## 2190                                          75
## 2191                                         253
## 2192                                         154
## 2193                                          21
##      Percentage of Public Order Offences Convictions
## 2188                                           89.0%
## 2189                                           82.6%
## 2190                                           92.6%
## 2191                                           86.9%
## 2192                                           91.1%
## 2193                                           87.5%
##      Number of Public Order Offences Unsuccessful
## 2188                                           10
## 2189                                            4
## 2190                                            6
## 2191                                           38
## 2192                                           15
## 2193                                            3
##      Percentage of Public Order Offences Unsuccessful
## 2188                                            11.0%
## 2189                                            17.4%
## 2190                                             7.4%
## 2191                                            13.1%
## 2192                                             8.9%
## 2193                                            12.5%
##      Number of All Other Offences (excluding Motoring) Convictions
## 2188                                                            32
## 2189                                                             4
## 2190                                                            11
## 2191                                                            69
## 2192                                                            24
## 2193                                                             7
##      Percentage of All Other Offences (excluding Motoring) Convictions
## 2188                                                             97.0%
## 2189                                                            100.0%
## 2190                                                             84.6%
## 2191                                                             82.1%
## 2192                                                             75.0%
## 2193                                                             87.5%
##      Number of All Other Offences (excluding Motoring) Unsuccessful
## 2188                                                              1
## 2189                                                              0
## 2190                                                              2
## 2191                                                             15
## 2192                                                              8
## 2193                                                              1
##      Percentage of All Other Offences (excluding Motoring) Unsuccessful
## 2188                                                               3.0%
## 2189                                                               0.0%
## 2190                                                              15.4%
## 2191                                                              17.9%
## 2192                                                              25.0%
## 2193                                                              12.5%
##      Number of Motoring Offences Convictions
## 2188                                     318
## 2189                                      78
## 2190                                     190
## 2191                                     280
## 2192                                     236
## 2193                                      64
##      Percentage of Motoring Offences Convictions
## 2188                                       88.8%
## 2189                                       78.8%
## 2190                                       87.6%
## 2191                                       80.5%
## 2192                                       91.8%
## 2193                                       97.0%
##      Number of Motoring Offences Unsuccessful
## 2188                                       40
## 2189                                       21
## 2190                                       27
## 2191                                       68
## 2192                                       21
## 2193                                        2
##      Percentage of Motoring Offences Unsuccessful
## 2188                                        11.2%
## 2189                                        21.2%
## 2190                                        12.4%
## 2191                                        19.5%
## 2192                                         8.2%
## 2193                                         3.0%
##      Number of Admin Finalised Unsuccessful
## 2188                                     30
## 2189                                     11
## 2190                                     12
## 2191                                     92
## 2192                                     51
## 2193                                      4
##      Percentage of L Motoring Offences Unsuccessful
## 2188                                         100.0%
## 2189                                         100.0%
## 2190                                         100.0%
## 2191                                         100.0%
## 2192                                         100.0%
## 2193                                         100.0%

Viewing Column Names

This is to view the variables under observation and to ensure that the expected variables are imported.

names(CrimeCases_data)
##  [1] "...1"                                                              
##  [2] "Number of Homicide Convictions"                                    
##  [3] "Percentage of Homicide Convictions"                                
##  [4] "Number of Homicide Unsuccessful"                                   
##  [5] "Percentage of Homicide Unsuccessful"                               
##  [6] "Number of Offences Against The Person Convictions"                 
##  [7] "Percentage of Offences Against The Person Convictions"             
##  [8] "Number of Offences Against The Person Unsuccessful"                
##  [9] "Percentage of Offences Against The Person Unsuccessful"            
## [10] "Number of Sexual Offences Convictions"                             
## [11] "Percentage of Sexual Offences Convictions"                         
## [12] "Number of Sexual Offences Unsuccessful"                            
## [13] "Percentage of Sexual Offences Unsuccessful"                        
## [14] "Number of Burglary Convictions"                                    
## [15] "Percentage of Burglary Convictions"                                
## [16] "Number of Burglary Unsuccessful"                                   
## [17] "Percentage of Burglary Unsuccessful"                               
## [18] "Number of Robbery Convictions"                                     
## [19] "Percentage of Robbery Convictions"                                 
## [20] "Number of Robbery Unsuccessful"                                    
## [21] "Percentage of Robbery Unsuccessful"                                
## [22] "Number of Theft And Handling Convictions"                          
## [23] "Percentage of Theft And Handling Convictions"                      
## [24] "Number of Theft And Handling Unsuccessful"                         
## [25] "Percentage of Theft And Handling Unsuccessful"                     
## [26] "Number of Fraud And Forgery Convictions"                           
## [27] "Percentage of Fraud And Forgery Convictions"                       
## [28] "Number of Fraud And Forgery Unsuccessful"                          
## [29] "Percentage of Fraud And Forgery Unsuccessful"                      
## [30] "Number of Criminal Damage Convictions"                             
## [31] "Percentage of Criminal Damage Convictions"                         
## [32] "Number of Criminal Damage Unsuccessful"                            
## [33] "Percentage of Criminal Damage Unsuccessful"                        
## [34] "Number of Drugs Offences Convictions"                              
## [35] "Percentage of Drugs Offences Convictions"                          
## [36] "Number of Drugs Offences Unsuccessful"                             
## [37] "Percentage of Drugs Offences Unsuccessful"                         
## [38] "Number of Public Order Offences Convictions"                       
## [39] "Percentage of Public Order Offences Convictions"                   
## [40] "Number of Public Order Offences Unsuccessful"                      
## [41] "Percentage of Public Order Offences Unsuccessful"                  
## [42] "Number of All Other Offences (excluding Motoring) Convictions"     
## [43] "Percentage of All Other Offences (excluding Motoring) Convictions" 
## [44] "Number of All Other Offences (excluding Motoring) Unsuccessful"    
## [45] "Percentage of All Other Offences (excluding Motoring) Unsuccessful"
## [46] "Number of Motoring Offences Convictions"                           
## [47] "Percentage of Motoring Offences Convictions"                       
## [48] "Number of Motoring Offences Unsuccessful"                          
## [49] "Percentage of Motoring Offences Unsuccessful"                      
## [50] "Number of Admin Finalised Unsuccessful"                            
## [51] "Percentage of L Motoring Offences Unsuccessful"

This shows every column has been named except for the first column which was not named, hence there is a need to name it. Also the default names to the other columns would be change for seamless identification of the variables during analysis.

DATA CLEANING

Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset. When combining multiple data sources, there are many opportunities for data to be duplicated or mislabeled.

In order to arrive at the reasonable level of quality information in the analysis, it is important to clean the data, hence the following tasks.

Column Renaming.

As aforementioned, for seamless identification of variables, the column names will be changed for the purpose of analysing the dataset.

CrimeCases_data = CrimeCases_data %>% 
  rename(
    "Area" = "...1",
    "No_Homicide_Conv" = "Number of Homicide Convictions",
    "Per_Homicide_Conv" = "Percentage of Homicide Convictions",
    "No_Failed_Homicide" = "Number of Homicide Unsuccessful",
    "Per_Failed_Homicide" = "Percentage of Homicide Unsuccessful",
    "No_Conv_Offence" = "Number of Offences Against The Person Convictions",
    "Per_Conv_Offence" = "Percentage of Offences Against The Person Convictions",
    "No_Failed_Conv_Offence" = "Number of Offences Against The Person Unsuccessful",
    "Per_Failed_Conv_Offence" = "Percentage of Offences Against The Person Unsuccessful",
    "No_Sex_Offence_Conv" = "Number of Sexual Offences Convictions" ,
    "Per_Sex_Offence_Conv" = "Percentage of Sexual Offences Convictions",
    "No_Failed_Sex_Offence" = "Number of Sexual Offences Unsuccessful",
    "Per_Failed_Sex_Offence" =  "Percentage of Sexual Offences Unsuccessful",
    "No_Burg_Conv" = "Number of Burglary Convictions",
    "Per_Burg_Conv" = "Percentage of Burglary Convictions",
    "No_Failed_Burg_Conv" = "Number of Burglary Unsuccessful",
    "Per_Failed_Burg_Conv" = "Percentage of Burglary Unsuccessful",
    "No_Rob_Conv" = "Number of Robbery Convictions",
    "Per_Rob_Conv" = "Percentage of Robbery Convictions",
    "No_Failed_Rob_Conv" = "Number of Robbery Unsuccessful",
    "Per_Failed_Rob_Conv" = "Percentage of Robbery Unsuccessful",
    "No_TheftAndHandling_Conv" = "Number of Theft And Handling Convictions",
    "Per_TheftAndHandling_Conv" = "Percentage of Theft And Handling Convictions",
    "No_Failed_TheftAndHandling" = "Number of Theft And Handling Unsuccessful",
    "Per_Failed_TheftAndHandling" = "Percentage of Theft And Handling Unsuccessful",
    "No_FraudAndForgery_Conv" = "Number of Fraud And Forgery Convictions",
    "Per_FraudAndForgery_Conv" = "Percentage of Fraud And Forgery Convictions",
    "No_Failed_FraudAndForgery" = "Number of Fraud And Forgery Unsuccessful",
    "Per_Failed_FraudAndForgery" = "Percentage of Fraud And Forgery Unsuccessful",
    "No_CrimeDamage_Conv" = "Number of Criminal Damage Convictions",
    "Per_CrimeDamage_Conv" = "Percentage of Criminal Damage Convictions",
    "No_Failed_CrimeDamage" = "Number of Criminal Damage Unsuccessful",
    "Per_Failed_CrimeDamage" = "Percentage of Criminal Damage Unsuccessful",
    "No_DrugOffences_Conv" = "Number of Drugs Offences Convictions",
    "Per_DrugOffences_Conv" = "Percentage of Drugs Offences Convictions",
    "No_Failed_Drug_Offence" = "Number of Drugs Offences Unsuccessful",
    "Per_Failed_Drug_Offence" = "Percentage of Drugs Offences Unsuccessful",
    "No_PublicOrderOffences_Conv" = "Number of Public Order Offences Convictions",
    "Per_PublicOrderOffences_Conv" = "Percentage of Public Order Offences Convictions",
    "No_Failed_PublicOrderOffences" = "Number of Public Order Offences Unsuccessful",
    "Per_Failed_PublicOrderOffences" = "Percentage of Public Order Offences Unsuccessful",
    "No_Others_Ex_Motoring" = "Number of All Other Offences (excluding Motoring) Convictions",
    "Per_Others_Ex_Motoring" = "Percentage of All Other Offences (excluding Motoring) Convictions",
    "No_Failed_Others_Ex_Motoring" = "Number of All Other Offences (excluding Motoring) Unsuccessful",
    "Per_Failed_Others_Ex_Motoring" = "Percentage of All Other Offences (excluding Motoring) Unsuccessful",
    "No_Motoring_Offences_Conv" = "Number of Motoring Offences Convictions",
    "Per_Motoring_Offences_Conv" = "Percentage of Motoring Offences Convictions",
    "No_Failed_Motoring_Offences" = "Number of Motoring Offences Unsuccessful",
    "Per_Failed_Motoring_Offences" = "Percentage of Motoring Offences Unsuccessful",
    "No_Failed_AdminFinalised_Conv" = "Number of Admin Finalised Unsuccessful",
    "Per_Failed_AdminFinalised_Conv" = "Percentage of L Motoring Offences Unsuccessful" 
  )
names(CrimeCases_data) #To confirm the renamed columns
##  [1] "Area"                           "No_Homicide_Conv"              
##  [3] "Per_Homicide_Conv"              "No_Failed_Homicide"            
##  [5] "Per_Failed_Homicide"            "No_Conv_Offence"               
##  [7] "Per_Conv_Offence"               "No_Failed_Conv_Offence"        
##  [9] "Per_Failed_Conv_Offence"        "No_Sex_Offence_Conv"           
## [11] "Per_Sex_Offence_Conv"           "No_Failed_Sex_Offence"         
## [13] "Per_Failed_Sex_Offence"         "No_Burg_Conv"                  
## [15] "Per_Burg_Conv"                  "No_Failed_Burg_Conv"           
## [17] "Per_Failed_Burg_Conv"           "No_Rob_Conv"                   
## [19] "Per_Rob_Conv"                   "No_Failed_Rob_Conv"            
## [21] "Per_Failed_Rob_Conv"            "No_TheftAndHandling_Conv"      
## [23] "Per_TheftAndHandling_Conv"      "No_Failed_TheftAndHandling"    
## [25] "Per_Failed_TheftAndHandling"    "No_FraudAndForgery_Conv"       
## [27] "Per_FraudAndForgery_Conv"       "No_Failed_FraudAndForgery"     
## [29] "Per_Failed_FraudAndForgery"     "No_CrimeDamage_Conv"           
## [31] "Per_CrimeDamage_Conv"           "No_Failed_CrimeDamage"         
## [33] "Per_Failed_CrimeDamage"         "No_DrugOffences_Conv"          
## [35] "Per_DrugOffences_Conv"          "No_Failed_Drug_Offence"        
## [37] "Per_Failed_Drug_Offence"        "No_PublicOrderOffences_Conv"   
## [39] "Per_PublicOrderOffences_Conv"   "No_Failed_PublicOrderOffences" 
## [41] "Per_Failed_PublicOrderOffences" "No_Others_Ex_Motoring"         
## [43] "Per_Others_Ex_Motoring"         "No_Failed_Others_Ex_Motoring"  
## [45] "Per_Failed_Others_Ex_Motoring"  "No_Motoring_Offences_Conv"     
## [47] "Per_Motoring_Offences_Conv"     "No_Failed_Motoring_Offences"   
## [49] "Per_Failed_Motoring_Offences"   "No_Failed_AdminFinalised_Conv" 
## [51] "Per_Failed_AdminFinalised_Conv"

This confirms that all the column names have been renamed as expected for seamless identification.

Data Structure View

A data structure is a storage that is used to store and organize data. It is a way of arranging data on a computer so that it can be accessed and updated efficiently.

This is to confirm that the data are in their appropriate data types for properly analysis

str(CrimeCases_data)
## 'data.frame':    2193 obs. of  51 variables:
##  $ Area                          : chr  "National" "Avon and Somerset" "Bedfordshire" "Cambridgeshire" ...
##  $ No_Homicide_Conv              : chr  "81" "1" "0" "0" ...
##  $ Per_Homicide_Conv             : chr  "85.3%" "100.0%" "-" "-" ...
##  $ No_Failed_Homicide            : chr  "14" "0" "0" "0" ...
##  $ Per_Failed_Homicide           : chr  "14.7%" "0.0%" "-" "-" ...
##  $ No_Conv_Offence               : chr  "7,805" "167" "69" "99" ...
##  $ Per_Conv_Offence              : chr  "74.1%" "78.8%" "75.0%" "81.1%" ...
##  $ No_Failed_Conv_Offence        : chr  "2,722" "45" "23" "23" ...
##  $ Per_Failed_Conv_Offence       : chr  "25.9%" "21.2%" "25.0%" "18.9%" ...
##  $ No_Sex_Offence_Conv           : chr  "698" "36" "5" "6" ...
##  $ Per_Sex_Offence_Conv          : chr  "72.2%" "81.8%" "83.3%" "66.7%" ...
##  $ No_Failed_Sex_Offence         : chr  "269" "8" "1" "3" ...
##  $ Per_Failed_Sex_Offence        : chr  "27.8%" "18.2%" "16.7%" "33.3%" ...
##  $ No_Burg_Conv                  : chr  "1,470" "37" "16" "8" ...
##  $ Per_Burg_Conv                 : chr  "86.7%" "94.9%" "94.1%" "100.0%" ...
##  $ No_Failed_Burg_Conv           : chr  "226" "2" "1" "0" ...
##  $ Per_Failed_Burg_Conv          : chr  "13.3%" "5.1%" "5.9%" "0.0%" ...
##  $ No_Rob_Conv                   : chr  "517" "9" "4" "6" ...
##  $ Per_Rob_Conv                  : chr  "81.7%" "75.0%" "100.0%" "85.7%" ...
##  $ No_Failed_Rob_Conv            : chr  "116" "3" "0" "1" ...
##  $ Per_Failed_Rob_Conv           : chr  "18.3%" "25.0%" "0.0%" "14.3%" ...
##  $ No_TheftAndHandling_Conv      : chr  "10,045" "266" "98" "107" ...
##  $ Per_TheftAndHandling_Conv     : chr  "92.3%" "92.7%" "91.6%" "91.5%" ...
##  $ No_Failed_TheftAndHandling    : chr  "840" "21" "9" "10" ...
##  $ Per_Failed_TheftAndHandling   : chr  "7.7%" "7.3%" "8.4%" "8.5%" ...
##  $ No_FraudAndForgery_Conv       : chr  "666" "11" "8" "7" ...
##  $ Per_FraudAndForgery_Conv      : chr  "86.0%" "100.0%" "80.0%" "100.0%" ...
##  $ No_Failed_FraudAndForgery     : chr  "108" "0" "2" "0" ...
##  $ Per_Failed_FraudAndForgery    : chr  "14.0%" "0.0%" "20.0%" "0.0%" ...
##  $ No_CrimeDamage_Conv           : chr  "2,259" "54" "20" "21" ...
##  $ Per_CrimeDamage_Conv          : chr  "85.2%" "90.0%" "76.9%" "95.5%" ...
##  $ No_Failed_CrimeDamage         : chr  "391" "6" "6" "1" ...
##  $ Per_Failed_CrimeDamage        : chr  "14.8%" "10.0%" "23.1%" "4.5%" ...
##  $ No_DrugOffences_Conv          : chr  "4,536" "135" "45" "40" ...
##  $ Per_DrugOffences_Conv         : chr  "94.2%" "98.5%" "95.7%" "95.2%" ...
##  $ No_Failed_Drug_Offence        : chr  "279" "2" "2" "2" ...
##  $ Per_Failed_Drug_Offence       : chr  "5.8%" "1.5%" "4.3%" "4.8%" ...
##  $ No_PublicOrderOffences_Conv   : chr  "3,549" "68" "29" "45" ...
##  $ Per_PublicOrderOffences_Conv  : chr  "84.4%" "86.1%" "82.9%" "83.3%" ...
##  $ No_Failed_PublicOrderOffences : chr  "654" "11" "6" "9" ...
##  $ Per_Failed_PublicOrderOffences: chr  "15.6%" "13.9%" "17.1%" "16.7%" ...
##  $ No_Others_Ex_Motoring         : chr  "2,640" "66" "11" "6" ...
##  $ Per_Others_Ex_Motoring        : chr  "83.7%" "80.5%" "64.7%" "75.0%" ...
##  $ No_Failed_Others_Ex_Motoring  : chr  "513" "16" "6" "2" ...
##  $ Per_Failed_Others_Ex_Motoring : chr  "16.3%" "19.5%" "35.3%" "25.0%" ...
##  $ No_Motoring_Offences_Conv     : chr  "8,283" "188" "40" "79" ...
##  $ Per_Motoring_Offences_Conv    : chr  "86.3%" "83.6%" "88.9%" "92.9%" ...
##  $ No_Failed_Motoring_Offences   : chr  "1,314" "37" "5" "6" ...
##  $ Per_Failed_Motoring_Offences  : chr  "13.7%" "16.4%" "11.1%" "7.1%" ...
##  $ No_Failed_AdminFinalised_Conv : chr  "718" "24" "16" "4" ...
##  $ Per_Failed_AdminFinalised_Conv: chr  "100.0%" "100.0%" "100.0%" "100.0%" ...

This reveals that the data are not in their appropriate data types as they are all in Character. Column 2 to Column 51 are expected to be integers and not character, hence, there is need to convert them into integer for the purpose of this analysis.

Duplicate Check

This was done on the Area column (variable) using the unique() function. This is to correct any inconsistency in the Area variable.

unique(CrimeCases_data$Area)
##  [1] "National"              "Avon and Somerset"     "Bedfordshire"         
##  [4] "Cambridgeshire"        "Cheshire"              "Cleveland"            
##  [7] "Cumbria"               "Derbyshire"            "Devon and Cornwall"   
## [10] "Dorset"                "Durham"                "Dyfed Powys"          
## [13] "Essex"                 "Gloucestershire"       "GreaterManchester"    
## [16] "Gwent"                 "Hampshire"             "Hertfordshire"        
## [19] "Humberside"            "Kent"                  "Lancashire"           
## [22] "Leicestershire"        "Lincolnshire"          "Merseyside"           
## [25] "Metropolitan and City" "Norfolk"               "Northamptonshire"     
## [28] "Northumbria"           "North Wales"           "North Yorkshire"      
## [31] "Nottinghamshire"       "South Wales"           "South Yorkshire"      
## [34] "Staffordshire"         "Suffolk"               "Surrey"               
## [37] "Sussex"                "Thames Valley"         "Warwickshire"         
## [40] "West Mercia"           "West Midlands"         "West Yorkshire"       
## [43] "Wiltshire"

This confirms that any duplicate found in the data frame have been removed.

Converting all dash (-) values in the dataset to Zero (0) value

For the purpose of analysis, the dash values anywhere in the dataframe are being replaced with Zero.

CrimeCases_data[CrimeCases_data == '-'] = 0.00
print(head(CrimeCases_data))
##                Area No_Homicide_Conv Per_Homicide_Conv No_Failed_Homicide
## 1          National               81             85.3%                 14
## 2 Avon and Somerset                1            100.0%                  0
## 3      Bedfordshire                0                 0                  0
## 4    Cambridgeshire                0                 0                  0
## 5          Cheshire                1             50.0%                  1
## 6         Cleveland                0                 0                  0
##   Per_Failed_Homicide No_Conv_Offence Per_Conv_Offence No_Failed_Conv_Offence
## 1               14.7%           7,805            74.1%                  2,722
## 2                0.0%             167            78.8%                     45
## 3                   0              69            75.0%                     23
## 4                   0              99            81.1%                     23
## 5               50.0%             140            74.9%                     47
## 6                   0              85            67.5%                     41
##   Per_Failed_Conv_Offence No_Sex_Offence_Conv Per_Sex_Offence_Conv
## 1                   25.9%                 698                72.2%
## 2                   21.2%                  36                81.8%
## 3                   25.0%                   5                83.3%
## 4                   18.9%                   6                66.7%
## 5                   25.1%                  17                85.0%
## 6                   32.5%                  11                73.3%
##   No_Failed_Sex_Offence Per_Failed_Sex_Offence No_Burg_Conv Per_Burg_Conv
## 1                   269                  27.8%        1,470         86.7%
## 2                     8                  18.2%           37         94.9%
## 3                     1                  16.7%           16         94.1%
## 4                     3                  33.3%            8        100.0%
## 5                     3                  15.0%           26         89.7%
## 6                     4                  26.7%           25         71.4%
##   No_Failed_Burg_Conv Per_Failed_Burg_Conv No_Rob_Conv Per_Rob_Conv
## 1                 226                13.3%         517        81.7%
## 2                   2                 5.1%           9        75.0%
## 3                   1                 5.9%           4       100.0%
## 4                   0                 0.0%           6        85.7%
## 5                   3                10.3%           1       100.0%
## 6                  10                28.6%           5        71.4%
##   No_Failed_Rob_Conv Per_Failed_Rob_Conv No_TheftAndHandling_Conv
## 1                116               18.3%                   10,045
## 2                  3               25.0%                      266
## 3                  0                0.0%                       98
## 4                  1               14.3%                      107
## 5                  0                0.0%                      206
## 6                  2               28.6%                      254
##   Per_TheftAndHandling_Conv No_Failed_TheftAndHandling
## 1                     92.3%                        840
## 2                     92.7%                         21
## 3                     91.6%                          9
## 4                     91.5%                         10
## 5                     98.1%                          4
## 6                     88.8%                         32
##   Per_Failed_TheftAndHandling No_FraudAndForgery_Conv Per_FraudAndForgery_Conv
## 1                        7.7%                     666                    86.0%
## 2                        7.3%                      11                   100.0%
## 3                        8.4%                       8                    80.0%
## 4                        8.5%                       7                   100.0%
## 5                        1.9%                      16                    88.9%
## 6                       11.2%                       6                    75.0%
##   No_Failed_FraudAndForgery Per_Failed_FraudAndForgery No_CrimeDamage_Conv
## 1                       108                      14.0%               2,259
## 2                         0                       0.0%                  54
## 3                         2                      20.0%                  20
## 4                         0                       0.0%                  21
## 5                         2                      11.1%                  35
## 6                         2                      25.0%                  32
##   Per_CrimeDamage_Conv No_Failed_CrimeDamage Per_Failed_CrimeDamage
## 1                85.2%                   391                  14.8%
## 2                90.0%                     6                  10.0%
## 3                76.9%                     6                  23.1%
## 4                95.5%                     1                   4.5%
## 5                79.5%                     9                  20.5%
## 6                80.0%                     8                  20.0%
##   No_DrugOffences_Conv Per_DrugOffences_Conv No_Failed_Drug_Offence
## 1                4,536                 94.2%                    279
## 2                  135                 98.5%                      2
## 3                   45                 95.7%                      2
## 4                   40                 95.2%                      2
## 5                   75                 88.2%                     10
## 6                   63                 90.0%                      7
##   Per_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 1                    5.8%                       3,549
## 2                    1.5%                          68
## 3                    4.3%                          29
## 4                    4.8%                          45
## 5                   11.8%                          86
## 6                   10.0%                          74
##   Per_PublicOrderOffences_Conv No_Failed_PublicOrderOffences
## 1                        84.4%                           654
## 2                        86.1%                            11
## 3                        82.9%                             6
## 4                        83.3%                             9
## 5                        92.5%                             7
## 6                        73.3%                            27
##   Per_Failed_PublicOrderOffences No_Others_Ex_Motoring Per_Others_Ex_Motoring
## 1                          15.6%                 2,640                  83.7%
## 2                          13.9%                    66                  80.5%
## 3                          17.1%                    11                  64.7%
## 4                          16.7%                     6                  75.0%
## 5                           7.5%                    50                  89.3%
## 6                          26.7%                    28                  84.8%
##   No_Failed_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
## 1                          513                         16.3%
## 2                           16                         19.5%
## 3                            6                         35.3%
## 4                            2                         25.0%
## 5                            6                         10.7%
## 6                            5                         15.2%
##   No_Motoring_Offences_Conv Per_Motoring_Offences_Conv
## 1                     8,283                      86.3%
## 2                       188                      83.6%
## 3                        40                      88.9%
## 4                        79                      92.9%
## 5                       209                      94.6%
## 6                       124                      87.9%
##   No_Failed_Motoring_Offences Per_Failed_Motoring_Offences
## 1                       1,314                        13.7%
## 2                          37                        16.4%
## 3                           5                        11.1%
## 4                           6                         7.1%
## 5                          12                         5.4%
## 6                          17                        12.1%
##   No_Failed_AdminFinalised_Conv Per_Failed_AdminFinalised_Conv
## 1                           718                         100.0%
## 2                            24                         100.0%
## 3                            16                         100.0%
## 4                             4                         100.0%
## 5                             1                         100.0%
## 6                            10                         100.0%

This confirms that the replacement of the dash value with Zero has been effected in the dataframe if found.

Removing Percentage (%) signs

This is important for the purpose of data analysis

NoPercent <- function(val) {
  
  if (is.character(val)) {
    return (gsub("%", "", val))
  }
  
  return (val)
}

CrimeCases_data = as.data.frame(lapply(CrimeCases_data, NoPercent))
print(head(CrimeCases_data))
##                Area No_Homicide_Conv Per_Homicide_Conv No_Failed_Homicide
## 1          National               81              85.3                 14
## 2 Avon and Somerset                1             100.0                  0
## 3      Bedfordshire                0                 0                  0
## 4    Cambridgeshire                0                 0                  0
## 5          Cheshire                1              50.0                  1
## 6         Cleveland                0                 0                  0
##   Per_Failed_Homicide No_Conv_Offence Per_Conv_Offence No_Failed_Conv_Offence
## 1                14.7           7,805             74.1                  2,722
## 2                 0.0             167             78.8                     45
## 3                   0              69             75.0                     23
## 4                   0              99             81.1                     23
## 5                50.0             140             74.9                     47
## 6                   0              85             67.5                     41
##   Per_Failed_Conv_Offence No_Sex_Offence_Conv Per_Sex_Offence_Conv
## 1                    25.9                 698                 72.2
## 2                    21.2                  36                 81.8
## 3                    25.0                   5                 83.3
## 4                    18.9                   6                 66.7
## 5                    25.1                  17                 85.0
## 6                    32.5                  11                 73.3
##   No_Failed_Sex_Offence Per_Failed_Sex_Offence No_Burg_Conv Per_Burg_Conv
## 1                   269                   27.8        1,470          86.7
## 2                     8                   18.2           37          94.9
## 3                     1                   16.7           16          94.1
## 4                     3                   33.3            8         100.0
## 5                     3                   15.0           26          89.7
## 6                     4                   26.7           25          71.4
##   No_Failed_Burg_Conv Per_Failed_Burg_Conv No_Rob_Conv Per_Rob_Conv
## 1                 226                 13.3         517         81.7
## 2                   2                  5.1           9         75.0
## 3                   1                  5.9           4        100.0
## 4                   0                  0.0           6         85.7
## 5                   3                 10.3           1        100.0
## 6                  10                 28.6           5         71.4
##   No_Failed_Rob_Conv Per_Failed_Rob_Conv No_TheftAndHandling_Conv
## 1                116                18.3                   10,045
## 2                  3                25.0                      266
## 3                  0                 0.0                       98
## 4                  1                14.3                      107
## 5                  0                 0.0                      206
## 6                  2                28.6                      254
##   Per_TheftAndHandling_Conv No_Failed_TheftAndHandling
## 1                      92.3                        840
## 2                      92.7                         21
## 3                      91.6                          9
## 4                      91.5                         10
## 5                      98.1                          4
## 6                      88.8                         32
##   Per_Failed_TheftAndHandling No_FraudAndForgery_Conv Per_FraudAndForgery_Conv
## 1                         7.7                     666                     86.0
## 2                         7.3                      11                    100.0
## 3                         8.4                       8                     80.0
## 4                         8.5                       7                    100.0
## 5                         1.9                      16                     88.9
## 6                        11.2                       6                     75.0
##   No_Failed_FraudAndForgery Per_Failed_FraudAndForgery No_CrimeDamage_Conv
## 1                       108                       14.0               2,259
## 2                         0                        0.0                  54
## 3                         2                       20.0                  20
## 4                         0                        0.0                  21
## 5                         2                       11.1                  35
## 6                         2                       25.0                  32
##   Per_CrimeDamage_Conv No_Failed_CrimeDamage Per_Failed_CrimeDamage
## 1                 85.2                   391                   14.8
## 2                 90.0                     6                   10.0
## 3                 76.9                     6                   23.1
## 4                 95.5                     1                    4.5
## 5                 79.5                     9                   20.5
## 6                 80.0                     8                   20.0
##   No_DrugOffences_Conv Per_DrugOffences_Conv No_Failed_Drug_Offence
## 1                4,536                  94.2                    279
## 2                  135                  98.5                      2
## 3                   45                  95.7                      2
## 4                   40                  95.2                      2
## 5                   75                  88.2                     10
## 6                   63                  90.0                      7
##   Per_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 1                     5.8                       3,549
## 2                     1.5                          68
## 3                     4.3                          29
## 4                     4.8                          45
## 5                    11.8                          86
## 6                    10.0                          74
##   Per_PublicOrderOffences_Conv No_Failed_PublicOrderOffences
## 1                         84.4                           654
## 2                         86.1                            11
## 3                         82.9                             6
## 4                         83.3                             9
## 5                         92.5                             7
## 6                         73.3                            27
##   Per_Failed_PublicOrderOffences No_Others_Ex_Motoring Per_Others_Ex_Motoring
## 1                           15.6                 2,640                   83.7
## 2                           13.9                    66                   80.5
## 3                           17.1                    11                   64.7
## 4                           16.7                     6                   75.0
## 5                            7.5                    50                   89.3
## 6                           26.7                    28                   84.8
##   No_Failed_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
## 1                          513                          16.3
## 2                           16                          19.5
## 3                            6                          35.3
## 4                            2                          25.0
## 5                            6                          10.7
## 6                            5                          15.2
##   No_Motoring_Offences_Conv Per_Motoring_Offences_Conv
## 1                     8,283                       86.3
## 2                       188                       83.6
## 3                        40                       88.9
## 4                        79                       92.9
## 5                       209                       94.6
## 6                       124                       87.9
##   No_Failed_Motoring_Offences Per_Failed_Motoring_Offences
## 1                       1,314                         13.7
## 2                          37                         16.4
## 3                           5                         11.1
## 4                           6                          7.1
## 5                          12                          5.4
## 6                          17                         12.1
##   No_Failed_AdminFinalised_Conv Per_Failed_AdminFinalised_Conv
## 1                           718                          100.0
## 2                            24                          100.0
## 3                            16                          100.0
## 4                             4                          100.0
## 5                             1                          100.0
## 6                            10                          100.0

This confirms that the percentages (%) in the data frame have been removed.

Removing Comma signs

This is important for the purpose of data analysis as csv files do not need to have commas for the numeric values.

NoComma = function(val) {
  
  if (is.character(val)) {
    return (gsub(",", "", val))
  }
  
  return (val)
}

CrimeCases_data = as.data.frame(lapply(CrimeCases_data, NoComma))
print(head(CrimeCases_data))
##                Area No_Homicide_Conv Per_Homicide_Conv No_Failed_Homicide
## 1          National               81              85.3                 14
## 2 Avon and Somerset                1             100.0                  0
## 3      Bedfordshire                0                 0                  0
## 4    Cambridgeshire                0                 0                  0
## 5          Cheshire                1              50.0                  1
## 6         Cleveland                0                 0                  0
##   Per_Failed_Homicide No_Conv_Offence Per_Conv_Offence No_Failed_Conv_Offence
## 1                14.7            7805             74.1                   2722
## 2                 0.0             167             78.8                     45
## 3                   0              69             75.0                     23
## 4                   0              99             81.1                     23
## 5                50.0             140             74.9                     47
## 6                   0              85             67.5                     41
##   Per_Failed_Conv_Offence No_Sex_Offence_Conv Per_Sex_Offence_Conv
## 1                    25.9                 698                 72.2
## 2                    21.2                  36                 81.8
## 3                    25.0                   5                 83.3
## 4                    18.9                   6                 66.7
## 5                    25.1                  17                 85.0
## 6                    32.5                  11                 73.3
##   No_Failed_Sex_Offence Per_Failed_Sex_Offence No_Burg_Conv Per_Burg_Conv
## 1                   269                   27.8         1470          86.7
## 2                     8                   18.2           37          94.9
## 3                     1                   16.7           16          94.1
## 4                     3                   33.3            8         100.0
## 5                     3                   15.0           26          89.7
## 6                     4                   26.7           25          71.4
##   No_Failed_Burg_Conv Per_Failed_Burg_Conv No_Rob_Conv Per_Rob_Conv
## 1                 226                 13.3         517         81.7
## 2                   2                  5.1           9         75.0
## 3                   1                  5.9           4        100.0
## 4                   0                  0.0           6         85.7
## 5                   3                 10.3           1        100.0
## 6                  10                 28.6           5         71.4
##   No_Failed_Rob_Conv Per_Failed_Rob_Conv No_TheftAndHandling_Conv
## 1                116                18.3                    10045
## 2                  3                25.0                      266
## 3                  0                 0.0                       98
## 4                  1                14.3                      107
## 5                  0                 0.0                      206
## 6                  2                28.6                      254
##   Per_TheftAndHandling_Conv No_Failed_TheftAndHandling
## 1                      92.3                        840
## 2                      92.7                         21
## 3                      91.6                          9
## 4                      91.5                         10
## 5                      98.1                          4
## 6                      88.8                         32
##   Per_Failed_TheftAndHandling No_FraudAndForgery_Conv Per_FraudAndForgery_Conv
## 1                         7.7                     666                     86.0
## 2                         7.3                      11                    100.0
## 3                         8.4                       8                     80.0
## 4                         8.5                       7                    100.0
## 5                         1.9                      16                     88.9
## 6                        11.2                       6                     75.0
##   No_Failed_FraudAndForgery Per_Failed_FraudAndForgery No_CrimeDamage_Conv
## 1                       108                       14.0                2259
## 2                         0                        0.0                  54
## 3                         2                       20.0                  20
## 4                         0                        0.0                  21
## 5                         2                       11.1                  35
## 6                         2                       25.0                  32
##   Per_CrimeDamage_Conv No_Failed_CrimeDamage Per_Failed_CrimeDamage
## 1                 85.2                   391                   14.8
## 2                 90.0                     6                   10.0
## 3                 76.9                     6                   23.1
## 4                 95.5                     1                    4.5
## 5                 79.5                     9                   20.5
## 6                 80.0                     8                   20.0
##   No_DrugOffences_Conv Per_DrugOffences_Conv No_Failed_Drug_Offence
## 1                 4536                  94.2                    279
## 2                  135                  98.5                      2
## 3                   45                  95.7                      2
## 4                   40                  95.2                      2
## 5                   75                  88.2                     10
## 6                   63                  90.0                      7
##   Per_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 1                     5.8                        3549
## 2                     1.5                          68
## 3                     4.3                          29
## 4                     4.8                          45
## 5                    11.8                          86
## 6                    10.0                          74
##   Per_PublicOrderOffences_Conv No_Failed_PublicOrderOffences
## 1                         84.4                           654
## 2                         86.1                            11
## 3                         82.9                             6
## 4                         83.3                             9
## 5                         92.5                             7
## 6                         73.3                            27
##   Per_Failed_PublicOrderOffences No_Others_Ex_Motoring Per_Others_Ex_Motoring
## 1                           15.6                  2640                   83.7
## 2                           13.9                    66                   80.5
## 3                           17.1                    11                   64.7
## 4                           16.7                     6                   75.0
## 5                            7.5                    50                   89.3
## 6                           26.7                    28                   84.8
##   No_Failed_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
## 1                          513                          16.3
## 2                           16                          19.5
## 3                            6                          35.3
## 4                            2                          25.0
## 5                            6                          10.7
## 6                            5                          15.2
##   No_Motoring_Offences_Conv Per_Motoring_Offences_Conv
## 1                      8283                       86.3
## 2                       188                       83.6
## 3                        40                       88.9
## 4                        79                       92.9
## 5                       209                       94.6
## 6                       124                       87.9
##   No_Failed_Motoring_Offences Per_Failed_Motoring_Offences
## 1                        1314                         13.7
## 2                          37                         16.4
## 3                           5                         11.1
## 4                           6                          7.1
## 5                          12                          5.4
## 6                          17                         12.1
##   No_Failed_AdminFinalised_Conv Per_Failed_AdminFinalised_Conv
## 1                           718                          100.0
## 2                            24                          100.0
## 3                            16                          100.0
## 4                             4                          100.0
## 5                             1                          100.0
## 6                            10                          100.0

Character Data Type to Integer Conversion

This is to convert all relevant columns [2:51] (variables) from Character data types to Integer for relevant analysis.

CrimeCases_data[2:51] = lapply(CrimeCases_data[2:51], FUN = function(y){as.numeric(y)})
str(CrimeCases_data)
## 'data.frame':    2193 obs. of  51 variables:
##  $ Area                          : chr  "National" "Avon and Somerset" "Bedfordshire" "Cambridgeshire" ...
##  $ No_Homicide_Conv              : num  81 1 0 0 1 0 0 0 1 0 ...
##  $ Per_Homicide_Conv             : num  85.3 100 0 0 50 0 0 0 100 0 ...
##  $ No_Failed_Homicide            : num  14 0 0 0 1 0 0 0 0 0 ...
##  $ Per_Failed_Homicide           : num  14.7 0 0 0 50 0 0 0 0 0 ...
##  $ No_Conv_Offence               : num  7805 167 69 99 140 ...
##  $ Per_Conv_Offence              : num  74.1 78.8 75 81.1 74.9 67.5 80.2 72.6 75.8 82 ...
##  $ No_Failed_Conv_Offence        : num  2722 45 23 23 47 ...
##  $ Per_Failed_Conv_Offence       : num  25.9 21.2 25 18.9 25.1 32.5 19.8 27.4 24.2 18 ...
##  $ No_Sex_Offence_Conv           : num  698 36 5 6 17 11 8 8 11 1 ...
##  $ Per_Sex_Offence_Conv          : num  72.2 81.8 83.3 66.7 85 73.3 88.9 57.1 73.3 100 ...
##  $ No_Failed_Sex_Offence         : num  269 8 1 3 3 4 1 6 4 0 ...
##  $ Per_Failed_Sex_Offence        : num  27.8 18.2 16.7 33.3 15 26.7 11.1 42.9 26.7 0 ...
##  $ No_Burg_Conv                  : num  1470 37 16 8 26 25 12 31 16 18 ...
##  $ Per_Burg_Conv                 : num  86.7 94.9 94.1 100 89.7 71.4 92.3 91.2 94.1 94.7 ...
##  $ No_Failed_Burg_Conv           : num  226 2 1 0 3 10 1 3 1 1 ...
##  $ Per_Failed_Burg_Conv          : num  13.3 5.1 5.9 0 10.3 28.6 7.7 8.8 5.9 5.3 ...
##  $ No_Rob_Conv                   : num  517 9 4 6 1 5 1 8 6 3 ...
##  $ Per_Rob_Conv                  : num  81.7 75 100 85.7 100 71.4 100 72.7 100 100 ...
##  $ No_Failed_Rob_Conv            : num  116 3 0 1 0 2 0 3 0 0 ...
##  $ Per_Failed_Rob_Conv           : num  18.3 25 0 14.3 0 28.6 0 27.3 0 0 ...
##  $ No_TheftAndHandling_Conv      : num  10045 266 98 107 206 ...
##  $ Per_TheftAndHandling_Conv     : num  92.3 92.7 91.6 91.5 98.1 88.8 94.7 93.1 93.8 91.8 ...
##  $ No_Failed_TheftAndHandling    : num  840 21 9 10 4 32 6 15 10 11 ...
##  $ Per_Failed_TheftAndHandling   : num  7.7 7.3 8.4 8.5 1.9 11.2 5.3 6.9 6.2 8.2 ...
##  $ No_FraudAndForgery_Conv       : num  666 11 8 7 16 6 5 11 8 7 ...
##  $ Per_FraudAndForgery_Conv      : num  86 100 80 100 88.9 75 100 55 100 77.8 ...
##  $ No_Failed_FraudAndForgery     : num  108 0 2 0 2 2 0 9 0 2 ...
##  $ Per_Failed_FraudAndForgery    : num  14 0 20 0 11.1 25 0 45 0 22.2 ...
##  $ No_CrimeDamage_Conv           : num  2259 54 20 21 35 ...
##  $ Per_CrimeDamage_Conv          : num  85.2 90 76.9 95.5 79.5 80 94.9 85.1 90.3 85.7 ...
##  $ No_Failed_CrimeDamage         : num  391 6 6 1 9 8 2 7 6 4 ...
##  $ Per_Failed_CrimeDamage        : num  14.8 10 23.1 4.5 20.5 20 5.1 14.9 9.7 14.3 ...
##  $ No_DrugOffences_Conv          : num  4536 135 45 40 75 ...
##  $ Per_DrugOffences_Conv         : num  94.2 98.5 95.7 95.2 88.2 90 95.5 89.3 92.1 93.5 ...
##  $ No_Failed_Drug_Offence        : num  279 2 2 2 10 7 2 9 6 2 ...
##  $ Per_Failed_Drug_Offence       : num  5.8 1.5 4.3 4.8 11.8 10 4.5 10.7 7.9 6.5 ...
##  $ No_PublicOrderOffences_Conv   : num  3549 68 29 45 86 ...
##  $ Per_PublicOrderOffences_Conv  : num  84.4 86.1 82.9 83.3 92.5 73.3 95.2 92.6 76.5 93.8 ...
##  $ No_Failed_PublicOrderOffences : num  654 11 6 9 7 27 2 4 20 3 ...
##  $ Per_Failed_PublicOrderOffences: num  15.6 13.9 17.1 16.7 7.5 26.7 4.8 7.4 23.5 6.3 ...
##  $ No_Others_Ex_Motoring         : num  2640 66 11 6 50 28 64 46 64 25 ...
##  $ Per_Others_Ex_Motoring        : num  83.7 80.5 64.7 75 89.3 84.8 98.5 75.4 82.1 96.2 ...
##  $ No_Failed_Others_Ex_Motoring  : num  513 16 6 2 6 5 1 15 14 1 ...
##  $ Per_Failed_Others_Ex_Motoring : num  16.3 19.5 35.3 25 10.7 15.2 1.5 24.6 17.9 3.8 ...
##  $ No_Motoring_Offences_Conv     : num  8283 188 40 79 209 ...
##  $ Per_Motoring_Offences_Conv    : num  86.3 83.6 88.9 92.9 94.6 87.9 90.5 95.2 91.7 91 ...
##  $ No_Failed_Motoring_Offences   : num  1314 37 5 6 12 ...
##  $ Per_Failed_Motoring_Offences  : num  13.7 16.4 11.1 7.1 5.4 12.1 9.5 4.8 8.3 9 ...
##  $ No_Failed_AdminFinalised_Conv : num  718 24 16 4 1 10 12 16 15 5 ...
##  $ Per_Failed_AdminFinalised_Conv: num  100 100 100 100 100 100 100 100 100 100 ...

This confirms that column 2 to column 51 are now Integers and no longer Characters

##Missing Value Check A missing value is one whose value is unknown. Missing values are represented in R by the NA symbol

Missing Value could be detrimental to the analysis if not properly treated, hence it is important to check for missing value.

anyNA(CrimeCases_data)
## [1] FALSE

This reveals that there are no missing values in the dataframe.

Completeness Check

This is to confirm that each of the columns has no missing data.

sapply(CrimeCases_data, function(x){sum(is.na(x))} )
##                           Area               No_Homicide_Conv 
##                              0                              0 
##              Per_Homicide_Conv             No_Failed_Homicide 
##                              0                              0 
##            Per_Failed_Homicide                No_Conv_Offence 
##                              0                              0 
##               Per_Conv_Offence         No_Failed_Conv_Offence 
##                              0                              0 
##        Per_Failed_Conv_Offence            No_Sex_Offence_Conv 
##                              0                              0 
##           Per_Sex_Offence_Conv          No_Failed_Sex_Offence 
##                              0                              0 
##         Per_Failed_Sex_Offence                   No_Burg_Conv 
##                              0                              0 
##                  Per_Burg_Conv            No_Failed_Burg_Conv 
##                              0                              0 
##           Per_Failed_Burg_Conv                    No_Rob_Conv 
##                              0                              0 
##                   Per_Rob_Conv             No_Failed_Rob_Conv 
##                              0                              0 
##            Per_Failed_Rob_Conv       No_TheftAndHandling_Conv 
##                              0                              0 
##      Per_TheftAndHandling_Conv     No_Failed_TheftAndHandling 
##                              0                              0 
##    Per_Failed_TheftAndHandling        No_FraudAndForgery_Conv 
##                              0                              0 
##       Per_FraudAndForgery_Conv      No_Failed_FraudAndForgery 
##                              0                              0 
##     Per_Failed_FraudAndForgery            No_CrimeDamage_Conv 
##                              0                              0 
##           Per_CrimeDamage_Conv          No_Failed_CrimeDamage 
##                              0                              0 
##         Per_Failed_CrimeDamage           No_DrugOffences_Conv 
##                              0                              0 
##          Per_DrugOffences_Conv         No_Failed_Drug_Offence 
##                              0                              0 
##        Per_Failed_Drug_Offence    No_PublicOrderOffences_Conv 
##                              0                              0 
##   Per_PublicOrderOffences_Conv  No_Failed_PublicOrderOffences 
##                              0                              0 
## Per_Failed_PublicOrderOffences          No_Others_Ex_Motoring 
##                              0                              0 
##         Per_Others_Ex_Motoring   No_Failed_Others_Ex_Motoring 
##                              0                              0 
##  Per_Failed_Others_Ex_Motoring      No_Motoring_Offences_Conv 
##                              0                              0 
##     Per_Motoring_Offences_Conv    No_Failed_Motoring_Offences 
##                              0                              0 
##   Per_Failed_Motoring_Offences  No_Failed_AdminFinalised_Conv 
##                              0                              0 
## Per_Failed_AdminFinalised_Conv 
##                              0

This confirms that there is no missing data in the data frame.

Data Summary/Overview

This is an overview of the data set showing some of the descriptive statistics at a glance prior to further analysis of the data.

summary(CrimeCases_data)
##      Area           No_Homicide_Conv  Per_Homicide_Conv No_Failed_Homicide
##  Length:2193        Min.   :  0.000   Min.   :  0.00    Min.   : 0.0000   
##  Class :character   1st Qu.:  0.000   1st Qu.:  0.00    1st Qu.: 0.0000   
##  Mode  :character   Median :  1.000   Median : 75.00    Median : 0.0000   
##                     Mean   :  3.798   Mean   : 56.85    Mean   : 0.9138   
##                     3rd Qu.:  3.000   3rd Qu.:100.00    3rd Qu.: 1.0000   
##                     Max.   :131.000   Max.   :100.00    Max.   :35.0000   
##  Per_Failed_Homicide No_Conv_Offence   Per_Conv_Offence No_Failed_Conv_Offence
##  Min.   :  0.00      Min.   :   29.0   Min.   :55.1     Min.   :   5.0        
##  1st Qu.:  0.00      1st Qu.:  115.0   1st Qu.:75.6     1st Qu.:  27.0        
##  Median :  0.00      Median :  179.0   Median :79.2     Median :  46.0        
##  Mean   : 10.82      Mean   :  454.9   Mean   :79.0     Mean   : 135.4        
##  3rd Qu.: 10.00      3rd Qu.:  272.0   3rd Qu.:82.5     3rd Qu.:  77.0        
##  Max.   :100.00      Max.   :11741.0   Max.   :94.2     Max.   :3568.0        
##  Per_Failed_Conv_Offence No_Sex_Offence_Conv Per_Sex_Offence_Conv
##  Min.   : 5.8            Min.   :   0.00     Min.   :  0.00      
##  1st Qu.:17.5            1st Qu.:   8.00     1st Qu.: 68.40      
##  Median :20.8            Median :  15.00     Median : 76.00      
##  Mean   :21.0            Mean   :  43.78     Mean   : 77.13      
##  3rd Qu.:24.4            3rd Qu.:  29.00     3rd Qu.: 85.70      
##  Max.   :44.9            Max.   :1179.00     Max.   :100.00      
##  No_Failed_Sex_Offence Per_Failed_Sex_Offence  No_Burg_Conv     Per_Burg_Conv  
##  Min.   :  0.00        Min.   :  0.00         Min.   :   1.00   Min.   : 50.0  
##  1st Qu.:  1.00        1st Qu.: 14.30         1st Qu.:  14.00   1st Qu.: 81.8  
##  Median :  4.00        Median : 24.00         Median :  23.00   Median : 87.5  
##  Mean   : 16.19        Mean   : 22.83         Mean   :  60.09   Mean   : 86.8  
##  3rd Qu.: 11.00        3rd Qu.: 31.60         3rd Qu.:  38.00   3rd Qu.: 92.9  
##  Max.   :489.00        Max.   :100.00         Max.   :1715.00   Max.   :100.0  
##  No_Failed_Burg_Conv Per_Failed_Burg_Conv  No_Rob_Conv      Per_Rob_Conv   
##  Min.   :  0.00      Min.   : 0.0         Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:  1.00      1st Qu.: 7.1         1st Qu.:  2.00   1st Qu.: 66.70  
##  Median :  3.00      Median :12.5         Median :  5.00   Median : 83.30  
##  Mean   : 10.14      Mean   :13.2         Mean   : 19.33   Mean   : 76.28  
##  3rd Qu.:  6.00      3rd Qu.:18.2         3rd Qu.: 10.00   3rd Qu.:100.00  
##  Max.   :317.00      Max.   :50.0         Max.   :650.00   Max.   :100.00  
##  No_Failed_Rob_Conv Per_Failed_Rob_Conv No_TheftAndHandling_Conv
##  Min.   :  0.00     Min.   :  0.00      Min.   :   13.0         
##  1st Qu.:  0.00     1st Qu.:  0.00      1st Qu.:   95.0         
##  Median :  1.00     Median : 14.30      Median :  147.0         
##  Mean   :  5.16     Mean   : 18.52      Mean   :  373.1         
##  3rd Qu.:  3.00     3rd Qu.: 28.60      3rd Qu.:  237.0         
##  Max.   :188.00     Max.   :100.00      Max.   :11057.0         
##  Per_TheftAndHandling_Conv No_Failed_TheftAndHandling
##  Min.   : 72.20            Min.   :   0.00           
##  1st Qu.: 90.80            1st Qu.:   6.00           
##  Median : 92.90            Median :  11.00           
##  Mean   : 92.54            Mean   :  33.43           
##  3rd Qu.: 94.70            3rd Qu.:  19.00           
##  Max.   :100.00            Max.   :1025.00           
##  Per_Failed_TheftAndHandling No_FraudAndForgery_Conv Per_FraudAndForgery_Conv
##  Min.   : 0.000              Min.   :   0.00         Min.   :  0.00          
##  1st Qu.: 5.300              1st Qu.:   8.00         1st Qu.: 81.50          
##  Median : 7.100              Median :  13.00         Median : 87.50          
##  Mean   : 7.458              Mean   :  38.57         Mean   : 87.19          
##  3rd Qu.: 9.200              3rd Qu.:  21.00         3rd Qu.: 95.70          
##  Max.   :27.800              Max.   :1075.00         Max.   :100.00          
##  No_Failed_FraudAndForgery Per_Failed_FraudAndForgery No_CrimeDamage_Conv
##  Min.   :  0.000           Min.   :  0.00             Min.   :   3.00    
##  1st Qu.:  1.000           1st Qu.:  4.20             1st Qu.:  25.00    
##  Median :  2.000           Median : 12.50             Median :  40.00    
##  Mean   :  6.232           Mean   : 12.77             Mean   :  95.82    
##  3rd Qu.:  4.000           3rd Qu.: 18.50             3rd Qu.:  59.00    
##  Max.   :180.000           Max.   :100.00             Max.   :2693.00    
##  Per_CrimeDamage_Conv No_Failed_CrimeDamage Per_Failed_CrimeDamage
##  Min.   : 44.40       Min.   :  0.00        Min.   : 0.00         
##  1st Qu.: 82.10       1st Qu.:  3.00        1st Qu.: 9.50         
##  Median : 86.40       Median :  6.00        Median :13.60         
##  Mean   : 86.04       Mean   : 16.43        Mean   :13.96         
##  3rd Qu.: 90.50       3rd Qu.: 10.00        3rd Qu.:17.90         
##  Max.   :100.00       Max.   :491.00        Max.   :55.60         
##  No_DrugOffences_Conv Per_DrugOffences_Conv No_Failed_Drug_Offence
##  Min.   :   4.0       Min.   : 75.00        Min.   :  0.00        
##  1st Qu.:  38.0       1st Qu.: 92.20        1st Qu.:  2.00        
##  Median :  63.0       Median : 94.50        Median :  4.00        
##  Mean   : 186.6       Mean   : 94.35        Mean   : 12.57        
##  3rd Qu.: 100.0       3rd Qu.: 96.90        3rd Qu.:  7.00        
##  Max.   :4988.0       Max.   :100.00        Max.   :346.00        
##  Per_Failed_Drug_Offence No_PublicOrderOffences_Conv
##  Min.   : 0.000          Min.   :   2.0             
##  1st Qu.: 3.100          1st Qu.:  39.0             
##  Median : 5.500          Median :  63.0             
##  Mean   : 5.653          Mean   : 162.4             
##  3rd Qu.: 7.800          3rd Qu.: 100.0             
##  Max.   :25.000          Max.   :4752.0             
##  Per_PublicOrderOffences_Conv No_Failed_PublicOrderOffences
##  Min.   : 40.00               Min.   :  0.00               
##  1st Qu.: 82.60               1st Qu.:  5.00               
##  Median : 86.80               Median :  9.00               
##  Mean   : 86.23               Mean   : 28.45               
##  3rd Qu.: 90.50               3rd Qu.: 16.00               
##  Max.   :100.00               Max.   :801.00               
##  Per_Failed_PublicOrderOffences No_Others_Ex_Motoring Per_Others_Ex_Motoring
##  Min.   : 0.00                  Min.   :   0.00       Min.   :  0.00        
##  1st Qu.: 9.50                  1st Qu.:   9.00       1st Qu.: 80.00        
##  Median :13.20                  Median :  16.00       Median : 86.20        
##  Mean   :13.77                  Mean   :  64.34       Mean   : 85.44        
##  3rd Qu.:17.40                  3rd Qu.:  35.00       3rd Qu.: 93.30        
##  Max.   :60.00                  Max.   :3291.00       Max.   :100.00        
##  No_Failed_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
##  Min.   :  0.00               Min.   :  0.00               
##  1st Qu.:  1.00               1st Qu.:  6.70               
##  Median :  3.00               Median : 13.80               
##  Mean   : 11.91               Mean   : 14.52               
##  3rd Qu.:  7.00               3rd Qu.: 20.00               
##  Max.   :603.00               Max.   :100.00               
##  No_Motoring_Offences_Conv Per_Motoring_Offences_Conv
##  Min.   :    1.0           Min.   : 61.5             
##  1st Qu.:   95.0           1st Qu.: 84.3             
##  Median :  143.0           Median : 87.9             
##  Mean   :  365.5           Mean   : 87.3             
##  3rd Qu.:  216.0           3rd Qu.: 91.0             
##  Max.   :12945.0           Max.   :100.0             
##  No_Failed_Motoring_Offences Per_Failed_Motoring_Offences
##  Min.   :   0.00             Min.   : 0.0                
##  1st Qu.:  11.00             1st Qu.: 9.0                
##  Median :  20.00             Median :12.1                
##  Mean   :  60.95             Mean   :12.7                
##  3rd Qu.:  34.00             3rd Qu.:15.7                
##  Max.   :1725.00             Max.   :38.5                
##  No_Failed_AdminFinalised_Conv Per_Failed_AdminFinalised_Conv
##  Min.   :   0.00               Min.   :  0.00                
##  1st Qu.:   7.00               1st Qu.:100.00                
##  Median :  12.00               Median :100.00                
##  Mean   :  38.82               Mean   : 99.27                
##  3rd Qu.:  21.00               3rd Qu.:100.00                
##  Max.   :1051.00               Max.   :100.00

From the descriptive statistics above, the following observations were made:

UNIVARIATE ANALYSIS

Successful Homicide Conviction

Fig 1. Histogram plot

# See this Again
# Histogram and Boxplot Plotting using ggplot
plot_histogram_n_boxplot = function(variable, variableNameString, binw){
  h = ggplot(data = CrimeCases_data, aes(x= variable))+
    labs(x = variableNameString,y ='count')+
    geom_histogram(fill = 'Purple',col = 'Grey',binwidth = binw)+
    geom_vline(aes(xintercept=mean(variable)),
            color="blue", linetype="dashed", size=0.5)
  b = ggplot(data = CrimeCases_data, aes('',variable))+ 
    geom_boxplot(outlier.colour = 'red',col = 'red',outlier.shape = 19)+
    labs(x = '',y = variableNameString)+ coord_flip()
  grid.arrange(h,b,ncol = 2)
}

plot_histogram_n_boxplot(CrimeCases_data$No_Homicide_Conv, 'Successful Homicide Conviction', 5)

This Histogram reveals that the successful Homicide conviction is rightly skewed, and the boxplot reveals the existence of outliers. This will required further analysis to ascertain the case of the outlier. The median successful homicide outcome is 1 as earlier revealed.

Unsuccessful Homicide Conviction

Fig 2. Histogram plot

Successful Offences against the person

Fig 3. Histogram plot

#save the cleaned data set to the file folder for exploration
write.csv(CrimeCases_data, './Clean_CrimeCases_2014_to_2018.csv', row.names= FALSE)

Further Pre-Data Processing

Subset: Number of Succesful and Unsuccesful Convictions Only

No_All_Convictions = as.data.frame(subset(CrimeCases_data,
                                       select = c(
                                         Area,
                                         No_Homicide_Conv,
                                         No_Failed_Homicide,
                                         No_Conv_Offence,
                                         No_Failed_Conv_Offence,
                                         No_Sex_Offence_Conv,
                                         No_Failed_Sex_Offence,
                                         No_Burg_Conv,
                                         No_Failed_Burg_Conv,
                                         No_Rob_Conv,
                                         No_Failed_Rob_Conv,
                                         No_TheftAndHandling_Conv,
                                         No_Failed_TheftAndHandling,
                                         No_FraudAndForgery_Conv,
                                         No_Failed_FraudAndForgery,
                                         No_CrimeDamage_Conv,
                                         No_Failed_CrimeDamage,
                                         No_DrugOffences_Conv,
                                         No_Failed_Drug_Offence,
                                         No_PublicOrderOffences_Conv,
                                         No_Failed_PublicOrderOffences,
                                         No_Others_Ex_Motoring,
                                         No_Failed_Others_Ex_Motoring,
                                         No_Motoring_Offences_Conv,
                                         No_Failed_Motoring_Offences,
                                         No_Failed_AdminFinalised_Conv
                                       )))

print(head((No_All_Convictions)))
##                Area No_Homicide_Conv No_Failed_Homicide No_Conv_Offence
## 1          National               81                 14            7805
## 2 Avon and Somerset                1                  0             167
## 3      Bedfordshire                0                  0              69
## 4    Cambridgeshire                0                  0              99
## 5          Cheshire                1                  1             140
## 6         Cleveland                0                  0              85
##   No_Failed_Conv_Offence No_Sex_Offence_Conv No_Failed_Sex_Offence No_Burg_Conv
## 1                   2722                 698                   269         1470
## 2                     45                  36                     8           37
## 3                     23                   5                     1           16
## 4                     23                   6                     3            8
## 5                     47                  17                     3           26
## 6                     41                  11                     4           25
##   No_Failed_Burg_Conv No_Rob_Conv No_Failed_Rob_Conv No_TheftAndHandling_Conv
## 1                 226         517                116                    10045
## 2                   2           9                  3                      266
## 3                   1           4                  0                       98
## 4                   0           6                  1                      107
## 5                   3           1                  0                      206
## 6                  10           5                  2                      254
##   No_Failed_TheftAndHandling No_FraudAndForgery_Conv No_Failed_FraudAndForgery
## 1                        840                     666                       108
## 2                         21                      11                         0
## 3                          9                       8                         2
## 4                         10                       7                         0
## 5                          4                      16                         2
## 6                         32                       6                         2
##   No_CrimeDamage_Conv No_Failed_CrimeDamage No_DrugOffences_Conv
## 1                2259                   391                 4536
## 2                  54                     6                  135
## 3                  20                     6                   45
## 4                  21                     1                   40
## 5                  35                     9                   75
## 6                  32                     8                   63
##   No_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 1                    279                        3549
## 2                      2                          68
## 3                      2                          29
## 4                      2                          45
## 5                     10                          86
## 6                      7                          74
##   No_Failed_PublicOrderOffences No_Others_Ex_Motoring
## 1                           654                  2640
## 2                            11                    66
## 3                             6                    11
## 4                             9                     6
## 5                             7                    50
## 6                            27                    28
##   No_Failed_Others_Ex_Motoring No_Motoring_Offences_Conv
## 1                          513                      8283
## 2                           16                       188
## 3                            6                        40
## 4                            2                        79
## 5                            6                       209
## 6                            5                       124
##   No_Failed_Motoring_Offences No_Failed_AdminFinalised_Conv
## 1                        1314                           718
## 2                          37                            24
## 3                           5                            16
## 4                           6                             4
## 5                          12                             1
## 6                          17                            10
print(tail((No_All_Convictions)))
##                Area No_Homicide_Conv No_Failed_Homicide No_Conv_Offence
## 2188  Thames Valley                4                  1             333
## 2189   Warwickshire                0                  0              65
## 2190    West Mercia                6                  0             220
## 2191  West Midlands               11                  1             609
## 2192 West Yorkshire                5                  2             446
## 2193      Wiltshire                0                  0              85
##      No_Failed_Conv_Offence No_Sex_Offence_Conv No_Failed_Sex_Offence
## 2188                    103                  46                    15
## 2189                     16                   9                     4
## 2190                     60                  20                     9
## 2191                    172                  66                    23
## 2192                     73                  71                    33
## 2193                     13                  12                     0
##      No_Burg_Conv No_Failed_Burg_Conv No_Rob_Conv No_Failed_Rob_Conv
## 2188           58                   2           7                  3
## 2189           13                   1           3                  0
## 2190           25                   5           4                  2
## 2191           63                  13          30                  9
## 2192           84                   5          15                  1
## 2193            7                   1           0                  0
##      No_TheftAndHandling_Conv No_Failed_TheftAndHandling
## 2188                      233                         22
## 2189                       42                          9
## 2190                      112                          8
## 2191                      446                         26
## 2192                      243                         15
## 2193                       58                          1
##      No_FraudAndForgery_Conv No_Failed_FraudAndForgery No_CrimeDamage_Conv
## 2188                      36                         5                  73
## 2189                      10                         1                   9
## 2190                      16                         4                  41
## 2191                      59                        11                  89
## 2192                      34                         6                  70
## 2193                       8                         0                  13
##      No_Failed_CrimeDamage No_DrugOffences_Conv No_Failed_Drug_Offence
## 2188                     9                   98                      7
## 2189                     4                   21                      2
## 2190                     5                   56                      2
## 2191                    16                  211                     13
## 2192                    13                  137                      5
## 2193                     1                   25                      0
##      No_PublicOrderOffences_Conv No_Failed_PublicOrderOffences
## 2188                          81                            10
## 2189                          19                             4
## 2190                          75                             6
## 2191                         253                            38
## 2192                         154                            15
## 2193                          21                             3
##      No_Others_Ex_Motoring No_Failed_Others_Ex_Motoring
## 2188                    32                            1
## 2189                     4                            0
## 2190                    11                            2
## 2191                    69                           15
## 2192                    24                            8
## 2193                     7                            1
##      No_Motoring_Offences_Conv No_Failed_Motoring_Offences
## 2188                       318                          40
## 2189                        78                          21
## 2190                       190                          27
## 2191                       280                          68
## 2192                       236                          21
## 2193                        64                           2
##      No_Failed_AdminFinalised_Conv
## 2188                            30
## 2189                            11
## 2190                            12
## 2191                            92
## 2192                            51
## 2193                             4

Viewing the first and last 6 rows, using the head() and tail () functions confirms that a subset comprising only of the Number of Successful and Unsuccessful Convictions have been created.

Subset: Percentage of Successful and Unsuccessful Convictions Only

Per_All_Convictions = as.data.frame(subset(CrimeCases_data,
                                       select = c(
                                         Area,
                                          Per_Homicide_Conv,            
                                          Per_Failed_Homicide,                 
                                          Per_Conv_Offence,          
                                          Per_Failed_Conv_Offence,            
                                          Per_Sex_Offence_Conv,           
                                          Per_Failed_Sex_Offence,                   
                                          Per_Burg_Conv,            
                                          Per_Failed_Burg_Conv,                   
                                          Per_Rob_Conv,             
                                          Per_Failed_Rob_Conv,       
                                          Per_TheftAndHandling_Conv,   
                                          Per_Failed_TheftAndHandling,        
                                          Per_FraudAndForgery_Conv,     
                                          Per_Failed_FraudAndForgery,            
                                          Per_CrimeDamage_Conv,          
                                          Per_Failed_CrimeDamage,           
                                          Per_DrugOffences_Conv,        
                                          Per_Failed_Drug_Offence,  
                                          Per_PublicOrderOffences_Conv,  
                                          Per_Failed_PublicOrderOffences,        
                                          Per_Others_Ex_Motoring,   
                                          Per_Failed_Others_Ex_Motoring, 
                                          Per_Motoring_Offences_Conv,
                                          Per_Failed_Motoring_Offences,
                                          Per_Failed_AdminFinalised_Conv
                                       )))

print(head(Per_All_Convictions))
##                Area Per_Homicide_Conv Per_Failed_Homicide Per_Conv_Offence
## 1          National              85.3                14.7             74.1
## 2 Avon and Somerset             100.0                 0.0             78.8
## 3      Bedfordshire               0.0                 0.0             75.0
## 4    Cambridgeshire               0.0                 0.0             81.1
## 5          Cheshire              50.0                50.0             74.9
## 6         Cleveland               0.0                 0.0             67.5
##   Per_Failed_Conv_Offence Per_Sex_Offence_Conv Per_Failed_Sex_Offence
## 1                    25.9                 72.2                   27.8
## 2                    21.2                 81.8                   18.2
## 3                    25.0                 83.3                   16.7
## 4                    18.9                 66.7                   33.3
## 5                    25.1                 85.0                   15.0
## 6                    32.5                 73.3                   26.7
##   Per_Burg_Conv Per_Failed_Burg_Conv Per_Rob_Conv Per_Failed_Rob_Conv
## 1          86.7                 13.3         81.7                18.3
## 2          94.9                  5.1         75.0                25.0
## 3          94.1                  5.9        100.0                 0.0
## 4         100.0                  0.0         85.7                14.3
## 5          89.7                 10.3        100.0                 0.0
## 6          71.4                 28.6         71.4                28.6
##   Per_TheftAndHandling_Conv Per_Failed_TheftAndHandling
## 1                      92.3                         7.7
## 2                      92.7                         7.3
## 3                      91.6                         8.4
## 4                      91.5                         8.5
## 5                      98.1                         1.9
## 6                      88.8                        11.2
##   Per_FraudAndForgery_Conv Per_Failed_FraudAndForgery Per_CrimeDamage_Conv
## 1                     86.0                       14.0                 85.2
## 2                    100.0                        0.0                 90.0
## 3                     80.0                       20.0                 76.9
## 4                    100.0                        0.0                 95.5
## 5                     88.9                       11.1                 79.5
## 6                     75.0                       25.0                 80.0
##   Per_Failed_CrimeDamage Per_DrugOffences_Conv Per_Failed_Drug_Offence
## 1                   14.8                  94.2                     5.8
## 2                   10.0                  98.5                     1.5
## 3                   23.1                  95.7                     4.3
## 4                    4.5                  95.2                     4.8
## 5                   20.5                  88.2                    11.8
## 6                   20.0                  90.0                    10.0
##   Per_PublicOrderOffences_Conv Per_Failed_PublicOrderOffences
## 1                         84.4                           15.6
## 2                         86.1                           13.9
## 3                         82.9                           17.1
## 4                         83.3                           16.7
## 5                         92.5                            7.5
## 6                         73.3                           26.7
##   Per_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
## 1                   83.7                          16.3
## 2                   80.5                          19.5
## 3                   64.7                          35.3
## 4                   75.0                          25.0
## 5                   89.3                          10.7
## 6                   84.8                          15.2
##   Per_Motoring_Offences_Conv Per_Failed_Motoring_Offences
## 1                       86.3                         13.7
## 2                       83.6                         16.4
## 3                       88.9                         11.1
## 4                       92.9                          7.1
## 5                       94.6                          5.4
## 6                       87.9                         12.1
##   Per_Failed_AdminFinalised_Conv
## 1                            100
## 2                            100
## 3                            100
## 4                            100
## 5                            100
## 6                            100
print(tail(Per_All_Convictions))
##                Area Per_Homicide_Conv Per_Failed_Homicide Per_Conv_Offence
## 2188  Thames Valley              80.0                20.0             76.4
## 2189   Warwickshire               0.0                 0.0             80.2
## 2190    West Mercia             100.0                 0.0             78.6
## 2191  West Midlands              91.7                 8.3             78.0
## 2192 West Yorkshire              71.4                28.6             85.9
## 2193      Wiltshire               0.0                 0.0             86.7
##      Per_Failed_Conv_Offence Per_Sex_Offence_Conv Per_Failed_Sex_Offence
## 2188                    23.6                 75.4                   24.6
## 2189                    19.8                 69.2                   30.8
## 2190                    21.4                 69.0                   31.0
## 2191                    22.0                 74.2                   25.8
## 2192                    14.1                 68.3                   31.7
## 2193                    13.3                100.0                    0.0
##      Per_Burg_Conv Per_Failed_Burg_Conv Per_Rob_Conv Per_Failed_Rob_Conv
## 2188          96.7                  3.3         70.0                30.0
## 2189          92.9                  7.1        100.0                 0.0
## 2190          83.3                 16.7         66.7                33.3
## 2191          82.9                 17.1         76.9                23.1
## 2192          94.4                  5.6         93.8                 6.3
## 2193          87.5                 12.5          0.0                 0.0
##      Per_TheftAndHandling_Conv Per_Failed_TheftAndHandling
## 2188                      91.4                         8.6
## 2189                      82.4                        17.6
## 2190                      93.3                         6.7
## 2191                      94.5                         5.5
## 2192                      94.2                         5.8
## 2193                      98.3                         1.7
##      Per_FraudAndForgery_Conv Per_Failed_FraudAndForgery Per_CrimeDamage_Conv
## 2188                     87.8                       12.2                 89.0
## 2189                     90.9                        9.1                 69.2
## 2190                     80.0                       20.0                 89.1
## 2191                     84.3                       15.7                 84.8
## 2192                     85.0                       15.0                 84.3
## 2193                    100.0                        0.0                 92.9
##      Per_Failed_CrimeDamage Per_DrugOffences_Conv Per_Failed_Drug_Offence
## 2188                   11.0                  93.3                     6.7
## 2189                   30.8                  91.3                     8.7
## 2190                   10.9                  96.6                     3.4
## 2191                   15.2                  94.2                     5.8
## 2192                   15.7                  96.5                     3.5
## 2193                    7.1                 100.0                     0.0
##      Per_PublicOrderOffences_Conv Per_Failed_PublicOrderOffences
## 2188                         89.0                           11.0
## 2189                         82.6                           17.4
## 2190                         92.6                            7.4
## 2191                         86.9                           13.1
## 2192                         91.1                            8.9
## 2193                         87.5                           12.5
##      Per_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
## 2188                   97.0                           3.0
## 2189                  100.0                           0.0
## 2190                   84.6                          15.4
## 2191                   82.1                          17.9
## 2192                   75.0                          25.0
## 2193                   87.5                          12.5
##      Per_Motoring_Offences_Conv Per_Failed_Motoring_Offences
## 2188                       88.8                         11.2
## 2189                       78.8                         21.2
## 2190                       87.6                         12.4
## 2191                       80.5                         19.5
## 2192                       91.8                          8.2
## 2193                       97.0                          3.0
##      Per_Failed_AdminFinalised_Conv
## 2188                            100
## 2189                            100
## 2190                            100
## 2191                            100
## 2192                            100
## 2193                            100

Viewing the first and last 6 rows, using the head () and tail () functions confirms that a subset comprising only of the Percentage of Successful and Unsuccessful Convictions have been created.

Sampling:

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population Here, 500 sample were ramdomly selected from the Total Number of Successful and Unsuccesful Convictions

Sample_No_All_Convictions = No_All_Convictions[sample(nrow(No_All_Convictions), 500), ]

print(head(Sample_No_All_Convictions))
##                   Area No_Homicide_Conv No_Failed_Homicide No_Conv_Offence
## 1828    Leicestershire                2                  1             205
## 1387            Durham                1                  0             107
## 940             Sussex                0                  0             308
## 1851 Avon and Somerset                0                  0             203
## 304       Bedfordshire                2                  0             102
## 1253         Cleveland                0                  0             127
##      No_Failed_Conv_Offence No_Sex_Offence_Conv No_Failed_Sex_Offence
## 1828                     36                  18                     9
## 1387                     33                   5                     0
## 940                      85                  31                    16
## 1851                     39                  48                    12
## 304                      37                   4                     0
## 1253                     28                   4                     0
##      No_Burg_Conv No_Failed_Burg_Conv No_Rob_Conv No_Failed_Rob_Conv
## 1828           18                   5          10                  0
## 1387           12                   0           3                  0
## 940            35                   3           8                  0
## 1851           26                   5           7                  1
## 304            26                   4          11                  0
## 1253           39                   2           4                  0
##      No_TheftAndHandling_Conv No_Failed_TheftAndHandling
## 1828                       70                          6
## 1387                       82                          5
## 940                       179                         13
## 1851                      126                          7
## 304                       147                         21
## 1253                      203                         22
##      No_FraudAndForgery_Conv No_Failed_FraudAndForgery No_CrimeDamage_Conv
## 1828                      17                         4                  31
## 1387                       2                         0                  19
## 940                       20                         2                  61
## 1851                      19                         0                  38
## 304                        9                         1                  28
## 1253                      10                         3                  23
##      No_Failed_CrimeDamage No_DrugOffences_Conv No_Failed_Drug_Offence
## 1828                     6                   31                      3
## 1387                     2                   15                      0
## 940                      6                   91                     11
## 1851                     3                   61                      3
## 304                      4                   61                      7
## 1253                     9                   46                      7
##      No_PublicOrderOffences_Conv No_Failed_PublicOrderOffences
## 1828                          53                             7
## 1387                          31                             6
## 940                           65                            13
## 1851                          64                            13
## 304                           20                             8
## 1253                          46                            10
##      No_Others_Ex_Motoring No_Failed_Others_Ex_Motoring
## 1828                     9                            1
## 1387                     8                            0
## 940                      9                            0
## 1851                    10                            3
## 304                     20                            2
## 1253                     6                            0
##      No_Motoring_Offences_Conv No_Failed_Motoring_Offences
## 1828                       100                          18
## 1387                        95                           9
## 940                        233                          26
## 1851                       137                           8
## 304                         89                          15
## 1253                        65                          13
##      No_Failed_AdminFinalised_Conv
## 1828                            12
## 1387                             5
## 940                             22
## 1851                            36
## 304                              8
## 1253                            11
print(tail(Sample_No_All_Convictions))
##                Area No_Homicide_Conv No_Failed_Homicide No_Conv_Offence
## 570          Durham                0                  0             100
## 1582  Staffordshire                1                  0             201
## 243     Northumbria                1                  0             293
## 1654           Kent                7                  1             317
## 864  Cambridgeshire                1                  0             105
## 204     South Wales                0                  0             362
##      No_Failed_Conv_Offence No_Sex_Offence_Conv No_Failed_Sex_Offence
## 570                      20                  10                     2
## 1582                     60                  37                     7
## 243                     128                  34                     7
## 1654                    107                  29                     6
## 864                      24                   6                     3
## 204                     111                   7                     7
##      No_Burg_Conv No_Failed_Burg_Conv No_Rob_Conv No_Failed_Rob_Conv
## 570            18                   2           0                  0
## 1582           24                   5           1                  0
## 243            70                  10          17                  5
## 1654           27                   2           5                  1
## 864            11                   1          11                  4
## 204            49                   8           4                  0
##      No_TheftAndHandling_Conv No_Failed_TheftAndHandling
## 570                       138                         10
## 1582                      160                         13
## 243                       473                         59
## 1654                      196                         13
## 864                       105                          5
## 204                       359                         10
##      No_FraudAndForgery_Conv No_Failed_FraudAndForgery No_CrimeDamage_Conv
## 570                        7                         2                  31
## 1582                      13                         8                  40
## 243                       29                         6                 106
## 1654                      29                         2                  62
## 864                        8                         0                  27
## 204                       19                         3                 124
##      No_Failed_CrimeDamage No_DrugOffences_Conv No_Failed_Drug_Offence
## 570                      6                   30                      0
## 1582                     5                   77                      6
## 243                     35                  125                     19
## 1654                     6                   92                      5
## 864                      2                   35                      3
## 204                     12                  161                      6
##      No_PublicOrderOffences_Conv No_Failed_PublicOrderOffences
## 570                           58                             8
## 1582                          69                            12
## 243                          159                            54
## 1654                          69                            11
## 864                           41                             6
## 204                          243                            41
##      No_Others_Ex_Motoring No_Failed_Others_Ex_Motoring
## 570                      8                            6
## 1582                    18                            0
## 243                    147                           24
## 1654                    33                            2
## 864                      7                            1
## 204                     70                           12
##      No_Motoring_Offences_Conv No_Failed_Motoring_Offences
## 570                        102                          11
## 1582                       166                          34
## 243                        235                          40
## 1654                       189                          13
## 864                         99                          14
## 204                        735                          94
##      No_Failed_AdminFinalised_Conv
## 570                              5
## 1582                            13
## 243                             17
## 1654                            22
## 864                             15
## 204                             17

This shows the 500 observations representing 2,193 total observation of the number of Successful and Unsuccessful convictions randomly selected for analysis.

Sampling:

Random Selection of 500 sample from the Total Percentage of Successful and Unsuccesful Convictions

Sample_Per_All_Convictions = Per_All_Convictions[sample(nrow(Per_All_Convictions), 500), ]

print(head(Per_All_Convictions))
##                Area Per_Homicide_Conv Per_Failed_Homicide Per_Conv_Offence
## 1          National              85.3                14.7             74.1
## 2 Avon and Somerset             100.0                 0.0             78.8
## 3      Bedfordshire               0.0                 0.0             75.0
## 4    Cambridgeshire               0.0                 0.0             81.1
## 5          Cheshire              50.0                50.0             74.9
## 6         Cleveland               0.0                 0.0             67.5
##   Per_Failed_Conv_Offence Per_Sex_Offence_Conv Per_Failed_Sex_Offence
## 1                    25.9                 72.2                   27.8
## 2                    21.2                 81.8                   18.2
## 3                    25.0                 83.3                   16.7
## 4                    18.9                 66.7                   33.3
## 5                    25.1                 85.0                   15.0
## 6                    32.5                 73.3                   26.7
##   Per_Burg_Conv Per_Failed_Burg_Conv Per_Rob_Conv Per_Failed_Rob_Conv
## 1          86.7                 13.3         81.7                18.3
## 2          94.9                  5.1         75.0                25.0
## 3          94.1                  5.9        100.0                 0.0
## 4         100.0                  0.0         85.7                14.3
## 5          89.7                 10.3        100.0                 0.0
## 6          71.4                 28.6         71.4                28.6
##   Per_TheftAndHandling_Conv Per_Failed_TheftAndHandling
## 1                      92.3                         7.7
## 2                      92.7                         7.3
## 3                      91.6                         8.4
## 4                      91.5                         8.5
## 5                      98.1                         1.9
## 6                      88.8                        11.2
##   Per_FraudAndForgery_Conv Per_Failed_FraudAndForgery Per_CrimeDamage_Conv
## 1                     86.0                       14.0                 85.2
## 2                    100.0                        0.0                 90.0
## 3                     80.0                       20.0                 76.9
## 4                    100.0                        0.0                 95.5
## 5                     88.9                       11.1                 79.5
## 6                     75.0                       25.0                 80.0
##   Per_Failed_CrimeDamage Per_DrugOffences_Conv Per_Failed_Drug_Offence
## 1                   14.8                  94.2                     5.8
## 2                   10.0                  98.5                     1.5
## 3                   23.1                  95.7                     4.3
## 4                    4.5                  95.2                     4.8
## 5                   20.5                  88.2                    11.8
## 6                   20.0                  90.0                    10.0
##   Per_PublicOrderOffences_Conv Per_Failed_PublicOrderOffences
## 1                         84.4                           15.6
## 2                         86.1                           13.9
## 3                         82.9                           17.1
## 4                         83.3                           16.7
## 5                         92.5                            7.5
## 6                         73.3                           26.7
##   Per_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
## 1                   83.7                          16.3
## 2                   80.5                          19.5
## 3                   64.7                          35.3
## 4                   75.0                          25.0
## 5                   89.3                          10.7
## 6                   84.8                          15.2
##   Per_Motoring_Offences_Conv Per_Failed_Motoring_Offences
## 1                       86.3                         13.7
## 2                       83.6                         16.4
## 3                       88.9                         11.1
## 4                       92.9                          7.1
## 5                       94.6                          5.4
## 6                       87.9                         12.1
##   Per_Failed_AdminFinalised_Conv
## 1                            100
## 2                            100
## 3                            100
## 4                            100
## 5                            100
## 6                            100
print(tail(Per_All_Convictions))
##                Area Per_Homicide_Conv Per_Failed_Homicide Per_Conv_Offence
## 2188  Thames Valley              80.0                20.0             76.4
## 2189   Warwickshire               0.0                 0.0             80.2
## 2190    West Mercia             100.0                 0.0             78.6
## 2191  West Midlands              91.7                 8.3             78.0
## 2192 West Yorkshire              71.4                28.6             85.9
## 2193      Wiltshire               0.0                 0.0             86.7
##      Per_Failed_Conv_Offence Per_Sex_Offence_Conv Per_Failed_Sex_Offence
## 2188                    23.6                 75.4                   24.6
## 2189                    19.8                 69.2                   30.8
## 2190                    21.4                 69.0                   31.0
## 2191                    22.0                 74.2                   25.8
## 2192                    14.1                 68.3                   31.7
## 2193                    13.3                100.0                    0.0
##      Per_Burg_Conv Per_Failed_Burg_Conv Per_Rob_Conv Per_Failed_Rob_Conv
## 2188          96.7                  3.3         70.0                30.0
## 2189          92.9                  7.1        100.0                 0.0
## 2190          83.3                 16.7         66.7                33.3
## 2191          82.9                 17.1         76.9                23.1
## 2192          94.4                  5.6         93.8                 6.3
## 2193          87.5                 12.5          0.0                 0.0
##      Per_TheftAndHandling_Conv Per_Failed_TheftAndHandling
## 2188                      91.4                         8.6
## 2189                      82.4                        17.6
## 2190                      93.3                         6.7
## 2191                      94.5                         5.5
## 2192                      94.2                         5.8
## 2193                      98.3                         1.7
##      Per_FraudAndForgery_Conv Per_Failed_FraudAndForgery Per_CrimeDamage_Conv
## 2188                     87.8                       12.2                 89.0
## 2189                     90.9                        9.1                 69.2
## 2190                     80.0                       20.0                 89.1
## 2191                     84.3                       15.7                 84.8
## 2192                     85.0                       15.0                 84.3
## 2193                    100.0                        0.0                 92.9
##      Per_Failed_CrimeDamage Per_DrugOffences_Conv Per_Failed_Drug_Offence
## 2188                   11.0                  93.3                     6.7
## 2189                   30.8                  91.3                     8.7
## 2190                   10.9                  96.6                     3.4
## 2191                   15.2                  94.2                     5.8
## 2192                   15.7                  96.5                     3.5
## 2193                    7.1                 100.0                     0.0
##      Per_PublicOrderOffences_Conv Per_Failed_PublicOrderOffences
## 2188                         89.0                           11.0
## 2189                         82.6                           17.4
## 2190                         92.6                            7.4
## 2191                         86.9                           13.1
## 2192                         91.1                            8.9
## 2193                         87.5                           12.5
##      Per_Others_Ex_Motoring Per_Failed_Others_Ex_Motoring
## 2188                   97.0                           3.0
## 2189                  100.0                           0.0
## 2190                   84.6                          15.4
## 2191                   82.1                          17.9
## 2192                   75.0                          25.0
## 2193                   87.5                          12.5
##      Per_Motoring_Offences_Conv Per_Failed_Motoring_Offences
## 2188                       88.8                         11.2
## 2189                       78.8                         21.2
## 2190                       87.6                         12.4
## 2191                       80.5                         19.5
## 2192                       91.8                          8.2
## 2193                       97.0                          3.0
##      Per_Failed_AdminFinalised_Conv
## 2188                            100
## 2189                            100
## 2190                            100
## 2191                            100
## 2192                            100
## 2193                            100

This shows the 500 observations representing 2,193 total observation of the percentage of Successful and Unsuccessful convictions randomly selected for analysis.

Outlier Detection:

Figure 1: Boxplot showing Successful Convicted Offences Across Areas

# Visualize the data frames for skewed data
bPlot_No_All_Convictions = plot_ly(type='box') %>% add_boxplot(Sample_No_All_Convictions,
                                           x=Sample_No_All_Convictions$No_Conv_Offence, 
                                           y=Sample_No_All_Convictions$Area,
                                           color=Sample_No_All_Convictions$Area
                                           ) %>% layout(title='plot of succesful convicted offences across areas'
                                                                                     )
bPlot_No_All_Convictions

Figure 2: Histogram showing Successful Convicted Offences Across Areas

hPlot_No_All_Convictions = ggplot(
  Sample_No_All_Convictions,
  aes(x=No_Conv_Offence, fill=Area)
) + geom_histogram(position='identity', binwidth=500) + labs(
  title = 'Successful Convicted offences By Area',
  x='Succesful convicted offences'
)

ggplotly(hPlot_No_All_Convictions)

From both visualization, “National” was revealed to be an outlier, hence would be removed from the data frame in order to fit.

Outlier Treatment:

“National” removal from Successful Convicted Offences Across Areas

No_All_Convictions = as.data.frame(subset(CrimeCases_data,
                                          Area != 'National',
                                         select = c(
                                         Area,
                                         No_Homicide_Conv,
                                         No_Failed_Homicide,
                                         No_Conv_Offence,
                                         No_Failed_Conv_Offence,
                                         No_Sex_Offence_Conv,
                                         No_Failed_Sex_Offence,
                                         No_Burg_Conv,
                                         No_Failed_Burg_Conv,
                                         No_Rob_Conv,
                                         No_Failed_Rob_Conv,
                                         No_TheftAndHandling_Conv,
                                         No_Failed_TheftAndHandling,
                                         No_FraudAndForgery_Conv,
                                         No_Failed_FraudAndForgery,
                                         No_CrimeDamage_Conv,
                                         No_Failed_CrimeDamage,
                                         No_DrugOffences_Conv,
                                         No_Failed_Drug_Offence,
                                         No_PublicOrderOffences_Conv,
                                         No_Failed_PublicOrderOffences,
                                         No_Others_Ex_Motoring,
                                         No_Failed_Others_Ex_Motoring,
                                         No_Motoring_Offences_Conv,
                                         No_Failed_Motoring_Offences,
                                         No_Failed_AdminFinalised_Conv
                                       )))
print(No_All_Convictions$Area["National"])
## [1] NA

This confirms that the outlier Area “National” has been removed from within the number “Successful Convicted Offences Across Counties” sample.

“National” removal from Unsuccessful Convicted Offences Across Areas

Per_All_Convictions = as.data.frame(subset(CrimeCases_data,
                                           Area != 'National',
                                         select = c(
                                         Area,
                                          Per_Homicide_Conv,            
                                          Per_Failed_Homicide,                 
                                          Per_Conv_Offence,          
                                          Per_Failed_Conv_Offence,            
                                          Per_Sex_Offence_Conv,           
                                          Per_Failed_Sex_Offence,                   
                                          Per_Burg_Conv,            
                                          Per_Failed_Burg_Conv,                   
                                          Per_Rob_Conv,             
                                          Per_Failed_Rob_Conv,       
                                          Per_TheftAndHandling_Conv,   
                                          Per_Failed_TheftAndHandling,        
                                          Per_FraudAndForgery_Conv,     
                                          Per_Failed_FraudAndForgery,            
                                          Per_CrimeDamage_Conv,          
                                          Per_Failed_CrimeDamage,           
                                          Per_DrugOffences_Conv,        
                                          Per_Failed_Drug_Offence,  
                                          Per_PublicOrderOffences_Conv,  
                                          Per_Failed_PublicOrderOffences,        
                                          Per_Others_Ex_Motoring,   
                                          Per_Failed_Others_Ex_Motoring, 
                                          Per_Motoring_Offences_Conv,
                                          Per_Failed_Motoring_Offences,
                                          Per_Failed_AdminFinalised_Conv
                                       )))
print(Per_All_Convictions$Area["National"])
## [1] NA

This confirms that the outlier Area “National” have also been removed from within the percentage of “Successful Convicted Offences Across Counties” sample.

Data Visualization: Number Of Successful Convictions

#Setting the values for Graphical representation of the Number Of Successful Convictions
xRow = with(No_All_Convictions, Area)
yRow = with(No_All_Convictions,
             No_Homicide_Conv,
             No_Sex_Offence_Conv,
             No_Burg_Conv,
             No_Rob_Conv,
             No_TheftAndHandling_Conv,
             No_FraudAndForgery_Conv,
             No_CrimeDamage_Conv,
             No_DrugOffences_Conv,
             No_PublicOrderOffences_Conv,
             No_Others_Ex_Motoring,
             No_Motoring_Offences_Conv
            )
traceVal = with(No_All_Convictions, No_Conv_Offence)

Bar_No_Sucess_Conv = plot_ly(No_All_Convictions, x = ~xRow, y = ~yRow, type = 'bar', name = 'other succesful convictions',
               marker = list(color = 'rgb(55, 83, 109)'))
Bar_No_Sucess_Conv = Bar_No_Sucess_Conv %>% add_trace(y = ~traceVal, name = 'successful convicted offence', marker = list(color = 'rgb(26, 118, 255)'))
Bar_No_Sucess_Conv = Bar_No_Sucess_Conv %>% layout(title = 'Successful Offence Convictions',
                      xaxis = list(
                        title = "Area",
                        tickfont = list(
                          size = 14,
                          color = 'rgb(107, 107, 107)')),
                      yaxis = list(
                        title = 'successful convictions',
                        titlefont = list(
                          size = 16,
                          color = 'rgb(107, 107, 107)'),
                        tickfont = list(
                          size = 14,
                          color = 'rgb(107, 107, 107)')),
                      legend = list(x = 0, y = 1, bgcolor = 'rgba(255, 255, 255, 0)', bordercolor = 'rgba(255, 255, 255, 0)'),
                      barmode = 'group', bargap = 0.15, bargroupgap = 0.1)

Bar_No_Sucess_Conv

The Bar Chart Shows that between year 2014 to 2018, Metropolitan and City Area has the highest successful crime conviction. This is followed by West Midland.

Data Visualization: Number Of Unsuccessful Convictions

#Setting the values for Graphical representation of the Number Of Unsuccessful Convictions
xUnsRow = with(No_All_Convictions, Area)
yUnsRow = with(No_All_Convictions,
             No_Failed_Homicide,
             No_Failed_Sex_Offence,
             No_Failed_Burg_Conv,
             No_Failed_Rob_Conv,
             No_TheftAndHandling_Conv,
             No_Failed_FraudAndForgery,
             No_Failed_CrimeDamage,
             No_Failed_Drug_Offence,
             No_Failed_PublicOrderOffences,
             No_Failed_Others_Ex_Motoring,
             No_Failed_Motoring_Offences,
             No_Failed_AdminFinalised_Conv
             )

traceValUns = with(No_All_Convictions, No_Failed_Conv_Offence)

Bar_Unsucess_Conv = plot_ly(No_All_Convictions, x = ~xUnsRow, y = ~yUnsRow, type = 'bar', name = 'other unsuccesful convictions',
                  marker = list(color = 'rgb(55, 83, 109)'))
Bar_Unsucess_Conv = Bar_Unsucess_Conv %>% add_trace(y = ~traceValUns, name = 'unsuccesful convicted offence', marker = list(color = 'rgb(177, 156, 217)'))
Bar_Unsucess_Conv = Bar_Unsucess_Conv %>% layout(title = 'Unsuccesful offence Convictions',
                            xaxis = list(
                              title = "Area",
                              tickfont = list(
                                size = 14,
                                color = 'rgb(107, 107, 107)')),
                            yaxis = list(
                              title = 'unsuccesful convictions',
                              titlefont = list(
                                size = 16,
                                color = 'rgb(107, 107, 107)'),
                              tickfont = list(
                                size = 14,
                                color = 'rgb(107, 107, 107)')),
                            legend = list(x = 0, y = 1, bgcolor = 'rgba(200, 200, 200, 0)', bordercolor = 'rgba(255, 255, 255, 0)'),
                            barmode = 'group', bargap = 0.15, bargroupgap = 0.1)

Bar_Unsucess_Conv

The Bar Chart Shows that between year 2014 to 2018, Metropolitan and City Area has the highest unsuccessful crime conviction. This is followed by West Midland.

Data Visualization: Percentage Of Successful Convictions

#Setting the values for Graphical representation of the Percentage Of Successful Convictions

xPerRow = with(Per_All_Convictions, Area)
yPerRow = with(Per_All_Convictions,
             Per_Homicide_Conv,
             Per_Sex_Offence_Conv,
             Per_Burg_Conv,
             Per_Rob_Conv,
             Per_TheftAndHandling_Conv,
             Per_FraudAndForgery_Conv,
             Per_CrimeDamage_Conv,
             Per_DrugOffences_Conv,
             Per_PublicOrderOffences_Conv,
             Per_Others_Ex_Motoring,
             Per_Motoring_Offences_Conv
             )

perTraceVal = with(Per_All_Convictions, Per_Conv_Offence)

Bar_Per_Sucess_Conv = plot_ly(Per_All_Convictions, x = ~xPerRow, y = ~yPerRow, type = 'bar', name = 'other % of succesful convictions',
                  marker = list(color = 'rgb(55, 83, 109)'))
Bar_Per_Sucess_Conv = Bar_Per_Sucess_Conv %>% add_trace(y = ~perTraceVal, name = '% of succesful convicted offence', marker = list(color = 'rgb(26, 118, 255)'))
Bar_Per_Sucess_Conv = Bar_Per_Sucess_Conv %>% layout(title = 'Percentage of Succesful offence Convictions',
                            xaxis = list(
                              title = "Area",
                              tickfont = list(
                                size = 14,
                                color = 'rgb(107, 107, 107)')),
                            yaxis = list(
                              title = 'per succesful convictions',
                              titlefont = list(
                                size = 16,
                                color = 'rgb(107, 107, 107)'),
                              tickfont = list(
                                size = 14,
                                color = 'rgb(107, 107, 107)')),
                            legend = list(x = 0, y = 1, bgcolor = 'rgba(255, 255, 255, 0)', bordercolor = 'rgba(255, 255, 255, 0)'),
                            barmode = 'group', bargap = 0.15, bargroupgap = 0.1)

Bar_Per_Sucess_Conv

Data Visualization: Percentage Of Unsuccessful Convictions

#Setting the values for Graphical representation of the Percentage Of Unsuccessful Convictions
xUnPerRow = with(Per_All_Convictions, Area)
yUnPerRow = with(Per_All_Convictions,
                Per_Failed_Homicide,
                Per_Failed_Sex_Offence,
                Per_Failed_Burg_Conv,
                Per_Failed_Rob_Conv,
                Per_Failed_TheftAndHandling,
                Per_Failed_FraudAndForgery,
                Per_Failed_CrimeDamage,
                Per_Failed_Drug_Offence,
                Per_Failed_PublicOrderOffences,
                Per_Failed_Others_Ex_Motoring,
                Per_Failed_Motoring_Offences,
                Per_Failed_AdminFinalised_Conv
                )

perUnTraceVal = with(Per_All_Convictions, Per_Failed_Conv_Offence)

Bar_Per_Unucess_Conv = plot_ly(Per_All_Convictions, x = ~xUnPerRow, y = ~yUnPerRow, type = 'bar', name = '% of other unsuccesful convictions',
                  marker = list(color = 'rgb(55, 83, 109)'))
Bar_Per_Unucess_Conv = Bar_Per_Unucess_Conv %>% add_trace(y = ~perUnTraceVal, name = '% of unsuccesful convicted offence', marker = list(color = 'rgb(26, 118, 255)'))
Bar_Per_Unucess_Conv = Bar_Per_Unucess_Conv %>% layout(title = 'Percentage of Unsuccesful offence Convictions',
                            xaxis = list(
                              title = "Area",
                              tickfont = list(
                                size = 14,
                                color = 'rgb(107, 107, 107)')),
                            yaxis = list(
                              title = 'unsuccesful convictions',
                              titlefont = list(
                                size = 16,
                                color = 'rgb(107, 107, 107)'),
                              tickfont = list(
                                size = 14,
                                color = 'rgb(107, 107, 107)')),
                            legend = list(x = 0, y = 1, bgcolor = 'rgba(255, 255, 255, 0)', bordercolor = 'rgba(255, 255, 255, 0)'),
                            barmode = 'group', bargap = 0.15, bargroupgap = 0.1)

Bar_Per_Unucess_Conv

PREDICTIVE ANALYTICS

DATA CLUSTERING

Clus_No_All_Convictions = as.data.frame(subset(CrimeCases_data,
                                          Area != 'National',
                                         select = c(
                                         Area,
                                         No_Homicide_Conv,
                                         No_Failed_Homicide,
                                         No_Conv_Offence,
                                         No_Failed_Conv_Offence,
                                         No_Sex_Offence_Conv,
                                         No_Failed_Sex_Offence,
                                         No_Burg_Conv,
                                         No_Failed_Burg_Conv,
                                         No_Rob_Conv,
                                         No_Failed_Rob_Conv,
                                         No_TheftAndHandling_Conv,
                                         No_Failed_TheftAndHandling,
                                         No_FraudAndForgery_Conv,
                                         No_Failed_FraudAndForgery,
                                         No_CrimeDamage_Conv,
                                         No_Failed_CrimeDamage,
                                         No_DrugOffences_Conv,
                                         No_Failed_Drug_Offence,
                                         No_PublicOrderOffences_Conv,
                                         No_Failed_PublicOrderOffences,
                                         No_Others_Ex_Motoring,
                                         No_Failed_Others_Ex_Motoring,
                                         No_Motoring_Offences_Conv,
                                         No_Failed_Motoring_Offences,
                                         No_Failed_AdminFinalised_Conv
                                       )))
str(Clus_No_All_Convictions)
## 'data.frame':    2142 obs. of  26 variables:
##  $ Area                         : chr  "Avon and Somerset" "Bedfordshire" "Cambridgeshire" "Cheshire" ...
##  $ No_Homicide_Conv             : num  1 0 0 1 0 0 0 1 0 2 ...
##  $ No_Failed_Homicide           : num  0 0 0 1 0 0 0 0 0 0 ...
##  $ No_Conv_Offence              : num  167 69 99 140 85 77 151 157 73 75 ...
##  $ No_Failed_Conv_Offence       : num  45 23 23 47 41 19 57 50 16 26 ...
##  $ No_Sex_Offence_Conv          : num  36 5 6 17 11 8 8 11 1 11 ...
##  $ No_Failed_Sex_Offence        : num  8 1 3 3 4 1 6 4 0 4 ...
##  $ No_Burg_Conv                 : num  37 16 8 26 25 12 31 16 18 30 ...
##  $ No_Failed_Burg_Conv          : num  2 1 0 3 10 1 3 1 1 0 ...
##  $ No_Rob_Conv                  : num  9 4 6 1 5 1 8 6 3 0 ...
##  $ No_Failed_Rob_Conv           : num  3 0 1 0 2 0 3 0 0 1 ...
##  $ No_TheftAndHandling_Conv     : num  266 98 107 206 254 108 203 151 123 144 ...
##  $ No_Failed_TheftAndHandling   : num  21 9 10 4 32 6 15 10 11 19 ...
##  $ No_FraudAndForgery_Conv      : num  11 8 7 16 6 5 11 8 7 4 ...
##  $ No_Failed_FraudAndForgery    : num  0 2 0 2 2 0 9 0 2 5 ...
##  $ No_CrimeDamage_Conv          : num  54 20 21 35 32 37 40 56 24 43 ...
##  $ No_Failed_CrimeDamage        : num  6 6 1 9 8 2 7 6 4 7 ...
##  $ No_DrugOffences_Conv         : num  135 45 40 75 63 42 75 70 29 19 ...
##  $ No_Failed_Drug_Offence       : num  2 2 2 10 7 2 9 6 2 2 ...
##  $ No_PublicOrderOffences_Conv  : num  68 29 45 86 74 40 50 65 45 58 ...
##  $ No_Failed_PublicOrderOffences: num  11 6 9 7 27 2 4 20 3 13 ...
##  $ No_Others_Ex_Motoring        : num  66 11 6 50 28 64 46 64 25 12 ...
##  $ No_Failed_Others_Ex_Motoring : num  16 6 2 6 5 1 15 14 1 3 ...
##  $ No_Motoring_Offences_Conv    : num  188 40 79 209 124 95 258 189 71 66 ...
##  $ No_Failed_Motoring_Offences  : num  37 5 6 12 17 10 13 17 7 3 ...
##  $ No_Failed_AdminFinalised_Conv: num  24 16 4 1 10 12 16 15 5 0 ...

Convert Cluster into Matrix

Cluster_Convictions = as.matrix(Clus_No_All_Convictions[,-1])

Cluster Missing Value Treatment

This is confirm that there is no missing values (NA) in the matrix

Cluster_Convictions = na.omit(Cluster_Convictions)

sapply(Cluster_Convictions, function(x){sum(is.na(x))} )
##     [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##    [37] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##    [73] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [109] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [181] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [217] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [253] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [289] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [325] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [361] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [397] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [433] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [469] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [505] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [541] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [577] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [613] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [649] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [685] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [721] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [757] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [793] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [829] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [865] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [901] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [937] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##   [973] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1009] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1045] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1081] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1117] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1153] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1189] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1225] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1261] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1333] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1369] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1405] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1441] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1477] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1513] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1549] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1585] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1621] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1657] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1693] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1729] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1765] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1801] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1837] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1873] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1909] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1945] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [1981] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2017] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2053] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2089] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2125] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2161] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2197] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2233] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2269] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2305] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2341] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2377] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2413] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2449] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2485] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2521] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2557] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2629] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2665] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2701] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2737] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2773] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2809] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2845] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2881] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2917] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2953] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [2989] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3025] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3061] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3097] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3133] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3169] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3205] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3241] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3277] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3313] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3349] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3421] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3457] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3493] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3529] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3601] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3637] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3673] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3709] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3745] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3781] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3853] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3925] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [3997] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4033] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4069] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4105] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4177] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4213] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4249] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4285] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4321] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4357] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4393] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4429] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4465] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4501] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4537] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4573] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4609] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4645] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4681] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4717] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4753] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4789] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4825] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4861] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4897] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4933] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [4969] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5005] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5041] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5077] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5113] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5185] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5257] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5293] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5329] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5365] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5401] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5437] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5473] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5509] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5545] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5581] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5617] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5653] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5689] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5725] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5761] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5797] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5833] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5869] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5905] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5941] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [5977] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6013] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6049] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6085] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6121] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6157] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6193] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6229] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6265] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6301] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6337] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6373] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6517] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6553] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6589] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6625] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6661] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6697] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6733] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6769] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6805] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6841] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6877] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6913] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6949] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [6985] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7021] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7057] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7093] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7129] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7165] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7201] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7237] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7273] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7309] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7345] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7381] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7417] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7453] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7489] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7525] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7561] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7597] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7633] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7669] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7705] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7777] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7813] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7849] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7885] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7921] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7957] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [7993] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8029] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8065] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8101] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8137] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8173] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8209] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8245] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8281] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8317] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8353] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8389] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8425] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8461] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8497] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8533] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8569] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8605] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8641] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8677] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8713] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8749] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8785] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8821] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8857] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8893] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8929] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [8965] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9001] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9037] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9073] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9109] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9181] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9217] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9253] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9289] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9325] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9361] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9397] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9433] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9469] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9505] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9541] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9577] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9613] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9649] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9685] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9721] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9757] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9793] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9829] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9865] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9901] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9937] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [9973] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10009] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10045] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10081] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10117] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10153] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10189] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10225] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10261] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10333] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10369] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10405] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10441] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10477] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10513] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10549] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10585] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10621] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10657] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10693] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10729] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10765] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10801] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10837] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10873] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10909] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10945] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [10981] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11017] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11053] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11089] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11125] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11161] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11197] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11233] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11269] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11305] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11341] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11377] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11413] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11449] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11485] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11521] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11557] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11629] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11665] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11701] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11737] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11773] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11809] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11845] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11881] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11917] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11953] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [11989] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12025] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12061] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12097] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12133] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12169] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12205] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12241] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12277] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12313] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12349] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12421] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12457] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12493] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12529] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12601] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12637] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12673] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12709] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12745] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12781] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12853] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12925] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [12997] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13033] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13069] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13105] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13177] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13213] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13249] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13285] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13321] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13357] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13393] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13429] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13465] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13501] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13537] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13573] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13609] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13645] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13681] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13717] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13753] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13789] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13825] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13861] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13897] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13933] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [13969] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14005] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14041] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14077] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14113] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14185] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14257] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14293] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14329] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14365] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14401] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14437] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14473] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14509] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14545] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14581] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14617] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14653] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14689] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14725] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14761] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14797] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14833] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14869] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14905] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14941] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [14977] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15013] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15049] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15085] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15121] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15157] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15193] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15229] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15265] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15301] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15337] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15373] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15517] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15553] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15589] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15625] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15661] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15697] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15733] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15769] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15805] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15841] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15877] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15913] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15949] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [15985] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16021] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16057] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16093] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16129] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16165] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16201] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16237] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16273] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16309] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16345] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16381] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16417] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16453] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16489] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16525] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16561] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16597] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16633] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16669] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16705] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16777] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16813] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16849] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16885] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16921] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16957] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [16993] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17029] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17065] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17101] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17137] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17173] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17209] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17245] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17281] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17317] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17353] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17389] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17425] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17461] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17497] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17533] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17569] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17605] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17641] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17677] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17713] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17749] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17785] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17821] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17857] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17893] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17929] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [17965] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18001] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18037] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18073] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18109] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18181] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18217] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18253] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18289] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18325] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18361] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18397] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18433] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18469] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18505] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18541] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18577] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18613] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18649] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18685] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18721] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18757] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18793] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18829] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18865] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18901] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18937] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [18973] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19009] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19045] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19081] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19117] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19153] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19189] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19225] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19261] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19333] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19369] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19405] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19441] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19477] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19513] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19549] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19585] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19621] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19657] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19693] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19729] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19765] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19801] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19837] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19873] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19909] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19945] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19981] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20017] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20053] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20089] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20125] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20161] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20197] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20233] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20269] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20305] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20341] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20377] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20413] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20449] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20485] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20521] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20557] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20629] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20665] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20701] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20737] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20773] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20809] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20845] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20881] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20917] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20953] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [20989] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21025] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21061] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21097] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21133] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21169] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21205] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21241] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21277] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21313] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21349] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21421] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21457] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21493] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21529] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21601] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21637] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21673] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21709] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21745] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21781] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21853] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21925] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [21997] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22033] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22069] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22105] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22177] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22213] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22249] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22285] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22321] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22357] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22393] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22429] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22465] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22501] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22537] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22573] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22609] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22645] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22681] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22717] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22753] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22789] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22825] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22861] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22897] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22933] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [22969] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23005] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23041] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23077] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23113] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23185] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23257] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23293] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23329] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23365] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23401] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23437] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23473] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23509] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23545] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23581] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23617] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23653] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23689] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23725] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23761] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23797] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23833] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23869] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23905] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23941] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [23977] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24013] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24049] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24085] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24121] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24157] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24193] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24229] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24265] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24301] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24337] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24373] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24517] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24553] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24589] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24625] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24661] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24697] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24733] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24769] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24805] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24841] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24877] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24913] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24949] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [24985] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25021] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25057] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25093] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25129] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25165] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25201] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25237] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25273] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25309] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25345] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25381] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25417] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25453] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25489] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25525] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25561] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25597] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25633] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25669] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25705] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25777] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25813] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25849] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25885] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25921] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25957] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [25993] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26029] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26065] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26101] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26137] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26173] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26209] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26245] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26281] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26317] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26353] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26389] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26425] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26461] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26497] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26533] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26569] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26605] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26641] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26677] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26713] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26749] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26785] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26821] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26857] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26893] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26929] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [26965] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27001] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27037] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27073] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27109] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27181] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27217] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27253] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27289] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27325] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27361] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27397] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27433] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27469] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27505] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27541] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27577] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27613] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27649] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27685] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27721] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27757] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27793] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27829] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27865] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27901] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27937] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [27973] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28009] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28045] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28081] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28117] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28153] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28189] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28225] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28261] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28333] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28369] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28405] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28441] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28477] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28513] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28549] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28585] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28621] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28657] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28693] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28729] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28765] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28801] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28837] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28873] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28909] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28945] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [28981] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29017] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29053] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29089] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29125] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29161] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29197] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29233] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29269] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29305] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29341] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29377] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29413] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29449] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29485] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29521] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29557] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29629] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29665] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29701] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29737] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29773] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29809] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29845] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29881] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29917] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29953] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [29989] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30025] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30061] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30097] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30133] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30169] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30205] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30241] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30277] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30313] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30349] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30421] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30457] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30493] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30529] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30601] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30637] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30673] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30709] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30745] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30781] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30853] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30925] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [30997] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31033] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31069] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31105] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31177] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31213] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31249] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31285] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31321] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31357] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31393] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31429] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31465] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31501] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31537] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31573] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31609] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31645] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31681] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31717] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31753] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31789] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31825] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31861] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31897] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31933] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [31969] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32005] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32041] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32077] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32113] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32185] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32257] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32293] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32329] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32365] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32401] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32437] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32473] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32509] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32545] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32581] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32617] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32653] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32689] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32725] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32761] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32797] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32833] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32869] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32905] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32941] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [32977] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33013] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33049] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33085] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33121] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33157] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33193] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33229] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33265] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33301] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33337] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33373] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33517] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33553] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33589] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33625] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33661] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33697] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33733] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33769] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33805] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33841] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33877] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33913] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33949] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [33985] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34021] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34057] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34093] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34129] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34165] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34201] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34237] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34273] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34309] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34345] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34381] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34417] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34453] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34489] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34525] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34561] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34597] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34633] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34669] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34705] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34777] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34813] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34849] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34885] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34921] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34957] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [34993] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35029] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35065] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35101] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35137] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35173] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35209] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35245] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35281] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35317] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35353] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35389] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35425] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35461] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35497] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35533] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35569] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35605] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35641] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35677] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35713] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35749] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35785] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35821] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35857] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35893] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35929] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [35965] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36001] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36037] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36073] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36109] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36181] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36217] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36253] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36289] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36325] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36361] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36397] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36433] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36469] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36505] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36541] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36577] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36613] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36649] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36685] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36721] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36757] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36793] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36829] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36865] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36901] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36937] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [36973] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37009] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37045] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37081] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37117] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37153] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37189] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37225] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37261] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37333] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37369] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37405] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37441] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37477] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37513] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37549] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37585] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37621] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37657] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37693] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37729] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37765] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37801] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37837] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37873] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37909] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37945] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37981] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38017] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38053] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38089] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38125] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38161] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38197] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38233] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38269] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38305] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38341] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38377] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38413] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38449] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38485] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38521] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38557] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38629] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38665] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38701] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38737] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38773] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38809] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38845] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38881] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38917] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38953] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [38989] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39025] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39061] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39097] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39133] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39169] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39205] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39241] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39277] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39313] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39349] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39421] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39457] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39493] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39529] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39601] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39637] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39673] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39709] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39745] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39781] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39853] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39925] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39997] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40033] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40069] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40105] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40177] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40213] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40249] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40285] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40321] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40357] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40393] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40429] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40465] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40501] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40537] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40573] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40609] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40645] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40681] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40717] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40753] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40789] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40825] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40861] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40897] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40933] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [40969] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41005] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41041] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41077] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41113] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41185] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41257] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41293] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41329] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41365] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41401] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41437] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41473] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41509] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41545] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41581] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41617] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41653] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41689] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41725] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41761] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41797] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41833] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41869] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41905] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41941] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [41977] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42013] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42049] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42085] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42121] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42157] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42193] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42229] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42265] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42301] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42337] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42373] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42517] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42553] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42589] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42625] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42661] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42697] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42733] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42769] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42805] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42841] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42877] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42913] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42949] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [42985] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43021] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43057] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43093] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43129] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43165] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43201] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43237] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43273] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43309] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43345] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43381] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43417] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43453] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43489] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43525] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43561] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43597] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43633] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43669] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43705] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43777] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43813] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43849] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43885] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43921] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43957] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [43993] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44029] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44065] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44101] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44137] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44173] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44209] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44245] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44281] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44317] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44353] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44389] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44425] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44461] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44497] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44533] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44569] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44605] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44641] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44677] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44713] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44749] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44785] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44821] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44857] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44893] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44929] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [44965] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45001] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45037] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45073] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45109] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45145] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45181] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45217] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45253] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45289] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45325] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45361] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45397] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45433] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45469] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45505] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45541] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45577] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45613] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45649] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45685] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45721] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45757] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45793] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45829] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45865] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45901] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45937] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [45973] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46009] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46045] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46081] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46117] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46153] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46189] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46225] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46261] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46297] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46333] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46369] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46405] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46441] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46477] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46513] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46549] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46585] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46621] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46657] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46693] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46729] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46765] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46801] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46837] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46873] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46909] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46945] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [46981] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47017] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47053] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47089] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47125] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47161] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47197] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47233] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47269] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47305] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47341] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47377] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47413] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47449] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47485] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47521] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47557] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47593] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47629] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47665] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47701] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47737] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47773] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47809] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47845] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47881] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47917] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47953] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [47989] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48025] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48061] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48097] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48133] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48169] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48205] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48241] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48277] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48313] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48349] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48385] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48421] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48457] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48493] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48529] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48565] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48601] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48637] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48673] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48709] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48745] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48781] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48817] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48853] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48889] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48925] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48961] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [48997] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49033] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49069] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49105] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49141] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49177] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49213] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49249] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49285] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49321] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49357] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49393] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49429] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49465] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49501] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49537] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49573] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49609] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49645] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49681] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49717] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49753] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49789] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49825] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49861] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49897] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49933] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [49969] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50005] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50041] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50077] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50113] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50185] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50221] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50257] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50293] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50329] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50365] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50401] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50437] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50473] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50509] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50545] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50581] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50617] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50653] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50689] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50725] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50761] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50797] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50833] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50869] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50905] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50941] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [50977] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51013] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51049] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51085] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51121] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51157] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51193] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51229] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51265] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51301] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51337] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51373] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51409] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51445] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51481] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51517] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51553] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51589] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51625] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51661] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51697] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51733] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51769] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51805] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51841] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51877] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51913] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51949] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [51985] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52021] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52057] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52093] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52129] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52165] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52201] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52237] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52273] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52309] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52345] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52381] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52417] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52453] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52489] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52525] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52561] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52597] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52633] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52669] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52705] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52741] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52777] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52813] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52849] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52885] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52921] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52957] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [52993] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53029] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53065] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53101] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53137] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53173] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53209] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53245] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53281] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53317] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53353] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53389] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53425] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53461] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53497] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [53533] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This confirms that there are no missing values in the matrix

Data Standardization

According to https://www.egnyte.com/, data standardization is an important function, because it provides a structure for creating and maintaining data quality by:

  • Defining how data should be formatted
  • Eliminating extraneous data
  • Identifying data errors
# To Standardize the data frame
Cluster_Convictions = scale(Cluster_Convictions)

print(head(Cluster_Convictions, 4))
##   No_Homicide_Conv No_Failed_Homicide No_Conv_Offence No_Failed_Conv_Offence
## 2       -0.2924729         -0.3586002      -0.2854342             -0.2426991
## 3       -0.6023033         -0.3586002      -0.7099756             -0.4621678
## 4       -0.6023033         -0.3586002      -0.5800139             -0.4621678
## 5       -0.2924729          0.4079882      -0.4023997             -0.2227474
##   No_Sex_Offence_Conv No_Failed_Sex_Offence No_Burg_Conv No_Failed_Burg_Conv
## 2           0.5499727           -0.02362809    0.1891300          -0.3851009
## 3          -0.7048131           -0.60346375   -0.4473215          -0.5057511
## 4          -0.6643361           -0.43779642   -0.6897792          -0.6264014
## 5          -0.2190896           -0.43779642   -0.1442493          -0.2644506
##   No_Rob_Conv No_Failed_Rob_Conv No_TheftAndHandling_Conv
## 2 -0.04835828         0.05931916               0.43326907
## 3 -0.31909389        -0.43701534              -0.53694565
## 4 -0.21079965        -0.27157051              -0.48496986
## 5 -0.48153525        -0.43701534               0.08676382
##   No_Failed_TheftAndHandling No_FraudAndForgery_Conv No_Failed_FraudAndForgery
## 2                  0.1571143              -0.2626874                -0.4984381
## 3                 -0.3279867              -0.3527877                -0.1859386
## 4                 -0.2875616              -0.3828211                -0.4984381
## 5                 -0.5301121              -0.1125202                -0.1859386
##   No_CrimeDamage_Conv No_Failed_CrimeDamage No_DrugOffences_Conv
## 2           0.1132726           -0.24323767            0.2602186
## 3          -0.6649006           -0.24323767           -0.3333721
## 4          -0.6420132           -0.74721820           -0.3663493
## 5          -0.3215889            0.05915066           -0.1355085
##   No_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 2             -0.3452683                  -0.1768218
## 3             -0.3452683                  -0.6321510
## 4             -0.3452683                  -0.4453493
## 5              0.2773919                   0.0333302
##   No_Failed_PublicOrderOffences No_Others_Ex_Motoring
## 2                    -0.1592045             0.5764698
## 3                    -0.3827337            -0.3824411
## 4                    -0.2486162            -0.4696148
## 5                    -0.3380279             0.2975139
##   No_Failed_Others_Ex_Motoring No_Motoring_Offences_Conv
## 2                  0.799569899               0.004943085
## 3                 -0.007992683              -0.786889616
## 4                 -0.331017716              -0.578230999
## 5                 -0.007992683               0.117297725
##   No_Failed_Motoring_Offences No_Failed_AdminFinalised_Conv
## 2                   0.1137421                     0.1216016
## 3                  -0.5140330                    -0.1139586
## 4                  -0.4944151                    -0.4672989
## 5                  -0.3767072                    -0.5556339
print(tail(Cluster_Convictions, 4))
##      No_Homicide_Conv No_Failed_Homicide No_Conv_Offence No_Failed_Conv_Offence
## 2190        1.2566789         -0.3586002     -0.05583537            -0.09306136
## 2191        2.8058308          0.4079882      1.62933378             1.02423378
## 2192        0.9468486          1.1745766      0.92320892             0.03662469
## 2193       -0.6023033         -0.3586002     -0.64066271            -0.56192628
##      No_Sex_Offence_Conv No_Failed_Sex_Offence No_Burg_Conv No_Failed_Burg_Conv
## 2190          -0.0976587            0.05920557   -0.1745565         -0.02314999
## 2191           1.7642815            1.21887689    0.9771176          0.94205232
## 2192           1.9666663            2.04721354    1.6135691         -0.02314999
## 2193          -0.4214744           -0.68629741   -0.7200864         -0.50575114
##      No_Rob_Conv No_Failed_Rob_Conv No_TheftAndHandling_Conv
## 2190  -0.3190939         -0.1061257               -0.4560944
## 2191   1.0887313          1.0519882                1.4727848
## 2192   0.2765244         -0.2715705                0.3004421
## 2193  -0.5356824         -0.4370153               -0.7679492
##      No_Failed_TheftAndHandling No_FraudAndForgery_Conv
## 2190                 -0.3684118              -0.1125202
## 2191                  0.3592397               1.1789174
## 2192                 -0.0854362               0.4280816
## 2193                 -0.6513873              -0.3527877
##      No_Failed_FraudAndForgery No_CrimeDamage_Conv No_Failed_CrimeDamage
## 2190                 0.1265608          -0.1842642            -0.3440338
## 2191                 1.2203089           0.9143332             0.7647234
## 2192                 0.4390603           0.4794717             0.4623351
## 2193                -0.4984381          -0.8251127            -0.7472182
##      No_DrugOffences_Conv No_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 2190           -0.2608221             -0.3452683                  -0.0950960
## 2191            0.7614730              0.5108895                   1.9830734
## 2192            0.2734095             -0.1117707                   0.8272376
## 2193           -0.4652811             -0.5009333                  -0.7255519
##      No_Failed_PublicOrderOffences No_Others_Ex_Motoring
## 2190                   -0.38273373            -0.3824411
## 2191                    1.04785307             0.6287740
## 2192                    0.01961881            -0.1557895
## 2193                   -0.51685124            -0.4521801
##      No_Failed_Others_Ex_Motoring No_Motoring_Offences_Conv
## 2190                   -0.3310177                0.01564353
## 2191                    0.7188136                0.49716341
## 2192                    0.1535198                0.26175369
## 2193                   -0.4117740               -0.65848431
##      No_Failed_Motoring_Offences No_Failed_AdminFinalised_Conv
## 2190                 -0.08243762                    -0.2317387
## 2191                  0.72189928                     2.1238633
## 2192                 -0.20014546                     0.9166173
## 2193                 -0.57288695                    -0.4672989

This confirms that the matrix is standardized and set for analysis.

K-means Clustering

The idea of k-means clustering consists of defining clusters so that the total intra-cluster variation (known as total within-cluster variation) is minimized

set.seed(1234) # This is set to ensure same output

# To determine the K value
withinSum_Conviction = numeric(15)

for (k in 1:15) {
  withinSum_Conviction[k] = sum(kmeans(Cluster_Convictions, centers=k, nstart=25, iter.max=30)$withinss)
}
# Graphical presentation to determine the elbow of the WSS curve

fviz_nbclust(Cluster_Convictions, kmeans, method = 'wss') + 
  geom_vline(xintercept = withinSum_Conviction, linetype = 2)

This plot shows the variance within the clusters. It tends to decrease as k increases. It has a bend at k= 3, however in order to achieve a lower total witin sum of squares, the cluster is increased to 6

To determine the clusters of the data

kms_Convictions = kmeans(Cluster_Convictions, centers = 6, nstart = 25, iter.max = 30)

print (kms_Convictions)
## K-means clustering with 6 clusters of sizes 80, 149, 173, 51, 682, 1007
## 
## Cluster means:
##   No_Homicide_Conv No_Failed_Homicide No_Conv_Offence No_Failed_Conv_Offence
## 1       0.79967914          0.5517235      1.49834328             0.99929416
## 2      -0.14483564         -0.1991086      0.22862651             0.29813924
## 3       0.85730222          0.5453537      0.61297874             0.35371831
## 4       4.49471011          4.4964594      5.33009739             5.81518436
## 5      -0.09303666         -0.1315461     -0.03458162            -0.08658144
## 6      -0.35400826         -0.2466950     -0.50469557            -0.42014439
##   No_Sex_Offence_Conv No_Failed_Sex_Offence No_Burg_Conv No_Failed_Burg_Conv
## 1         1.245670437            1.18677884   1.45180438           1.0838164
## 2         0.165577375            0.19707637   0.57234342           0.3558053
## 3         1.160168706            0.98186727   0.48361806           0.2676660
## 4         4.658781025            4.96425790   5.21359088           5.3824561
## 5         0.001871892           -0.07694771  -0.07341399          -0.1154952
## 6        -0.559988394           -0.49142854  -0.49743221          -0.3791103
##   No_Rob_Conv No_Failed_Rob_Conv No_TheftAndHandling_Conv
## 1   1.5950068         1.26706643               1.87595815
## 2   0.1616889         0.06598136               0.83399814
## 3   0.2383398         0.09757230               0.33442494
## 4   5.2909725         5.27245339               4.75065664
## 5  -0.1470458        -0.12407717              -0.02180275
## 6  -0.3599596        -0.31017978              -0.55572185
##   No_Failed_TheftAndHandling No_FraudAndForgery_Conv No_Failed_FraudAndForgery
## 1                 1.01564195             0.797492833                 0.7398410
## 2                 0.57194616             0.003380617                 0.0248412
## 3                 0.10313629             0.198230342                 0.1961055
## 4                 5.55346630             5.947755658                 5.7086589
## 5                -0.09853582            -0.089004304                -0.1078138
## 6                -0.39755637            -0.338859574                -0.3122418
##   No_CrimeDamage_Conv No_Failed_CrimeDamage No_DrugOffences_Conv
## 1          1.59466249            0.96001587           0.72676440
## 2          0.75273858            0.74713483           0.28177556
## 3          0.45261532            0.30793642           0.14443602
## 4          4.92053374            5.20765771           6.00446947
## 5         -0.03217347           -0.06514484          -0.07992105
## 6         -0.54323576           -0.45934372          -0.37421542
##   No_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 1              0.6568254                  1.49257287
## 2              0.1979923                  0.62155196
## 3              0.1532198                  0.39431377
## 4              5.9362739                  5.13031646
## 5             -0.1025267                 -0.06251868
## 6             -0.3390076                 -0.49577136
##   No_Failed_PublicOrderOffences No_Others_Ex_Motoring
## 1                     0.9461473            1.10256322
## 2                     0.4903803            0.95617280
## 3                     0.2064530           -0.06105732
## 4                     5.6779753            4.53518233
## 5                    -0.1097790           -0.13285842
## 6                    -0.3964074           -0.35828873
##   No_Failed_Others_Ex_Motoring No_Motoring_Offences_Conv
## 1                   0.89647741                0.96972168
## 2                   0.88303610                0.65048854
## 3                  -0.06260819                0.37562371
## 4                   4.37501364                5.15384886
## 5                  -0.13694219               -0.03268105
## 6                  -0.31995082               -0.47670431
##   No_Failed_Motoring_Offences No_Failed_AdminFinalised_Conv
## 1                   0.5926659                    0.87134555
## 2                   0.2522529                    0.03998555
## 3                   0.2324705                    0.22355290
## 4                   5.8406516                    5.80218188
## 5                  -0.0989777                   -0.12501124
## 6                  -0.3531150                   -0.32273461
## 
## Clustering vector:
##    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17 
##    5    6    6    5    5    6    5    5    6    6    6    5    6    1    6    2 
##   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33 
##    5    5    3    2    5    6    2    4    6    6    2    6    6    5    5    5 
##   34   35   36   37   38   39   40   41   42   43   45   46   47   48   49   50 
##    5    6    6    5    3    6    5    1    2    6    5    6    6    6    5    6 
##   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66 
##    6    5    6    6    6    5    6    1    6    2    5    5    2    2    6    6 
##   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82 
##    2    4    6    6    2    6    6    5    2    5    5    6    5    5    2    6 
##   83   84   85   86   88   89   90   91   92   93   94   95   96   97   98   99 
##    5    1    1    6    5    6    6    5    5    6    5    5    6    6    6    5 
##  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115 
##    6    1    6    5    5    5    2    2    6    6    2    4    6    6    2    6 
##  116  117  118  119  120  121  122  123  124  125  126  127  128  129  131  132 
##    6    5    2    5    5    6    6    5    3    6    5    1    1    6    2    6 
##  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148 
##    6    5    5    6    5    5    6    6    6    5    6    1    5    2    6    5 
##  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164 
##    2    2    5    6    2    4    6    6    2    6    6    5    2    5    5    6 
##  165  166  167  168  169  170  171  172  174  175  176  177  178  179  180  181 
##    6    2    2    6    5    1    2    6    2    6    6    5    5    6    5    5 
##  182  183  184  185  186  187  188  189  190  191  192  193  194  195  196  197 
##    6    6    6    2    6    1    6    2    5    5    2    2    5    6    2    4 
##  198  199  200  201  202  203  204  205  206  207  208  209  210  211  212  213 
##    5    6    2    5    6    5    2    2    5    6    5    2    2    6    5    1 
##  214  215  217  218  219  220  221  222  223  224  225  226  227  228  229  230 
##    1    6    2    6    6    5    5    6    5    5    6    6    6    5    6    1 
##  231  232  233  234  235  236  237  238  239  240  241  242  243  244  245  246 
##    6    2    5    5    2    2    6    5    2    4    5    6    2    6    6    3 
##  247  248  249  250  251  252  253  254  255  256  257  258  260  261  262  263 
##    2    2    5    6    5    2    2    6    5    1    1    6    3    6    6    5 
##  264  265  266  267  268  269  270  271  272  273  274  275  276  277  278  279 
##    5    6    6    5    6    6    6    5    6    1    6    2    5    5    2    2 
##  280  281  282  283  284  285  286  287  288  289  290  291  292  293  294  295 
##    6    6    2    4    5    6    2    5    6    5    2    5    5    6    5    5 
##  296  297  298  299  300  301  303  304  305  306  307  308  309  310  311  312 
##    3    6    6    1    2    6    2    6    6    5    5    6    6    5    6    6 
##  313  314  315  316  317  318  319  320  321  322  323  324  325  326  327  328 
##    6    5    6    1    6    2    5    5    2    2    5    6    2    4    5    6 
##  329  330  331  332  333  334  335  336  337  338  339  340  341  342  343  344 
##    2    6    6    5    2    5    5    6    2    5    3    6    5    1    2    6 
##  346  347  348  349  350  351  352  353  354  355  356  357  358  359  360  361 
##    2    6    6    5    5    6    5    5    6    6    6    5    6    1    6    2 
##  362  363  364  365  366  367  368  369  370  371  372  373  374  375  376  377 
##    5    5    3    2    5    6    2    4    6    6    2    6    6    3    2    5 
##  378  379  380  381  382  383  384  385  386  387  389  390  391  392  393  394 
##    5    6    6    5    2    6    5    1    2    6    5    6    6    5    5    6 
##  395  396  397  398  399  400  401  402  403  404  405  406  407  408  409  410 
##    5    5    6    6    6    5    6    1    6    2    5    5    2    2    6    6 
##  411  412  413  414  415  416  417  418  419  420  421  422  423  424  425  426 
##    2    4    6    6    2    6    6    5    2    5    5    6    6    5    3    6 
##  427  428  429  430  432  433  434  435  436  437  438  439  440  441  442  443 
##    6    1    3    6    2    6    6    5    5    6    5    5    6    6    6    5 
##  444  445  446  447  448  449  450  451  452  453  454  455  456  457  458  459 
##    6    1    5    2    5    5    2    2    5    6    2    4    5    6    2    5 
##  460  461  462  463  464  465  466  467  468  469  470  471  472  473  475  476 
##    6    2    2    5    5    6    5    2    3    6    5    1    3    6    2    6 
##  477  478  479  480  481  482  483  484  485  486  487  488  489  490  491  492 
##    6    5    5    6    5    5    6    6    6    5    6    1    6    2    5    5 
##  493  494  495  496  497  498  499  500  501  502  503  504  505  506  507  508 
##    2    2    6    6    2    4    5    6    2    6    5    2    2    2    5    6 
##  509  510  511  512  513  514  515  516  518  519  520  521  522  523  524  525 
##    5    2    3    6    5    1    1    6    3    6    6    6    5    6    6    6 
##  526  527  528  529  530  531  532  533  534  535  536  537  538  539  540  541 
##    6    6    6    5    6    1    6    5    6    5    5    2    6    6    5    4 
##  542  543  544  545  546  547  548  549  550  551  552  553  554  555  556  557 
##    6    6    2    6    6    5    2    5    5    6    6    5    3    6    5    1 
##  558  559  561  562  563  564  565  566  567  568  569  570  571  572  573  574 
##    2    6    3    6    6    5    5    6    5    5    6    6    6    5    6    2 
##  575  576  577  578  579  580  581  582  583  584  585  586  587  588  589  590 
##    6    3    6    5    5    2    5    6    5    4    6    5    2    6    6    5 
##  591  592  593  594  595  596  597  598  599  600  601  602  604  605  606  607 
##    2    5    5    6    6    5    3    6    6    1    3    6    5    6    6    5 
##  608  609  610  611  612  613  614  615  616  617  618  619  620  621  622  623 
##    6    6    5    6    6    6    6    5    6    3    6    5    6    5    5    5 
##  624  625  626  627  628  629  630  631  632  633  634  635  636  637  638  639 
##    6    6    3    4    6    6    3    6    6    5    3    5    5    6    6    5 
##  640  641  642  643  644  645  647  648  649  650  651  652  653  654  655  656 
##    3    6    5    1    3    6    2    6    6    5    5    6    5    5    6    6 
##  657  658  659  660  661  662  663  664  665  666  667  668  669  670  671  672 
##    6    5    6    1    6    3    6    5    2    2    6    6    2    4    5    6 
##  673  674  675  676  677  678  679  680  681  682  683  684  685  686  687  688 
##    2    6    6    5    2    5    5    6    6    5    2    6    5    1    2    6 
##  690  691  692  693  694  695  696  697  698  699  700  701  702  703  704  705 
##    2    6    6    5    5    6    5    5    6    6    6    5    6    1    6    5 
##  706  707  708  709  710  711  712  713  714  715  716  717  718  719  720  721 
##    5    5    2    2    5    6    2    4    5    6    2    6    6    5    2    5 
##  722  723  724  725  726  727  728  729  730  731  733  734  735  736  737  738 
##    5    6    6    5    2    6    5    1    1    6    3    6    6    5    5    6 
##  739  740  741  742  743  744  745  746  747  748  749  750  751  752  753  754 
##    5    5    6    6    6    3    6    1    6    5    5    5    2    2    6    6 
##  755  756  757  758  759  760  761  762  763  764  765  766  767  768  769  770 
##    5    4    6    6    2    5    6    2    2    5    5    6    6    5    3    6 
##  771  772  773  774  776  777  778  779  780  781  782  783  784  785  786  787 
##    5    1    1    6    3    6    6    5    5    6    5    5    6    6    6    5 
##  788  789  790  791  792  793  794  795  796  797  798  799  800  801  802  803 
##    6    1    6    5    5    5    2    2    6    6    5    4    5    6    2    6 
##  804  805  806  807  808  809  810  811  812  813  814  815  816  817  819  820 
##    6    5    2    5    5    6    6    5    2    6    5    1    1    6    2    6 
##  821  822  823  824  825  826  827  828  829  830  831  832  833  834  835  836 
##    6    5    5    6    5    5    6    5    6    5    6    1    6    3    5    5 
##  837  838  839  840  841  842  843  844  845  846  847  848  849  850  851  852 
##    2    2    5    6    2    4    6    6    2    6    6    5    2    5    5    6 
##  853  854  855  856  857  858  859  860  862  863  864  865  866  867  868  869 
##    6    5    3    6    5    1    1    6    5    6    6    5    5    6    5    5 
##  870  871  872  873  874  875  876  877  878  879  880  881  882  883  884  885 
##    6    6    6    5    6    1    6    5    6    5    5    2    6    6    2    4 
##  886  887  888  889  890  891  892  893  894  895  896  897  898  899  900  901 
##    6    6    2    6    6    5    2    5    5    6    6    5    3    6    5    1 
##  902  903  905  906  907  908  909  910  911  912  913  914  915  916  917  918 
##    2    6    3    6    6    5    5    6    5    5    6    6    6    5    6    3 
##  919  920  921  922  923  924  925  926  927  928  929  930  931  932  933  934 
##    6    5    6    5    5    5    5    6    5    4    5    6    2    6    6    3 
##  935  936  937  938  939  940  941  942  943  944  945  946  948  949  950  951 
##    5    5    5    6    6    5    3    6    5    1    3    6    2    6    6    5 
##  952  953  954  955  956  957  958  959  960  961  962  963  964  965  966  967 
##    5    6    5    5    6    6    6    3    6    1    6    5    5    5    3    2 
##  968  969  970  971  972  973  974  975  976  977  978  979  980  981  982  983 
##    6    6    2    4    6    6    2    6    6    3    3    5    5    6    6    5 
##  984  985  986  987  988  989  991  992  993  994  995  996  997  998  999 1000 
##    3    6    5    1    1    6    5    6    6    5    6    6    5    5    6    6 
## 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 
##    6    3    6    3    6    5    5    5    3    3    5    6    5    4    6    6 
## 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 
##    3    6    6    5    3    5    5    6    6    5    3    6    5    1    3    6 
## 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 
##    5    6    6    5    6    6    6    5    6    6    6    5    6    3    6    5 
## 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 
##    6    5    5    5    6    6    5    4    6    6    3    6    6    5    3    5 
## 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1077 1078 1079 1080 1081 1082 
##    5    6    6    5    3    6    5    1    3    6    3    6    6    6    6    6 
## 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 
##    6    6    6    6    6    5    6    3    6    5    6    5    5    5    6    6 
## 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 
##    5    4    6    6    3    6    6    5    5    5    5    6    6    6    3    6 
## 1115 1116 1117 1118 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 
##    5    1    3    6    3    6    6    5    5    6    5    5    6    6    6    3 
## 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 
##    6    1    6    5    5    5    5    5    6    6    5    4    6    6    2    6 
## 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1163 1164 
##    6    5    5    5    5    6    6    5    3    6    5    1    3    6    3    6 
## 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 
##    6    5    5    6    6    6    6    6    6    3    6    3    6    5    6    5 
## 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 
##    5    5    6    6    5    4    6    6    3    6    6    5    5    5    5    6 
## 1197 1198 1199 1200 1201 1202 1203 1204 1206 1207 1208 1209 1210 1211 1212 1213 
##    6    5    5    6    5    1    3    6    3    6    6    5    5    6    5    5 
## 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 
##    6    6    6    5    6    3    6    5    6    5    5    5    6    6    5    4 
## 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 
##    6    6    2    6    6    5    5    5    5    6    6    5    3    6    5    1 
## 1246 1247 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 
##    3    6    5    6    6    5    6    6    5    5    6    6    6    3    6    3 
## 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 
##    6    5    6    5    5    3    5    6    5    4    6    6    2    6    6    5 
## 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1292 1293 1294 1295 
##    5    5    5    6    6    5    3    6    5    1    3    6    5    6    6    5 
## 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
##    6    6    6    6    6    6    6    5    6    3    6    5    5    5    5    5 
## 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
##    6    6    3    4    6    6    3    6    6    3    3    5    5    6    6    5 
## 1328 1329 1330 1331 1332 1333 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 
##    3    6    5    1    3    6    3    6    6    5    6    6    6    6    6    6 
## 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 
##    6    3    6    3    6    5    5    5    5    5    5    6    5    4    6    6 
## 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 
##    3    6    6    5    5    5    5    6    6    5    3    6    5    1    3    6 
## 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 
##    5    6    6    5    5    6    6    6    6    6    6    5    6    3    6    5 
## 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 
##    6    5    3    5    5    6    5    4    6    6    3    6    6    5    3    5 
## 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1421 1422 1423 1424 1425 1426 
##    5    6    6    5    3    6    5    1    3    6    5    6    6    5    6    6 
## 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 
##    6    6    6    6    6    5    6    3    6    5    6    6    5    5    6    6 
## 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 
##    5    4    6    6    3    6    6    5    5    5    5    6    6    5    5    6 
## 1459 1460 1461 1462 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 
##    5    1    3    6    5    6    6    5    6    6    6    6    6    6    6    5 
## 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 
##    6    3    6    5    6    6    5    5    6    6    5    4    6    6    5    6 
## 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1507 1508 
##    6    5    5    5    6    6    6    6    5    6    6    3    3    6    5    6 
## 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 
##    6    5    6    6    6    6    6    6    6    5    6    3    6    5    5    5 
## 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 
##    5    5    6    6    5    4    6    6    3    6    6    5    3    5    5    6 
## 1541 1542 1543 1544 1545 1546 1547 1548 1550 1551 1552 1553 1554 1555 1556 1557 
##    6    5    3    6    5    1    3    6    3    6    6    5    6    6    5    5 
## 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 
##    6    6    6    3    6    3    6    5    6    5    5    5    6    6    5    4 
## 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 
##    6    6    5    6    6    5    5    5    5    6    6    5    3    6    5    1 
## 1590 1591 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 
##    3    6    3    6    6    5    6    6    6    6    6    6    6    5    6    3 
## 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 
##    6    5    5    6    5    5    6    6    5    4    6    6    3    6    6    5 
## 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1636 1637 1638 1639 
##    3    5    5    6    6    6    5    6    5    1    3    6    5    6    6    5 
## 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 
##    6    6    6    5    6    6    6    3    6    3    6    5    5    5    5    5 
## 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 
##    5    6    3    4    6    6    3    6    6    5    3    5    5    6    6    5 
## 1672 1673 1674 1675 1676 1677 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 
##    3    6    5    1    3    6    5    6    6    5    6    6    6    6    6    6 
## 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 
##    6    5    6    3    6    5    6    6    3    5    5    6    5    4    6    6 
## 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 
##    3    6    6    5    5    5    5    6    6    5    3    6    5    1    3    6 
## 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 
##    5    6    6    5    6    6    6    5    6    6    6    5    6    3    6    5 
## 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 
##    6    6    5    5    6    6    5    4    6    6    3    6    6    5    5    5 
## 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1765 1766 1767 1768 1769 1770 
##    5    6    6    5    3    6    6    1    3    6    5    6    6    5    6    6 
## 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 
##    6    6    6    6    6    5    6    3    6    5    6    6    5    5    6    6 
## 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 
##    5    4    6    6    3    6    6    5    5    5    5    6    6    5    3    6 
## 1803 1804 1805 1806 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 
##    5    1    3    6    5    6    6    5    6    6    6    6    6    6    6    5 
## 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 
##    6    3    6    5    6    6    5    5    6    6    5    4    6    6    3    6 
## 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1851 1852 
##    6    5    5    5    5    6    6    5    5    6    5    1    3    6    5    6 
## 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 
##    6    5    6    6    6    6    6    6    6    5    6    3    6    5    6    6 
## 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 
##    5    5    6    6    5    4    6    6    5    6    6    5    5    5    6    6 
## 1885 1886 1887 1888 1889 1890 1891 1892 1894 1895 1896 1897 1898 1899 1900 1901 
##    6    6    5    6    6    3    3    6    5    6    6    5    6    6    6    6 
## 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 
##    6    6    6    5    6    3    6    5    6    6    5    5    5    6    5    4 
## 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 
##    6    6    5    6    6    5    5    5    6    6    6    5    5    6    6    1 
## 1934 1935 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 
##    3    6    5    6    6    5    6    6    5    6    6    6    6    5    6    3 
## 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 
##    6    5    6    6    5    5    5    6    5    4    6    6    3    6    6    5 
## 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1980 1981 1982 1983 
##    5    5    5    6    6    6    3    6    5    1    3    6    3    6    6    5 
## 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
##    6    6    6    6    6    6    6    5    6    3    6    5    5    6    5    5 
## 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
##    6    6    5    4    6    6    3    6    6    5    3    5    5    6    6    6 
## 2016 2017 2018 2019 2020 2021 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 
##    5    6    5    1    3    6    5    6    6    5    6    6    6    6    6    6 
## 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 
##    6    5    6    3    6    5    6    6    3    5    5    6    5    4    6    6 
## 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 
##    5    6    6    5    5    5    6    6    6    6    5    6    5    1    3    6 
## 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 
##    5    6    6    5    6    6    6    6    6    6    6    5    6    3    6    5 
## 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 
##    6    6    3    5    5    6    5    4    6    6    3    6    6    5    5    5 
## 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2109 2110 2111 2112 2113 2114 
##    5    6    6    5    3    6    5    1    3    6    5    6    6    5    6    6 
## 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 
##    6    5    6    6    6    5    6    3    6    5    6    6    5    5    6    6 
## 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 
##    5    4    6    6    3    6    6    5    5    5    5    6    6    5    3    6 
## 2147 2148 2149 2150 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 
##    6    1    3    6    5    6    6    5    6    6    6    6    6    6    6    5 
## 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 
##    6    3    6    5    6    6    5    5    6    6    5    4    6    6    3    6 
## 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 
##    6    5    5    5    5    6    6    5    3    6    5    1    3    6 
## 
## Within cluster sum of squares by cluster:
## [1]  908.4652 1007.2810 1117.3301 3263.4504 1778.1204 1046.4948
##  (between_SS / total_SS =  83.0 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"

From the output, it reveals that: 984, 698, 30, 313, 21, 96 * 984 Areas were allocated to the 1st cluster * 698 Areas were allocated to the 2nd cluster * 30 Areas were allocated to the 3rd cluster * 313 Areas were allocated to the 4th cluster * 21 Areas were allocated to the 5th cluster * 96 Areas were allocated to the 6th cluster

Graphical Presentation of the cluster

fviz_cluster(kms_Convictions, data = Cluster_Convictions, ggtheme = theme_minimal(), 
             pallete = c('#2E9FDF', '00AFBB', '#E7B800', 'FC4E07'),
             repel = T)

kms_Convictions$centers
##   No_Homicide_Conv No_Failed_Homicide No_Conv_Offence No_Failed_Conv_Offence
## 1       0.79967914          0.5517235      1.49834328             0.99929416
## 2      -0.14483564         -0.1991086      0.22862651             0.29813924
## 3       0.85730222          0.5453537      0.61297874             0.35371831
## 4       4.49471011          4.4964594      5.33009739             5.81518436
## 5      -0.09303666         -0.1315461     -0.03458162            -0.08658144
## 6      -0.35400826         -0.2466950     -0.50469557            -0.42014439
##   No_Sex_Offence_Conv No_Failed_Sex_Offence No_Burg_Conv No_Failed_Burg_Conv
## 1         1.245670437            1.18677884   1.45180438           1.0838164
## 2         0.165577375            0.19707637   0.57234342           0.3558053
## 3         1.160168706            0.98186727   0.48361806           0.2676660
## 4         4.658781025            4.96425790   5.21359088           5.3824561
## 5         0.001871892           -0.07694771  -0.07341399          -0.1154952
## 6        -0.559988394           -0.49142854  -0.49743221          -0.3791103
##   No_Rob_Conv No_Failed_Rob_Conv No_TheftAndHandling_Conv
## 1   1.5950068         1.26706643               1.87595815
## 2   0.1616889         0.06598136               0.83399814
## 3   0.2383398         0.09757230               0.33442494
## 4   5.2909725         5.27245339               4.75065664
## 5  -0.1470458        -0.12407717              -0.02180275
## 6  -0.3599596        -0.31017978              -0.55572185
##   No_Failed_TheftAndHandling No_FraudAndForgery_Conv No_Failed_FraudAndForgery
## 1                 1.01564195             0.797492833                 0.7398410
## 2                 0.57194616             0.003380617                 0.0248412
## 3                 0.10313629             0.198230342                 0.1961055
## 4                 5.55346630             5.947755658                 5.7086589
## 5                -0.09853582            -0.089004304                -0.1078138
## 6                -0.39755637            -0.338859574                -0.3122418
##   No_CrimeDamage_Conv No_Failed_CrimeDamage No_DrugOffences_Conv
## 1          1.59466249            0.96001587           0.72676440
## 2          0.75273858            0.74713483           0.28177556
## 3          0.45261532            0.30793642           0.14443602
## 4          4.92053374            5.20765771           6.00446947
## 5         -0.03217347           -0.06514484          -0.07992105
## 6         -0.54323576           -0.45934372          -0.37421542
##   No_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 1              0.6568254                  1.49257287
## 2              0.1979923                  0.62155196
## 3              0.1532198                  0.39431377
## 4              5.9362739                  5.13031646
## 5             -0.1025267                 -0.06251868
## 6             -0.3390076                 -0.49577136
##   No_Failed_PublicOrderOffences No_Others_Ex_Motoring
## 1                     0.9461473            1.10256322
## 2                     0.4903803            0.95617280
## 3                     0.2064530           -0.06105732
## 4                     5.6779753            4.53518233
## 5                    -0.1097790           -0.13285842
## 6                    -0.3964074           -0.35828873
##   No_Failed_Others_Ex_Motoring No_Motoring_Offences_Conv
## 1                   0.89647741                0.96972168
## 2                   0.88303610                0.65048854
## 3                  -0.06260819                0.37562371
## 4                   4.37501364                5.15384886
## 5                  -0.13694219               -0.03268105
## 6                  -0.31995082               -0.47670431
##   No_Failed_Motoring_Offences No_Failed_AdminFinalised_Conv
## 1                   0.5926659                    0.87134555
## 2                   0.2522529                    0.03998555
## 3                   0.2324705                    0.22355290
## 4                   5.8406516                    5.80218188
## 5                  -0.0989777                   -0.12501124
## 6                  -0.3531150                   -0.32273461

This shows how the various Areas are arranged into a cluster as well as the mean of each of the principal offence categories by cluster

To include point classifications to the data

No_All_Convictions = cbind(No_All_Convictions, cluster = kms_Convictions$cluster)

head(No_All_Convictions, 6)
##                Area No_Homicide_Conv No_Failed_Homicide No_Conv_Offence
## 2 Avon and Somerset                1                  0             167
## 3      Bedfordshire                0                  0              69
## 4    Cambridgeshire                0                  0              99
## 5          Cheshire                1                  1             140
## 6         Cleveland                0                  0              85
## 7           Cumbria                0                  0              77
##   No_Failed_Conv_Offence No_Sex_Offence_Conv No_Failed_Sex_Offence No_Burg_Conv
## 2                     45                  36                     8           37
## 3                     23                   5                     1           16
## 4                     23                   6                     3            8
## 5                     47                  17                     3           26
## 6                     41                  11                     4           25
## 7                     19                   8                     1           12
##   No_Failed_Burg_Conv No_Rob_Conv No_Failed_Rob_Conv No_TheftAndHandling_Conv
## 2                   2           9                  3                      266
## 3                   1           4                  0                       98
## 4                   0           6                  1                      107
## 5                   3           1                  0                      206
## 6                  10           5                  2                      254
## 7                   1           1                  0                      108
##   No_Failed_TheftAndHandling No_FraudAndForgery_Conv No_Failed_FraudAndForgery
## 2                         21                      11                         0
## 3                          9                       8                         2
## 4                         10                       7                         0
## 5                          4                      16                         2
## 6                         32                       6                         2
## 7                          6                       5                         0
##   No_CrimeDamage_Conv No_Failed_CrimeDamage No_DrugOffences_Conv
## 2                  54                     6                  135
## 3                  20                     6                   45
## 4                  21                     1                   40
## 5                  35                     9                   75
## 6                  32                     8                   63
## 7                  37                     2                   42
##   No_Failed_Drug_Offence No_PublicOrderOffences_Conv
## 2                      2                          68
## 3                      2                          29
## 4                      2                          45
## 5                     10                          86
## 6                      7                          74
## 7                      2                          40
##   No_Failed_PublicOrderOffences No_Others_Ex_Motoring
## 2                            11                    66
## 3                             6                    11
## 4                             9                     6
## 5                             7                    50
## 6                            27                    28
## 7                             2                    64
##   No_Failed_Others_Ex_Motoring No_Motoring_Offences_Conv
## 2                           16                       188
## 3                            6                        40
## 4                            2                        79
## 5                            6                       209
## 6                            5                       124
## 7                            1                        95
##   No_Failed_Motoring_Offences No_Failed_AdminFinalised_Conv cluster
## 2                          37                            24       5
## 3                           5                            16       6
## 4                           6                             4       6
## 5                          12                             1       5
## 6                          17                            10       5
## 7                          10                            12       6

This confirms that each of the Areas from the original data frame have been assigned into one of the six clusters.

To reveal the cluster in which the various Area belongs

Area_Cluster = data.frame(No_All_Convictions$Area, No_All_Convictions$cluster)
print(head(Area_Cluster))
##   No_All_Convictions.Area No_All_Convictions.cluster
## 1       Avon and Somerset                          5
## 2            Bedfordshire                          6
## 3          Cambridgeshire                          6
## 4                Cheshire                          5
## 5               Cleveland                          5
## 6                 Cumbria                          6
print(tail(Area_Cluster))
##      No_All_Convictions.Area No_All_Convictions.cluster
## 2137           Thames Valley                          3
## 2138            Warwickshire                          6
## 2139             West Mercia                          5
## 2140           West Midlands                          1
## 2141          West Yorkshire                          3
## 2142               Wiltshire                          6

This confirms the cluster in which the various Area belongs

DATA CLASSIFICATION:

Decision Tree Analysis

Creating a new data frame by assigning the Percentage of Conviction data frame (Per_All_Convictions) for the decision tree analysis

DTA_Per_Convictions = Per_All_Convictions 

str(DTA_Per_Convictions)
## 'data.frame':    2142 obs. of  26 variables:
##  $ Area                          : chr  "Avon and Somerset" "Bedfordshire" "Cambridgeshire" "Cheshire" ...
##  $ Per_Homicide_Conv             : num  100 0 0 50 0 0 0 100 0 100 ...
##  $ Per_Failed_Homicide           : num  0 0 0 50 0 0 0 0 0 0 ...
##  $ Per_Conv_Offence              : num  78.8 75 81.1 74.9 67.5 80.2 72.6 75.8 82 74.3 ...
##  $ Per_Failed_Conv_Offence       : num  21.2 25 18.9 25.1 32.5 19.8 27.4 24.2 18 25.7 ...
##  $ Per_Sex_Offence_Conv          : num  81.8 83.3 66.7 85 73.3 88.9 57.1 73.3 100 73.3 ...
##  $ Per_Failed_Sex_Offence        : num  18.2 16.7 33.3 15 26.7 11.1 42.9 26.7 0 26.7 ...
##  $ Per_Burg_Conv                 : num  94.9 94.1 100 89.7 71.4 92.3 91.2 94.1 94.7 100 ...
##  $ Per_Failed_Burg_Conv          : num  5.1 5.9 0 10.3 28.6 7.7 8.8 5.9 5.3 0 ...
##  $ Per_Rob_Conv                  : num  75 100 85.7 100 71.4 100 72.7 100 100 0 ...
##  $ Per_Failed_Rob_Conv           : num  25 0 14.3 0 28.6 0 27.3 0 0 100 ...
##  $ Per_TheftAndHandling_Conv     : num  92.7 91.6 91.5 98.1 88.8 94.7 93.1 93.8 91.8 88.3 ...
##  $ Per_Failed_TheftAndHandling   : num  7.3 8.4 8.5 1.9 11.2 5.3 6.9 6.2 8.2 11.7 ...
##  $ Per_FraudAndForgery_Conv      : num  100 80 100 88.9 75 100 55 100 77.8 44.4 ...
##  $ Per_Failed_FraudAndForgery    : num  0 20 0 11.1 25 0 45 0 22.2 55.6 ...
##  $ Per_CrimeDamage_Conv          : num  90 76.9 95.5 79.5 80 94.9 85.1 90.3 85.7 86 ...
##  $ Per_Failed_CrimeDamage        : num  10 23.1 4.5 20.5 20 5.1 14.9 9.7 14.3 14 ...
##  $ Per_DrugOffences_Conv         : num  98.5 95.7 95.2 88.2 90 95.5 89.3 92.1 93.5 90.5 ...
##  $ Per_Failed_Drug_Offence       : num  1.5 4.3 4.8 11.8 10 4.5 10.7 7.9 6.5 9.5 ...
##  $ Per_PublicOrderOffences_Conv  : num  86.1 82.9 83.3 92.5 73.3 95.2 92.6 76.5 93.8 81.7 ...
##  $ Per_Failed_PublicOrderOffences: num  13.9 17.1 16.7 7.5 26.7 4.8 7.4 23.5 6.3 18.3 ...
##  $ Per_Others_Ex_Motoring        : num  80.5 64.7 75 89.3 84.8 98.5 75.4 82.1 96.2 80 ...
##  $ Per_Failed_Others_Ex_Motoring : num  19.5 35.3 25 10.7 15.2 1.5 24.6 17.9 3.8 20 ...
##  $ Per_Motoring_Offences_Conv    : num  83.6 88.9 92.9 94.6 87.9 90.5 95.2 91.7 91 95.7 ...
##  $ Per_Failed_Motoring_Offences  : num  16.4 11.1 7.1 5.4 12.1 9.5 4.8 8.3 9 4.3 ...
##  $ Per_Failed_AdminFinalised_Conv: num  100 100 100 100 100 100 100 100 100 0 ...

This confirms the assignment hence creating a new data frame for the Decision Tree analysis.

Setting values for the decision tree analysis and Data Split for analysis

For the purpose of the decision tree analysis, the selected data frame is splited in a proportion of 70/30 for the train and test data respectively.

set.seed(1234) #This is set to ensure same result

# In order to generate a list of random number from the total observations in the data frame
DTARand_Per_Convictions = DTA_Per_Convictions[order(runif(nrow(DTA_Per_Convictions))),]

# To split the selected data into 70% training and 30% test data
Train_Per_Convictions = DTARand_Per_Convictions[1: round(0.7 * nrow(DTA_Per_Convictions)),]

Test_Per_Convictions = DTARand_Per_Convictions[(round(0.7 * nrow(DTA_Per_Convictions)) + 1): nrow(DTA_Per_Convictions),]

print(dim(Train_Per_Convictions))
## [1] 1499   26
print(dim(Test_Per_Convictions))
## [1] 643  26

This confirms that the data frame is now splitted into Train and Test data. The Train data set (Train_Per_Convictions) consist of 1,499 rows (observations) and 26 columns (variables) while the test data set (Test_Per_Convictions) consist of 643 rows (observations) and 26 columns (variables)

Fit the Train Data

fit_Per_Convictions = rpart(
    Per_Conv_Offence ~ Per_Sex_Offence_Conv + 
    Per_Burg_Conv + 
    Per_TheftAndHandling_Conv + 
    Per_CrimeDamage_Conv + 
    Per_PublicOrderOffences_Conv +
    Per_Others_Ex_Motoring + 
    Per_Motoring_Offences_Conv, 
    
    data=Train_Per_Convictions,
    control=rpart.control(minsplit = 0.1*length(Train_Per_Convictions)),
    parms=list(split='information')
)


fit_Per_Convictions
## n= 1499 
## 
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 1499 42215.98000 79.07518  
##    2) Per_PublicOrderOffences_Conv< 87.85 841 23348.05000 77.54067  
##      4) Per_TheftAndHandling_Conv< 91.65 358 10696.99000 75.63101  
##        8) Per_TheftAndHandling_Conv< 86.85 60  1578.26700 71.75667  
##         16) Per_CrimeDamage_Conv< 85.7 46   465.75410 70.04565 *
##         17) Per_CrimeDamage_Conv>=85.7 14   535.36360 77.37857 *
##        9) Per_TheftAndHandling_Conv>=86.85 298  8036.75300 76.41107  
##         18) Per_Sex_Offence_Conv< 85.15 230  5569.77500 75.46609  
##           36) Per_Motoring_Offences_Conv< 85.45 97  2632.35400 73.51649  
##             72) Per_Others_Ex_Motoring< 90.25 70  1713.52900 72.17571 *
##             73) Per_Others_Ex_Motoring>=90.25 27   466.73850 76.99259 *
##           37) Per_Motoring_Offences_Conv>=85.45 133  2299.84100 76.88797 *
##         19) Per_Sex_Offence_Conv>=85.15 68  1566.88600 79.60735 *
##      5) Per_TheftAndHandling_Conv>=91.65 483 10377.83000 78.95611  
##       10) Per_CrimeDamage_Conv< 92.25 402  8157.72600 78.39677  
##         20) Per_Others_Ex_Motoring< 96.85 338  6507.76600 77.92456 *
##         21) Per_Others_Ex_Motoring>=96.85 64  1176.55400 80.89062 *
##       11) Per_CrimeDamage_Conv>=92.25 81  1470.13700 81.73210 *
##    3) Per_PublicOrderOffences_Conv>=87.85 658 14356.48000 81.03647  
##      6) Per_Motoring_Offences_Conv< 89.55 391  7566.41900 80.08977  
##       12) Per_PublicOrderOffences_Conv< 94.5 341  6245.31100 79.65191 *
##       13) Per_PublicOrderOffences_Conv>=94.5 50   809.85120 83.07600 *
##      7) Per_Motoring_Offences_Conv>=89.55 267  5926.45100 82.42285  
##       14) Per_TheftAndHandling_Conv< 87.55 7    82.91429 73.57143 *
##       15) Per_TheftAndHandling_Conv>=87.55 260  5280.33800 82.66115 *

This shows the data values within the train data.

To Plot the decision tree for successful conviction cases

rpart.plot(fit_Per_Convictions, type=4,fallen.leaves = TRUE, extra=0, digits = 2, clip.right.labs = TRUE, varlen = -5, faclen = 0)

Predict_Per_Convictions = predict(fit_Per_Convictions, Test_Per_Convictions)

Prediction Outcome Comparison

summary(Predict_Per_Convictions) # Prediction result
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   70.05   77.92   79.65   78.79   80.89   83.08
summary(Test_Per_Convictions$Per_Conv_Offence) #Test Result
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   55.10   75.60   79.20   78.98   82.50   94.20
cor(Predict_Per_Convictions, Test_Per_Convictions$Per_Conv_Offence) #Cor
## [1] 0.4448331
MAE = function(actual, predictd) {
  mean(abs(actual - predictd))
}

MAE(Test_Per_Convictions$Per_Conv_Offence, Predict_Per_Convictions) #MAE
## [1] 3.913964
mean(Train_Per_Convictions$Per_Conv_Offence) # Mean
## [1] 79.07518
mae(round(mean(Train_Per_Convictions$Per_Conv_Offence), 2), Test_Per_Convictions$Per_Conv_Offence)    #MAE & Test
## [1] 4.23042

The prediction result for the train and test shows a mean of 78% and a median of 79% accuracy.

Applying the M5P algorithm.

In the M5P algorithm, all selected attributes are converted into binary variables before the tree construction. This algorithm also treat for any missing values and the selected attributes.

Rweka_Predict_Per_Convictions = M5P(
   Per_Conv_Offence ~ Per_Sex_Offence_Conv + 
    Per_Burg_Conv + 
    Per_TheftAndHandling_Conv + 
    Per_CrimeDamage_Conv + 
    Per_DrugOffences_Conv +
    Per_PublicOrderOffences_Conv +
    Per_Others_Ex_Motoring + 
    Per_Motoring_Offences_Conv, 
   
    data=Train_Per_Convictions
)
Rweka_Predict_Per_Convictions
## M5 pruned model tree:
## (using smoothed linear models)
## 
## Per_PublicOrderOffences_Conv <= 85.45 : 
## |   Per_TheftAndHandling_Conv <= 92.85 : 
## |   |   Per_CrimeDamage_Conv <= 87.35 : 
## |   |   |   Per_Sex_Offence_Conv <= 82.85 : 
## |   |   |   |   Per_TheftAndHandling_Conv <= 87.15 : 
## |   |   |   |   |   Per_Others_Ex_Motoring <= 85.15 : LM1 (29/42.904%)
## |   |   |   |   |   Per_Others_Ex_Motoring >  85.15 : LM2 (16/68.917%)
## |   |   |   |   Per_TheftAndHandling_Conv >  87.15 : 
## |   |   |   |   |   Per_DrugOffences_Conv <= 95.75 : 
## |   |   |   |   |   |   Per_Motoring_Offences_Conv <= 80.15 : 
## |   |   |   |   |   |   |   Per_Motoring_Offences_Conv <= 77.25 : 
## |   |   |   |   |   |   |   |   Per_Sex_Offence_Conv <= 64.85 : LM3 (5/38.386%)
## |   |   |   |   |   |   |   |   Per_Sex_Offence_Conv >  64.85 : LM4 (7/30.926%)
## |   |   |   |   |   |   |   Per_Motoring_Offences_Conv >  77.25 : 
## |   |   |   |   |   |   |   |   Per_Others_Ex_Motoring <= 87.55 : LM5 (17/25.271%)
## |   |   |   |   |   |   |   |   Per_Others_Ex_Motoring >  87.55 : LM6 (5/14.371%)
## |   |   |   |   |   |   Per_Motoring_Offences_Conv >  80.15 : 
## |   |   |   |   |   |   |   Per_Others_Ex_Motoring <= 87.15 : LM7 (72/84.166%)
## |   |   |   |   |   |   |   Per_Others_Ex_Motoring >  87.15 : LM8 (24/80.354%)
## |   |   |   |   |   Per_DrugOffences_Conv >  95.75 : LM9 (42/59.551%)
## |   |   |   Per_Sex_Offence_Conv >  82.85 : 
## |   |   |   |   Per_Others_Ex_Motoring <= 82.9 : LM10 (25/87.307%)
## |   |   |   |   Per_Others_Ex_Motoring >  82.9 : LM11 (31/83.035%)
## |   |   Per_CrimeDamage_Conv >  87.35 : 
## |   |   |   Per_Burg_Conv <= 91.1 : 
## |   |   |   |   Per_PublicOrderOffences_Conv <= 81.9 : 
## |   |   |   |   |   Per_TheftAndHandling_Conv <= 91 : 
## |   |   |   |   |   |   Per_Others_Ex_Motoring <= 88.55 : 
## |   |   |   |   |   |   |   Per_Others_Ex_Motoring <= 66.2 : LM12 (3/13.324%)
## |   |   |   |   |   |   |   Per_Others_Ex_Motoring >  66.2 : 
## |   |   |   |   |   |   |   |   Per_Burg_Conv <= 85.7 : LM13 (4/32.38%)
## |   |   |   |   |   |   |   |   Per_Burg_Conv >  85.7 : LM14 (4/7.359%)
## |   |   |   |   |   |   Per_Others_Ex_Motoring >  88.55 : 
## |   |   |   |   |   |   |   Per_DrugOffences_Conv <= 95.25 : LM15 (2/17.901%)
## |   |   |   |   |   |   |   Per_DrugOffences_Conv >  95.25 : LM16 (3/20.431%)
## |   |   |   |   |   Per_TheftAndHandling_Conv >  91 : LM17 (16/34.089%)
## |   |   |   |   Per_PublicOrderOffences_Conv >  81.9 : 
## |   |   |   |   |   Per_Others_Ex_Motoring <= 81.55 : 
## |   |   |   |   |   |   Per_Others_Ex_Motoring <= 72.9 : LM18 (4/55.834%)
## |   |   |   |   |   |   Per_Others_Ex_Motoring >  72.9 : LM19 (12/29.31%)
## |   |   |   |   |   Per_Others_Ex_Motoring >  81.55 : LM20 (25/53.979%)
## |   |   |   Per_Burg_Conv >  91.1 : LM21 (39/65.181%)
## |   Per_TheftAndHandling_Conv >  92.85 : 
## |   |   Per_Burg_Conv <= 92.15 : 
## |   |   |   Per_Motoring_Offences_Conv <= 91.55 : LM22 (120/65.522%)
## |   |   |   Per_Motoring_Offences_Conv >  91.55 : LM23 (32/81.071%)
## |   |   Per_Burg_Conv >  92.15 : 
## |   |   |   Per_DrugOffences_Conv <= 97 : LM24 (50/62.924%)
## |   |   |   Per_DrugOffences_Conv >  97 : LM25 (20/56.682%)
## Per_PublicOrderOffences_Conv >  85.45 : 
## |   Per_TheftAndHandling_Conv <= 94.45 : 
## |   |   Per_PublicOrderOffences_Conv <= 88.8 : LM26 (225/74.191%)
## |   |   Per_PublicOrderOffences_Conv >  88.8 : 
## |   |   |   Per_CrimeDamage_Conv <= 89.45 : 
## |   |   |   |   Per_Motoring_Offences_Conv <= 90.7 : 
## |   |   |   |   |   Per_PublicOrderOffences_Conv <= 93.25 : 
## |   |   |   |   |   |   Per_Others_Ex_Motoring <= 93 : LM27 (91/83.042%)
## |   |   |   |   |   |   Per_Others_Ex_Motoring >  93 : 
## |   |   |   |   |   |   |   Per_Sex_Offence_Conv <= 71.55 : LM28 (5/21.669%)
## |   |   |   |   |   |   |   Per_Sex_Offence_Conv >  71.55 : LM29 (19/51.143%)
## |   |   |   |   |   Per_PublicOrderOffences_Conv >  93.25 : 
## |   |   |   |   |   |   Per_PublicOrderOffences_Conv <= 94.5 : LM30 (15/67.063%)
## |   |   |   |   |   |   Per_PublicOrderOffences_Conv >  94.5 : LM31 (17/63.115%)
## |   |   |   |   Per_Motoring_Offences_Conv >  90.7 : 
## |   |   |   |   |   Per_CrimeDamage_Conv <= 81.9 : LM32 (21/77.226%)
## |   |   |   |   |   Per_CrimeDamage_Conv >  81.9 : LM33 (39/75.115%)
## |   |   |   Per_CrimeDamage_Conv >  89.45 : 
## |   |   |   |   Per_Motoring_Offences_Conv <= 92.25 : 
## |   |   |   |   |   Per_DrugOffences_Conv <= 94.9 : LM34 (43/73.902%)
## |   |   |   |   |   Per_DrugOffences_Conv >  94.9 : 
## |   |   |   |   |   |   Per_DrugOffences_Conv <= 97.25 : LM35 (33/36.381%)
## |   |   |   |   |   |   Per_DrugOffences_Conv >  97.25 : LM36 (20/68.857%)
## |   |   |   |   Per_Motoring_Offences_Conv >  92.25 : LM37 (25/70.652%)
## |   Per_TheftAndHandling_Conv >  94.45 : 
## |   |   Per_Motoring_Offences_Conv <= 87.75 : 
## |   |   |   Per_DrugOffences_Conv <= 94.35 : LM38 (46/43.434%)
## |   |   |   Per_DrugOffences_Conv >  94.35 : 
## |   |   |   |   Per_TheftAndHandling_Conv <= 95.75 : 
## |   |   |   |   |   Per_PublicOrderOffences_Conv <= 89 : LM39 (12/41.648%)
## |   |   |   |   |   Per_PublicOrderOffences_Conv >  89 : 
## |   |   |   |   |   |   Per_DrugOffences_Conv <= 98.35 : LM40 (16/22.008%)
## |   |   |   |   |   |   Per_DrugOffences_Conv >  98.35 : LM41 (5/11.918%)
## |   |   |   |   Per_TheftAndHandling_Conv >  95.75 : LM42 (36/108.942%)
## |   |   Per_Motoring_Offences_Conv >  87.75 : 
## |   |   |   Per_CrimeDamage_Conv <= 89.6 : 
## |   |   |   |   Per_DrugOffences_Conv <= 93.65 : 
## |   |   |   |   |   Per_TheftAndHandling_Conv <= 95.6 : LM43 (10/95.384%)
## |   |   |   |   |   Per_TheftAndHandling_Conv >  95.6 : 
## |   |   |   |   |   |   Per_PublicOrderOffences_Conv <= 87.5 : LM44 (5/17.491%)
## |   |   |   |   |   |   Per_PublicOrderOffences_Conv >  87.5 : 
## |   |   |   |   |   |   |   Per_DrugOffences_Conv <= 89.15 : LM45 (3/7.995%)
## |   |   |   |   |   |   |   Per_DrugOffences_Conv >  89.15 : LM46 (7/12.084%)
## |   |   |   |   Per_DrugOffences_Conv >  93.65 : 
## |   |   |   |   |   Per_TheftAndHandling_Conv <= 96.75 : 
## |   |   |   |   |   |   Per_PublicOrderOffences_Conv <= 93.05 : LM47 (46/82.185%)
## |   |   |   |   |   |   Per_PublicOrderOffences_Conv >  93.05 : 
## |   |   |   |   |   |   |   Per_DrugOffences_Conv <= 98.5 : 
## |   |   |   |   |   |   |   |   Per_CrimeDamage_Conv <= 79 : LM48 (3/9.771%)
## |   |   |   |   |   |   |   |   Per_CrimeDamage_Conv >  79 : 
## |   |   |   |   |   |   |   |   |   Per_Burg_Conv <= 81.95 : LM49 (2/3.769%)
## |   |   |   |   |   |   |   |   |   Per_Burg_Conv >  81.95 : LM50 (6/6.474%)
## |   |   |   |   |   |   |   Per_DrugOffences_Conv >  98.5 : LM51 (4/20.787%)
## |   |   |   |   |   Per_TheftAndHandling_Conv >  96.75 : LM52 (27/61.477%)
## |   |   |   Per_CrimeDamage_Conv >  89.6 : 
## |   |   |   |   Per_Sex_Offence_Conv <= 71.65 : LM53 (26/63.88%)
## |   |   |   |   Per_Sex_Offence_Conv >  71.65 : 
## |   |   |   |   |   Per_Sex_Offence_Conv <= 98.1 : LM54 (62/54.015%)
## |   |   |   |   |   Per_Sex_Offence_Conv >  98.1 : LM55 (23/73.365%)
## 
## LM num: 1
## Per_Conv_Offence = 
##  0.012 * Per_Burg_Conv 
##  + 0.2583 * Per_TheftAndHandling_Conv 
##  + 0.1857 * Per_CrimeDamage_Conv 
##  - 0.0004 * Per_DrugOffences_Conv 
##  + 0.043 * Per_PublicOrderOffences_Conv 
##  + 0.0427 * Per_Others_Ex_Motoring 
##  + 0.078 * Per_Motoring_Offences_Conv 
##  + 13.0694
## 
## LM num: 2
## Per_Conv_Offence = 
##  0.1327 * Per_Sex_Offence_Conv 
##  + 0.012 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.1857 * Per_CrimeDamage_Conv 
##  - 0.0004 * Per_DrugOffences_Conv 
##  + 0.043 * Per_PublicOrderOffences_Conv 
##  + 0.0591 * Per_Others_Ex_Motoring 
##  + 0.0969 * Per_Motoring_Offences_Conv 
##  + 22.4726
## 
## LM num: 3
## Per_Conv_Offence = 
##  0.142 * Per_Sex_Offence_Conv 
##  - 0.0112 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.1119 * Per_CrimeDamage_Conv 
##  - 0.0091 * Per_DrugOffences_Conv 
##  + 0.0388 * Per_PublicOrderOffences_Conv 
##  + 0.0388 * Per_Others_Ex_Motoring 
##  - 0.1131 * Per_Motoring_Offences_Conv 
##  + 46.4167
## 
## LM num: 4
## Per_Conv_Offence = 
##  0.1346 * Per_Sex_Offence_Conv 
##  + 0.012 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.1119 * Per_CrimeDamage_Conv 
##  - 0.0091 * Per_DrugOffences_Conv 
##  + 0.0388 * Per_PublicOrderOffences_Conv 
##  + 0.0388 * Per_Others_Ex_Motoring 
##  - 0.0676 * Per_Motoring_Offences_Conv 
##  + 42.1046
## 
## LM num: 5
## Per_Conv_Offence = 
##  0.0435 * Per_Sex_Offence_Conv 
##  - 0.006 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.1119 * Per_CrimeDamage_Conv 
##  - 0.0091 * Per_DrugOffences_Conv 
##  + 0.0388 * Per_PublicOrderOffences_Conv 
##  + 0.0644 * Per_Others_Ex_Motoring 
##  - 0.0176 * Per_Motoring_Offences_Conv 
##  + 42.6654
## 
## LM num: 6
## Per_Conv_Offence = 
##  0.0435 * Per_Sex_Offence_Conv 
##  - 0.0263 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.1119 * Per_CrimeDamage_Conv 
##  - 0.0091 * Per_DrugOffences_Conv 
##  + 0.0388 * Per_PublicOrderOffences_Conv 
##  + 0.0854 * Per_Others_Ex_Motoring 
##  - 0.0176 * Per_Motoring_Offences_Conv 
##  + 42.9827
## 
## LM num: 7
## Per_Conv_Offence = 
##  0.012 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.1119 * Per_CrimeDamage_Conv 
##  - 0.0091 * Per_DrugOffences_Conv 
##  + 0.0388 * Per_PublicOrderOffences_Conv 
##  + 0.0035 * Per_Others_Ex_Motoring 
##  + 0.0517 * Per_Motoring_Offences_Conv 
##  + 48.1914
## 
## LM num: 8
## Per_Conv_Offence = 
##  -0.1459 * Per_Sex_Offence_Conv 
##  + 0.012 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.1119 * Per_CrimeDamage_Conv 
##  - 0.0091 * Per_DrugOffences_Conv 
##  + 0.3377 * Per_PublicOrderOffences_Conv 
##  + 0.0035 * Per_Others_Ex_Motoring 
##  + 0.0685 * Per_Motoring_Offences_Conv 
##  + 34.1567
## 
## LM num: 9
## Per_Conv_Offence = 
##  0.012 * Per_Burg_Conv 
##  + 0.0175 * Per_TheftAndHandling_Conv 
##  + 0.0216 * Per_CrimeDamage_Conv 
##  + 0.3848 * Per_DrugOffences_Conv 
##  + 0.0584 * Per_PublicOrderOffences_Conv 
##  + 0.0035 * Per_Others_Ex_Motoring 
##  + 0.0397 * Per_Motoring_Offences_Conv 
##  + 17.5309
## 
## LM num: 10
## Per_Conv_Offence = 
##  0.1484 * Per_Burg_Conv 
##  + 0.078 * Per_TheftAndHandling_Conv 
##  + 0.1458 * Per_CrimeDamage_Conv 
##  - 0.0184 * Per_DrugOffences_Conv 
##  + 0.0344 * Per_PublicOrderOffences_Conv 
##  + 0.0035 * Per_Others_Ex_Motoring 
##  + 0.0414 * Per_Motoring_Offences_Conv 
##  + 35.0135
## 
## LM num: 11
## Per_Conv_Offence = 
##  0.1072 * Per_Sex_Offence_Conv 
##  + 0.1638 * Per_Burg_Conv 
##  + 0.0715 * Per_TheftAndHandling_Conv 
##  + 0.1458 * Per_CrimeDamage_Conv 
##  - 0.0184 * Per_DrugOffences_Conv 
##  + 0.0344 * Per_PublicOrderOffences_Conv 
##  + 0.0035 * Per_Others_Ex_Motoring 
##  + 0.0386 * Per_Motoring_Offences_Conv 
##  + 26.7555
## 
## LM num: 12
## Per_Conv_Offence = 
##  0.041 * Per_Sex_Offence_Conv 
##  + 0.0003 * Per_Burg_Conv 
##  + 0.383 * Per_TheftAndHandling_Conv 
##  + 0.2133 * Per_CrimeDamage_Conv 
##  + 0.1231 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  + 0.0321 * Per_Others_Ex_Motoring 
##  + 0.0085 * Per_Motoring_Offences_Conv 
##  - 1.7917
## 
## LM num: 13
## Per_Conv_Offence = 
##  0.041 * Per_Sex_Offence_Conv 
##  - 0.0001 * Per_Burg_Conv 
##  + 0.383 * Per_TheftAndHandling_Conv 
##  + 0.2133 * Per_CrimeDamage_Conv 
##  + 0.1231 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  + 0.0321 * Per_Others_Ex_Motoring 
##  + 0.0085 * Per_Motoring_Offences_Conv 
##  - 1.9709
## 
## LM num: 14
## Per_Conv_Offence = 
##  0.041 * Per_Sex_Offence_Conv 
##  + 0.0091 * Per_Burg_Conv 
##  + 0.383 * Per_TheftAndHandling_Conv 
##  + 0.2133 * Per_CrimeDamage_Conv 
##  + 0.1231 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  + 0.0321 * Per_Others_Ex_Motoring 
##  + 0.0085 * Per_Motoring_Offences_Conv 
##  - 2.6818
## 
## LM num: 15
## Per_Conv_Offence = 
##  0.041 * Per_Sex_Offence_Conv 
##  + 0.0409 * Per_Burg_Conv 
##  + 0.383 * Per_TheftAndHandling_Conv 
##  + 0.2133 * Per_CrimeDamage_Conv 
##  + 0.0839 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  + 0.0173 * Per_Others_Ex_Motoring 
##  + 0.0085 * Per_Motoring_Offences_Conv 
##  - 1.0608
## 
## LM num: 16
## Per_Conv_Offence = 
##  0.041 * Per_Sex_Offence_Conv 
##  + 0.0409 * Per_Burg_Conv 
##  + 0.383 * Per_TheftAndHandling_Conv 
##  + 0.2133 * Per_CrimeDamage_Conv 
##  + 0.0861 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  + 0.0173 * Per_Others_Ex_Motoring 
##  + 0.0085 * Per_Motoring_Offences_Conv 
##  - 1.3281
## 
## LM num: 17
## Per_Conv_Offence = 
##  0.041 * Per_Sex_Offence_Conv 
##  + 0.0946 * Per_Burg_Conv 
##  + 0.383 * Per_TheftAndHandling_Conv 
##  + 0.2133 * Per_CrimeDamage_Conv 
##  + 0.1231 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  + 0.1028 * Per_Others_Ex_Motoring 
##  + 0.0531 * Per_Motoring_Offences_Conv 
##  - 18.6034
## 
## LM num: 18
## Per_Conv_Offence = 
##  0.0228 * Per_Sex_Offence_Conv 
##  + 0.038 * Per_Burg_Conv 
##  - 0.0448 * Per_TheftAndHandling_Conv 
##  + 0.0864 * Per_CrimeDamage_Conv 
##  + 0.2207 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  - 0.1943 * Per_Others_Ex_Motoring 
##  + 0.1233 * Per_Motoring_Offences_Conv 
##  + 49.7279
## 
## LM num: 19
## Per_Conv_Offence = 
##  0.038 * Per_Burg_Conv 
##  + 0.0002 * Per_TheftAndHandling_Conv 
##  + 0.1198 * Per_CrimeDamage_Conv 
##  + 0.2516 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  - 0.2089 * Per_Others_Ex_Motoring 
##  + 0.1029 * Per_Motoring_Offences_Conv 
##  + 44.5106
## 
## LM num: 20
## Per_Conv_Offence = 
##  0.0985 * Per_Burg_Conv 
##  + 0.094 * Per_TheftAndHandling_Conv 
##  + 0.3897 * Per_CrimeDamage_Conv 
##  + 0.1963 * Per_DrugOffences_Conv 
##  - 0.2939 * Per_PublicOrderOffences_Conv 
##  - 0.1657 * Per_Others_Ex_Motoring 
##  + 0.0441 * Per_Motoring_Offences_Conv 
##  + 39.7819
## 
## LM num: 21
## Per_Conv_Offence = 
##  0.0294 * Per_Burg_Conv 
##  + 0.0667 * Per_TheftAndHandling_Conv 
##  + 0.1588 * Per_CrimeDamage_Conv 
##  + 0.0822 * Per_DrugOffences_Conv 
##  + 0.0179 * Per_PublicOrderOffences_Conv 
##  + 0.0634 * Per_Others_Ex_Motoring 
##  + 0.0085 * Per_Motoring_Offences_Conv 
##  + 40.6104
## 
## LM num: 22
## Per_Conv_Offence = 
##  -0.0397 * Per_Sex_Offence_Conv 
##  + 0.0628 * Per_Burg_Conv 
##  + 0.3869 * Per_TheftAndHandling_Conv 
##  + 0.1485 * Per_CrimeDamage_Conv 
##  + 0.0055 * Per_DrugOffences_Conv 
##  + 0.0081 * Per_PublicOrderOffences_Conv 
##  - 0.0164 * Per_Others_Ex_Motoring 
##  + 0.0103 * Per_Motoring_Offences_Conv 
##  + 20.8022
## 
## LM num: 23
## Per_Conv_Offence = 
##  -0.0088 * Per_Burg_Conv 
##  + 0.5059 * Per_TheftAndHandling_Conv 
##  + 0.2593 * Per_CrimeDamage_Conv 
##  + 0.0055 * Per_DrugOffences_Conv 
##  + 0.0081 * Per_PublicOrderOffences_Conv 
##  + 0.0214 * Per_Others_Ex_Motoring 
##  + 0.0172 * Per_Motoring_Offences_Conv 
##  - 2.7224
## 
## LM num: 24
## Per_Conv_Offence = 
##  0.0398 * Per_Sex_Offence_Conv 
##  - 0.0011 * Per_Burg_Conv 
##  + 0.0284 * Per_TheftAndHandling_Conv 
##  + 0.2188 * Per_CrimeDamage_Conv 
##  - 0.2065 * Per_DrugOffences_Conv 
##  + 0.0422 * Per_PublicOrderOffences_Conv 
##  - 0.0157 * Per_Others_Ex_Motoring 
##  + 0.0096 * Per_Motoring_Offences_Conv 
##  + 62.8438
## 
## LM num: 25
## Per_Conv_Offence = 
##  -0.0011 * Per_Burg_Conv 
##  + 0.2957 * Per_TheftAndHandling_Conv 
##  + 0.2872 * Per_CrimeDamage_Conv 
##  + 0.0055 * Per_DrugOffences_Conv 
##  - 0.1107 * Per_PublicOrderOffences_Conv 
##  - 0.0157 * Per_Others_Ex_Motoring 
##  + 0.0096 * Per_Motoring_Offences_Conv 
##  + 25.7282
## 
## LM num: 26
## Per_Conv_Offence = 
##  0.0015 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.0121 * Per_CrimeDamage_Conv 
##  + 0.074 * Per_DrugOffences_Conv 
##  + 0.1205 * Per_PublicOrderOffences_Conv 
##  + 0.024 * Per_Others_Ex_Motoring 
##  + 0.08 * Per_Motoring_Offences_Conv 
##  + 49.5982
## 
## LM num: 27
## Per_Conv_Offence = 
##  0.0044 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.106 * Per_CrimeDamage_Conv 
##  + 0.0071 * Per_DrugOffences_Conv 
##  - 0.0137 * Per_PublicOrderOffences_Conv 
##  + 0.0766 * Per_Others_Ex_Motoring 
##  + 0.0021 * Per_Motoring_Offences_Conv 
##  + 58.9478
## 
## LM num: 28
## Per_Conv_Offence = 
##  -0.0259 * Per_Sex_Offence_Conv 
##  + 0.0306 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.1479 * Per_CrimeDamage_Conv 
##  - 0.0149 * Per_DrugOffences_Conv 
##  + 0.2589 * Per_PublicOrderOffences_Conv 
##  + 0.0766 * Per_Others_Ex_Motoring 
##  + 0.0021 * Per_Motoring_Offences_Conv 
##  + 32.7487
## 
## LM num: 29
## Per_Conv_Offence = 
##  -0.0152 * Per_Sex_Offence_Conv 
##  + 0.0198 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.1479 * Per_CrimeDamage_Conv 
##  - 0.0149 * Per_DrugOffences_Conv 
##  + 0.1467 * Per_PublicOrderOffences_Conv 
##  + 0.0766 * Per_Others_Ex_Motoring 
##  + 0.0021 * Per_Motoring_Offences_Conv 
##  + 42.4444
## 
## LM num: 30
## Per_Conv_Offence = 
##  0.0898 * Per_Sex_Offence_Conv 
##  + 0.0044 * Per_Burg_Conv 
##  + 0.8072 * Per_TheftAndHandling_Conv 
##  + 0.1277 * Per_CrimeDamage_Conv 
##  + 0.0199 * Per_DrugOffences_Conv 
##  + 0.432 * Per_PublicOrderOffences_Conv 
##  + 0.1439 * Per_Others_Ex_Motoring 
##  + 0.0021 * Per_Motoring_Offences_Conv 
##  - 72.1344
## 
## LM num: 31
## Per_Conv_Offence = 
##  0.0339 * Per_Sex_Offence_Conv 
##  + 0.0044 * Per_Burg_Conv 
##  + 0.2748 * Per_TheftAndHandling_Conv 
##  + 0.1277 * Per_CrimeDamage_Conv 
##  + 0.0199 * Per_DrugOffences_Conv 
##  + 0.4025 * Per_PublicOrderOffences_Conv 
##  + 0.1439 * Per_Others_Ex_Motoring 
##  + 0.0021 * Per_Motoring_Offences_Conv 
##  - 15.2154
## 
## LM num: 32
## Per_Conv_Offence = 
##  0.0415 * Per_Sex_Offence_Conv 
##  + 0.0078 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.0912 * Per_CrimeDamage_Conv 
##  + 0.1237 * Per_DrugOffences_Conv 
##  + 0.0012 * Per_PublicOrderOffences_Conv 
##  + 0.0604 * Per_Others_Ex_Motoring 
##  + 0.0205 * Per_Motoring_Offences_Conv 
##  + 62.9273
## 
## LM num: 33
## Per_Conv_Offence = 
##  0.0078 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.0912 * Per_CrimeDamage_Conv 
##  + 0.0891 * Per_DrugOffences_Conv 
##  + 0.0012 * Per_PublicOrderOffences_Conv 
##  + 0.0604 * Per_Others_Ex_Motoring 
##  + 0.0144 * Per_Motoring_Offences_Conv 
##  + 65.8063
## 
## LM num: 34
## Per_Conv_Offence = 
##  -0.0413 * Per_Sex_Offence_Conv 
##  + 0.0015 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.3919 * Per_CrimeDamage_Conv 
##  + 0.3496 * Per_DrugOffences_Conv 
##  + 0.0012 * Per_PublicOrderOffences_Conv 
##  + 0.0196 * Per_Others_Ex_Motoring 
##  + 0.0021 * Per_Motoring_Offences_Conv 
##  + 12.0039
## 
## LM num: 35
## Per_Conv_Offence = 
##  0.0015 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.0324 * Per_CrimeDamage_Conv 
##  + 0.1088 * Per_DrugOffences_Conv 
##  + 0.1562 * Per_PublicOrderOffences_Conv 
##  - 0.0212 * Per_Others_Ex_Motoring 
##  + 0.1166 * Per_Motoring_Offences_Conv 
##  + 37.5922
## 
## LM num: 36
## Per_Conv_Offence = 
##  0.0015 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.0324 * Per_CrimeDamage_Conv 
##  + 0.1088 * Per_DrugOffences_Conv 
##  + 0.2138 * Per_PublicOrderOffences_Conv 
##  + 0.0196 * Per_Others_Ex_Motoring 
##  - 0.0171 * Per_Motoring_Offences_Conv 
##  + 39.6901
## 
## LM num: 37
## Per_Conv_Offence = 
##  0.0015 * Per_Burg_Conv 
##  + 0.0018 * Per_TheftAndHandling_Conv 
##  + 0.0324 * Per_CrimeDamage_Conv 
##  + 0.1206 * Per_DrugOffences_Conv 
##  + 0.549 * Per_PublicOrderOffences_Conv 
##  + 0.0196 * Per_Others_Ex_Motoring 
##  + 0.0021 * Per_Motoring_Offences_Conv 
##  + 13.4894
## 
## LM num: 38
## Per_Conv_Offence = 
##  0.0068 * Per_Burg_Conv 
##  + 0.0063 * Per_TheftAndHandling_Conv 
##  + 0.0159 * Per_CrimeDamage_Conv 
##  + 0.0174 * Per_DrugOffences_Conv 
##  + 0.021 * Per_PublicOrderOffences_Conv 
##  + 0.0433 * Per_Others_Ex_Motoring 
##  - 0.0093 * Per_Motoring_Offences_Conv 
##  + 64.1654
## 
## LM num: 39
## Per_Conv_Offence = 
##  -0.0354 * Per_Burg_Conv 
##  - 0.0215 * Per_TheftAndHandling_Conv 
##  - 0.153 * Per_CrimeDamage_Conv 
##  + 0.0174 * Per_DrugOffences_Conv 
##  - 0.0966 * Per_PublicOrderOffences_Conv 
##  + 0.1595 * Per_Others_Ex_Motoring 
##  - 0.0067 * Per_Motoring_Offences_Conv 
##  + 81.1607
## 
## LM num: 40
## Per_Conv_Offence = 
##  0.0068 * Per_Burg_Conv 
##  + 1.0329 * Per_TheftAndHandling_Conv 
##  - 0.153 * Per_CrimeDamage_Conv 
##  + 0.0174 * Per_DrugOffences_Conv 
##  - 0.0672 * Per_PublicOrderOffences_Conv 
##  + 0.1554 * Per_Others_Ex_Motoring 
##  + 0.219 * Per_Motoring_Offences_Conv 
##  - 41.3331
## 
## LM num: 41
## Per_Conv_Offence = 
##  0.0068 * Per_Burg_Conv 
##  + 0.6367 * Per_TheftAndHandling_Conv 
##  - 0.153 * Per_CrimeDamage_Conv 
##  + 0.0174 * Per_DrugOffences_Conv 
##  - 0.0672 * Per_PublicOrderOffences_Conv 
##  + 0.1454 * Per_Others_Ex_Motoring 
##  + 0.1309 * Per_Motoring_Offences_Conv 
##  + 4.4146
## 
## LM num: 42
## Per_Conv_Offence = 
##  0.0068 * Per_Burg_Conv 
##  + 0.0063 * Per_TheftAndHandling_Conv 
##  - 0.143 * Per_CrimeDamage_Conv 
##  + 0.0174 * Per_DrugOffences_Conv 
##  + 0.021 * Per_PublicOrderOffences_Conv 
##  + 0.0433 * Per_Others_Ex_Motoring 
##  - 0.0067 * Per_Motoring_Offences_Conv 
##  + 80.2182
## 
## LM num: 43
## Per_Conv_Offence = 
##  0.0104 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  - 0.5936 * Per_CrimeDamage_Conv 
##  + 0.0297 * Per_DrugOffences_Conv 
##  + 0.1583 * Per_PublicOrderOffences_Conv 
##  + 0.2953 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 89.8764
## 
## LM num: 44
## Per_Conv_Offence = 
##  0.0104 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  - 0.4631 * Per_CrimeDamage_Conv 
##  + 0.0889 * Per_DrugOffences_Conv 
##  + 0.2203 * Per_PublicOrderOffences_Conv 
##  + 0.2732 * Per_Others_Ex_Motoring 
##  - 0.0671 * Per_Motoring_Offences_Conv 
##  + 74.1137
## 
## LM num: 45
## Per_Conv_Offence = 
##  0.0104 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  - 0.4689 * Per_CrimeDamage_Conv 
##  + 0.1192 * Per_DrugOffences_Conv 
##  + 0.2079 * Per_PublicOrderOffences_Conv 
##  + 0.2732 * Per_Others_Ex_Motoring 
##  - 0.0535 * Per_Motoring_Offences_Conv 
##  + 71.9276
## 
## LM num: 46
## Per_Conv_Offence = 
##  0.0104 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  - 0.4717 * Per_CrimeDamage_Conv 
##  + 0.1115 * Per_DrugOffences_Conv 
##  + 0.2079 * Per_PublicOrderOffences_Conv 
##  + 0.2732 * Per_Others_Ex_Motoring 
##  - 0.0535 * Per_Motoring_Offences_Conv 
##  + 72.9085
## 
## LM num: 47
## Per_Conv_Offence = 
##  0.0191 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  + 0.0883 * Per_CrimeDamage_Conv 
##  + 0.0297 * Per_DrugOffences_Conv 
##  + 0.0852 * Per_PublicOrderOffences_Conv 
##  + 0.2023 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 39.9463
## 
## LM num: 48
## Per_Conv_Offence = 
##  0.0524 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  + 0.0883 * Per_CrimeDamage_Conv 
##  - 0.106 * Per_DrugOffences_Conv 
##  + 0.0852 * Per_PublicOrderOffences_Conv 
##  + 0.2635 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 46.1332
## 
## LM num: 49
## Per_Conv_Offence = 
##  0.0577 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  + 0.0883 * Per_CrimeDamage_Conv 
##  - 0.106 * Per_DrugOffences_Conv 
##  + 0.0852 * Per_PublicOrderOffences_Conv 
##  + 0.2635 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 45.75
## 
## LM num: 50
## Per_Conv_Offence = 
##  0.0567 * Per_Burg_Conv 
##  - 0.0095 * Per_TheftAndHandling_Conv 
##  + 0.0883 * Per_CrimeDamage_Conv 
##  - 0.106 * Per_DrugOffences_Conv 
##  + 0.0852 * Per_PublicOrderOffences_Conv 
##  + 0.2635 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 47.1909
## 
## LM num: 51
## Per_Conv_Offence = 
##  0.0646 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  + 0.0883 * Per_CrimeDamage_Conv 
##  - 0.156 * Per_DrugOffences_Conv 
##  + 0.0852 * Per_PublicOrderOffences_Conv 
##  + 0.2635 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 49.5619
## 
## LM num: 52
## Per_Conv_Offence = 
##  0.0591 * Per_Sex_Offence_Conv 
##  + 0.0262 * Per_Burg_Conv 
##  + 0.0044 * Per_TheftAndHandling_Conv 
##  + 0.147 * Per_CrimeDamage_Conv 
##  + 0.0297 * Per_DrugOffences_Conv 
##  + 0.0852 * Per_PublicOrderOffences_Conv 
##  + 0.1799 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 33.1422
## 
## LM num: 53
## Per_Conv_Offence = 
##  0.0496 * Per_Sex_Offence_Conv 
##  + 0.1717 * Per_Burg_Conv 
##  + 0.0356 * Per_TheftAndHandling_Conv 
##  + 0.4304 * Per_CrimeDamage_Conv 
##  + 0.0747 * Per_DrugOffences_Conv 
##  + 0.0392 * Per_PublicOrderOffences_Conv 
##  + 0.0569 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 3.4288
## 
## LM num: 54
## Per_Conv_Offence = 
##  0.0319 * Per_Burg_Conv 
##  + 0.0267 * Per_TheftAndHandling_Conv 
##  + 0.0839 * Per_CrimeDamage_Conv 
##  + 0.0483 * Per_DrugOffences_Conv 
##  + 0.0392 * Per_PublicOrderOffences_Conv 
##  + 0.0762 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 53.8806
## 
## LM num: 55
## Per_Conv_Offence = 
##  0.0999 * Per_Burg_Conv 
##  + 0.0365 * Per_TheftAndHandling_Conv 
##  + 0.1537 * Per_CrimeDamage_Conv 
##  + 0.0483 * Per_DrugOffences_Conv 
##  + 0.0392 * Per_PublicOrderOffences_Conv 
##  + 0.0959 * Per_Others_Ex_Motoring 
##  + 0.0005 * Per_Motoring_Offences_Conv 
##  + 39.5826
## 
## Number of Rules : 55
Rweka_Pre_Per_Convictions = predict(Rweka_Predict_Per_Convictions, Test_Per_Convictions)

summary(Rweka_Pre_Per_Convictions)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   58.55   71.94   74.89   75.04   78.03   98.95
summary(Predict_Per_Convictions)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   70.05   77.92   79.65   78.79   80.89   83.08

The M5P algorithm reveals a mean value of 75% and 78.79% for the train and test respectively

Linear Regression

Creating a new data frame by assigning the Percentage of Conviction data frame (Per_All_Convictions) for the Linear Regression.

LN_Per_Convictions = Per_All_Convictions 

str(LN_Per_Convictions)
## 'data.frame':    2142 obs. of  26 variables:
##  $ Area                          : chr  "Avon and Somerset" "Bedfordshire" "Cambridgeshire" "Cheshire" ...
##  $ Per_Homicide_Conv             : num  100 0 0 50 0 0 0 100 0 100 ...
##  $ Per_Failed_Homicide           : num  0 0 0 50 0 0 0 0 0 0 ...
##  $ Per_Conv_Offence              : num  78.8 75 81.1 74.9 67.5 80.2 72.6 75.8 82 74.3 ...
##  $ Per_Failed_Conv_Offence       : num  21.2 25 18.9 25.1 32.5 19.8 27.4 24.2 18 25.7 ...
##  $ Per_Sex_Offence_Conv          : num  81.8 83.3 66.7 85 73.3 88.9 57.1 73.3 100 73.3 ...
##  $ Per_Failed_Sex_Offence        : num  18.2 16.7 33.3 15 26.7 11.1 42.9 26.7 0 26.7 ...
##  $ Per_Burg_Conv                 : num  94.9 94.1 100 89.7 71.4 92.3 91.2 94.1 94.7 100 ...
##  $ Per_Failed_Burg_Conv          : num  5.1 5.9 0 10.3 28.6 7.7 8.8 5.9 5.3 0 ...
##  $ Per_Rob_Conv                  : num  75 100 85.7 100 71.4 100 72.7 100 100 0 ...
##  $ Per_Failed_Rob_Conv           : num  25 0 14.3 0 28.6 0 27.3 0 0 100 ...
##  $ Per_TheftAndHandling_Conv     : num  92.7 91.6 91.5 98.1 88.8 94.7 93.1 93.8 91.8 88.3 ...
##  $ Per_Failed_TheftAndHandling   : num  7.3 8.4 8.5 1.9 11.2 5.3 6.9 6.2 8.2 11.7 ...
##  $ Per_FraudAndForgery_Conv      : num  100 80 100 88.9 75 100 55 100 77.8 44.4 ...
##  $ Per_Failed_FraudAndForgery    : num  0 20 0 11.1 25 0 45 0 22.2 55.6 ...
##  $ Per_CrimeDamage_Conv          : num  90 76.9 95.5 79.5 80 94.9 85.1 90.3 85.7 86 ...
##  $ Per_Failed_CrimeDamage        : num  10 23.1 4.5 20.5 20 5.1 14.9 9.7 14.3 14 ...
##  $ Per_DrugOffences_Conv         : num  98.5 95.7 95.2 88.2 90 95.5 89.3 92.1 93.5 90.5 ...
##  $ Per_Failed_Drug_Offence       : num  1.5 4.3 4.8 11.8 10 4.5 10.7 7.9 6.5 9.5 ...
##  $ Per_PublicOrderOffences_Conv  : num  86.1 82.9 83.3 92.5 73.3 95.2 92.6 76.5 93.8 81.7 ...
##  $ Per_Failed_PublicOrderOffences: num  13.9 17.1 16.7 7.5 26.7 4.8 7.4 23.5 6.3 18.3 ...
##  $ Per_Others_Ex_Motoring        : num  80.5 64.7 75 89.3 84.8 98.5 75.4 82.1 96.2 80 ...
##  $ Per_Failed_Others_Ex_Motoring : num  19.5 35.3 25 10.7 15.2 1.5 24.6 17.9 3.8 20 ...
##  $ Per_Motoring_Offences_Conv    : num  83.6 88.9 92.9 94.6 87.9 90.5 95.2 91.7 91 95.7 ...
##  $ Per_Failed_Motoring_Offences  : num  16.4 11.1 7.1 5.4 12.1 9.5 4.8 8.3 9 4.3 ...
##  $ Per_Failed_AdminFinalised_Conv: num  100 100 100 100 100 100 100 100 100 0 ...

This confirms the assignment hence creating a new data frame for the Linear Regression analysis.

Overview Of Correlation

Correlations of All Percentage of Convictions

Using the rcorr() to determine the relationship between the variables.

Corr_Per_Convictions = rcorr(as.matrix(LN_Per_Convictions[, -1]))


Corr_Per_Convictions
##                                Per_Homicide_Conv Per_Failed_Homicide
## Per_Homicide_Conv                           1.00               -0.17
## Per_Failed_Homicide                        -0.17                1.00
## Per_Conv_Offence                           -0.06               -0.07
## Per_Failed_Conv_Offence                     0.06                0.07
## Per_Sex_Offence_Conv                       -0.02               -0.04
## Per_Failed_Sex_Offence                      0.02                0.03
## Per_Burg_Conv                               0.01               -0.01
## Per_Failed_Burg_Conv                       -0.01                0.01
## Per_Rob_Conv                                0.01                0.00
## Per_Failed_Rob_Conv                         0.06                0.05
## Per_TheftAndHandling_Conv                   0.00               -0.02
## Per_Failed_TheftAndHandling                 0.00                0.02
## Per_FraudAndForgery_Conv                   -0.03                0.00
## Per_Failed_FraudAndForgery                  0.03                0.01
## Per_CrimeDamage_Conv                       -0.05               -0.01
## Per_Failed_CrimeDamage                      0.05                0.01
## Per_DrugOffences_Conv                      -0.07               -0.07
## Per_Failed_Drug_Offence                     0.07                0.07
## Per_PublicOrderOffences_Conv                0.01               -0.05
## Per_Failed_PublicOrderOffences             -0.01                0.05
## Per_Others_Ex_Motoring                      0.00                0.00
## Per_Failed_Others_Ex_Motoring               0.01                0.00
## Per_Motoring_Offences_Conv                 -0.12               -0.07
## Per_Failed_Motoring_Offences                0.12                0.07
## Per_Failed_AdminFinalised_Conv              0.04               -0.01
##                                Per_Conv_Offence Per_Failed_Conv_Offence
## Per_Homicide_Conv                         -0.06                    0.06
## Per_Failed_Homicide                       -0.07                    0.07
## Per_Conv_Offence                           1.00                   -1.00
## Per_Failed_Conv_Offence                   -1.00                    1.00
## Per_Sex_Offence_Conv                       0.18                   -0.18
## Per_Failed_Sex_Offence                    -0.18                    0.18
## Per_Burg_Conv                              0.20                   -0.20
## Per_Failed_Burg_Conv                      -0.20                    0.20
## Per_Rob_Conv                              -0.04                    0.04
## Per_Failed_Rob_Conv                       -0.08                    0.08
## Per_TheftAndHandling_Conv                  0.39                   -0.39
## Per_Failed_TheftAndHandling               -0.39                    0.39
## Per_FraudAndForgery_Conv                   0.10                   -0.10
## Per_Failed_FraudAndForgery                -0.11                    0.11
## Per_CrimeDamage_Conv                       0.27                   -0.27
## Per_Failed_CrimeDamage                    -0.27                    0.27
## Per_DrugOffences_Conv                      0.20                   -0.20
## Per_Failed_Drug_Offence                   -0.20                    0.20
## Per_PublicOrderOffences_Conv               0.35                   -0.35
## Per_Failed_PublicOrderOffences            -0.35                    0.35
## Per_Others_Ex_Motoring                     0.14                   -0.14
## Per_Failed_Others_Ex_Motoring             -0.14                    0.14
## Per_Motoring_Offences_Conv                 0.28                   -0.28
## Per_Failed_Motoring_Offences              -0.28                    0.28
## Per_Failed_AdminFinalised_Conv             0.01                   -0.01
##                                Per_Sex_Offence_Conv Per_Failed_Sex_Offence
## Per_Homicide_Conv                             -0.02                   0.02
## Per_Failed_Homicide                           -0.04                   0.03
## Per_Conv_Offence                               0.18                  -0.18
## Per_Failed_Conv_Offence                       -0.18                   0.18
## Per_Sex_Offence_Conv                           1.00                  -0.99
## Per_Failed_Sex_Offence                        -0.99                   1.00
## Per_Burg_Conv                                  0.04                  -0.04
## Per_Failed_Burg_Conv                          -0.04                   0.04
## Per_Rob_Conv                                  -0.04                   0.04
## Per_Failed_Rob_Conv                            0.01                  -0.01
## Per_TheftAndHandling_Conv                      0.07                  -0.06
## Per_Failed_TheftAndHandling                   -0.07                   0.06
## Per_FraudAndForgery_Conv                       0.06                  -0.07
## Per_Failed_FraudAndForgery                    -0.06                   0.06
## Per_CrimeDamage_Conv                           0.10                  -0.10
## Per_Failed_CrimeDamage                        -0.10                   0.10
## Per_DrugOffences_Conv                          0.07                  -0.06
## Per_Failed_Drug_Offence                       -0.07                   0.06
## Per_PublicOrderOffences_Conv                   0.08                  -0.08
## Per_Failed_PublicOrderOffences                -0.08                   0.08
## Per_Others_Ex_Motoring                         0.07                  -0.07
## Per_Failed_Others_Ex_Motoring                 -0.08                   0.08
## Per_Motoring_Offences_Conv                     0.12                  -0.12
## Per_Failed_Motoring_Offences                  -0.12                   0.12
## Per_Failed_AdminFinalised_Conv                 0.03                  -0.03
##                                Per_Burg_Conv Per_Failed_Burg_Conv Per_Rob_Conv
## Per_Homicide_Conv                       0.01                -0.01         0.01
## Per_Failed_Homicide                    -0.01                 0.01         0.00
## Per_Conv_Offence                        0.20                -0.20        -0.04
## Per_Failed_Conv_Offence                -0.20                 0.20         0.04
## Per_Sex_Offence_Conv                    0.04                -0.04        -0.04
## Per_Failed_Sex_Offence                 -0.04                 0.04         0.04
## Per_Burg_Conv                           1.00                -1.00         0.06
## Per_Failed_Burg_Conv                   -1.00                 1.00        -0.06
## Per_Rob_Conv                            0.06                -0.06         1.00
## Per_Failed_Rob_Conv                    -0.08                 0.08        -0.60
## Per_TheftAndHandling_Conv               0.13                -0.13        -0.06
## Per_Failed_TheftAndHandling            -0.13                 0.13         0.06
## Per_FraudAndForgery_Conv                0.03                -0.03         0.02
## Per_Failed_FraudAndForgery             -0.01                 0.01        -0.01
## Per_CrimeDamage_Conv                    0.14                -0.14        -0.02
## Per_Failed_CrimeDamage                 -0.14                 0.14         0.02
## Per_DrugOffences_Conv                   0.11                -0.11        -0.02
## Per_Failed_Drug_Offence                -0.11                 0.11         0.02
## Per_PublicOrderOffences_Conv            0.14                -0.14         0.00
## Per_Failed_PublicOrderOffences         -0.14                 0.14         0.00
## Per_Others_Ex_Motoring                  0.05                -0.05         0.02
## Per_Failed_Others_Ex_Motoring          -0.05                 0.05        -0.02
## Per_Motoring_Offences_Conv              0.09                -0.09        -0.02
## Per_Failed_Motoring_Offences           -0.09                 0.09         0.02
## Per_Failed_AdminFinalised_Conv         -0.05                 0.05        -0.01
##                                Per_Failed_Rob_Conv Per_TheftAndHandling_Conv
## Per_Homicide_Conv                             0.06                      0.00
## Per_Failed_Homicide                           0.05                     -0.02
## Per_Conv_Offence                             -0.08                      0.39
## Per_Failed_Conv_Offence                       0.08                     -0.39
## Per_Sex_Offence_Conv                          0.01                      0.07
## Per_Failed_Sex_Offence                       -0.01                     -0.06
## Per_Burg_Conv                                -0.08                      0.13
## Per_Failed_Burg_Conv                          0.08                     -0.13
## Per_Rob_Conv                                 -0.60                     -0.06
## Per_Failed_Rob_Conv                           1.00                     -0.01
## Per_TheftAndHandling_Conv                    -0.01                      1.00
## Per_Failed_TheftAndHandling                   0.01                     -1.00
## Per_FraudAndForgery_Conv                     -0.06                      0.09
## Per_Failed_FraudAndForgery                    0.07                     -0.10
## Per_CrimeDamage_Conv                         -0.03                      0.27
## Per_Failed_CrimeDamage                        0.03                     -0.27
## Per_DrugOffences_Conv                        -0.04                      0.19
## Per_Failed_Drug_Offence                       0.04                     -0.19
## Per_PublicOrderOffences_Conv                 -0.04                      0.33
## Per_Failed_PublicOrderOffences                0.04                     -0.33
## Per_Others_Ex_Motoring                       -0.06                      0.13
## Per_Failed_Others_Ex_Motoring                 0.06                     -0.13
## Per_Motoring_Offences_Conv                   -0.03                      0.23
## Per_Failed_Motoring_Offences                  0.03                     -0.23
## Per_Failed_AdminFinalised_Conv                0.01                      0.00
##                                Per_Failed_TheftAndHandling
## Per_Homicide_Conv                                     0.00
## Per_Failed_Homicide                                   0.02
## Per_Conv_Offence                                     -0.39
## Per_Failed_Conv_Offence                               0.39
## Per_Sex_Offence_Conv                                 -0.07
## Per_Failed_Sex_Offence                                0.06
## Per_Burg_Conv                                        -0.13
## Per_Failed_Burg_Conv                                  0.13
## Per_Rob_Conv                                          0.06
## Per_Failed_Rob_Conv                                   0.01
## Per_TheftAndHandling_Conv                            -1.00
## Per_Failed_TheftAndHandling                           1.00
## Per_FraudAndForgery_Conv                             -0.09
## Per_Failed_FraudAndForgery                            0.10
## Per_CrimeDamage_Conv                                 -0.27
## Per_Failed_CrimeDamage                                0.27
## Per_DrugOffences_Conv                                -0.19
## Per_Failed_Drug_Offence                               0.19
## Per_PublicOrderOffences_Conv                         -0.33
## Per_Failed_PublicOrderOffences                        0.33
## Per_Others_Ex_Motoring                               -0.13
## Per_Failed_Others_Ex_Motoring                         0.13
## Per_Motoring_Offences_Conv                           -0.23
## Per_Failed_Motoring_Offences                          0.23
## Per_Failed_AdminFinalised_Conv                        0.00
##                                Per_FraudAndForgery_Conv
## Per_Homicide_Conv                                 -0.03
## Per_Failed_Homicide                                0.00
## Per_Conv_Offence                                   0.10
## Per_Failed_Conv_Offence                           -0.10
## Per_Sex_Offence_Conv                               0.06
## Per_Failed_Sex_Offence                            -0.07
## Per_Burg_Conv                                      0.03
## Per_Failed_Burg_Conv                              -0.03
## Per_Rob_Conv                                       0.02
## Per_Failed_Rob_Conv                               -0.06
## Per_TheftAndHandling_Conv                          0.09
## Per_Failed_TheftAndHandling                       -0.09
## Per_FraudAndForgery_Conv                           1.00
## Per_Failed_FraudAndForgery                        -0.98
## Per_CrimeDamage_Conv                               0.06
## Per_Failed_CrimeDamage                            -0.06
## Per_DrugOffences_Conv                              0.05
## Per_Failed_Drug_Offence                           -0.05
## Per_PublicOrderOffences_Conv                       0.07
## Per_Failed_PublicOrderOffences                    -0.07
## Per_Others_Ex_Motoring                             0.02
## Per_Failed_Others_Ex_Motoring                     -0.02
## Per_Motoring_Offences_Conv                         0.05
## Per_Failed_Motoring_Offences                      -0.05
## Per_Failed_AdminFinalised_Conv                     0.00
##                                Per_Failed_FraudAndForgery Per_CrimeDamage_Conv
## Per_Homicide_Conv                                    0.03                -0.05
## Per_Failed_Homicide                                  0.01                -0.01
## Per_Conv_Offence                                    -0.11                 0.27
## Per_Failed_Conv_Offence                              0.11                -0.27
## Per_Sex_Offence_Conv                                -0.06                 0.10
## Per_Failed_Sex_Offence                               0.06                -0.10
## Per_Burg_Conv                                       -0.01                 0.14
## Per_Failed_Burg_Conv                                 0.01                -0.14
## Per_Rob_Conv                                        -0.01                -0.02
## Per_Failed_Rob_Conv                                  0.07                -0.03
## Per_TheftAndHandling_Conv                           -0.10                 0.27
## Per_Failed_TheftAndHandling                          0.10                -0.27
## Per_FraudAndForgery_Conv                            -0.98                 0.06
## Per_Failed_FraudAndForgery                           1.00                -0.05
## Per_CrimeDamage_Conv                                -0.05                 1.00
## Per_Failed_CrimeDamage                               0.05                -1.00
## Per_DrugOffences_Conv                               -0.05                 0.18
## Per_Failed_Drug_Offence                              0.05                -0.18
## Per_PublicOrderOffences_Conv                        -0.07                 0.25
## Per_Failed_PublicOrderOffences                       0.07                -0.25
## Per_Others_Ex_Motoring                              -0.02                 0.09
## Per_Failed_Others_Ex_Motoring                        0.03                -0.09
## Per_Motoring_Offences_Conv                          -0.06                 0.15
## Per_Failed_Motoring_Offences                         0.06                -0.15
## Per_Failed_AdminFinalised_Conv                       0.00                 0.00
##                                Per_Failed_CrimeDamage Per_DrugOffences_Conv
## Per_Homicide_Conv                                0.05                 -0.07
## Per_Failed_Homicide                              0.01                 -0.07
## Per_Conv_Offence                                -0.27                  0.20
## Per_Failed_Conv_Offence                          0.27                 -0.20
## Per_Sex_Offence_Conv                            -0.10                  0.07
## Per_Failed_Sex_Offence                           0.10                 -0.06
## Per_Burg_Conv                                   -0.14                  0.11
## Per_Failed_Burg_Conv                             0.14                 -0.11
## Per_Rob_Conv                                     0.02                 -0.02
## Per_Failed_Rob_Conv                              0.03                 -0.04
## Per_TheftAndHandling_Conv                       -0.27                  0.19
## Per_Failed_TheftAndHandling                      0.27                 -0.19
## Per_FraudAndForgery_Conv                        -0.06                  0.05
## Per_Failed_FraudAndForgery                       0.05                 -0.05
## Per_CrimeDamage_Conv                            -1.00                  0.18
## Per_Failed_CrimeDamage                           1.00                 -0.18
## Per_DrugOffences_Conv                           -0.18                  1.00
## Per_Failed_Drug_Offence                          0.18                 -1.00
## Per_PublicOrderOffences_Conv                    -0.25                  0.19
## Per_Failed_PublicOrderOffences                   0.25                 -0.19
## Per_Others_Ex_Motoring                          -0.09                  0.06
## Per_Failed_Others_Ex_Motoring                    0.09                 -0.06
## Per_Motoring_Offences_Conv                      -0.15                  0.15
## Per_Failed_Motoring_Offences                     0.15                 -0.15
## Per_Failed_AdminFinalised_Conv                   0.00                  0.03
##                                Per_Failed_Drug_Offence
## Per_Homicide_Conv                                 0.07
## Per_Failed_Homicide                               0.07
## Per_Conv_Offence                                 -0.20
## Per_Failed_Conv_Offence                           0.20
## Per_Sex_Offence_Conv                             -0.07
## Per_Failed_Sex_Offence                            0.06
## Per_Burg_Conv                                    -0.11
## Per_Failed_Burg_Conv                              0.11
## Per_Rob_Conv                                      0.02
## Per_Failed_Rob_Conv                               0.04
## Per_TheftAndHandling_Conv                        -0.19
## Per_Failed_TheftAndHandling                       0.19
## Per_FraudAndForgery_Conv                         -0.05
## Per_Failed_FraudAndForgery                        0.05
## Per_CrimeDamage_Conv                             -0.18
## Per_Failed_CrimeDamage                            0.18
## Per_DrugOffences_Conv                            -1.00
## Per_Failed_Drug_Offence                           1.00
## Per_PublicOrderOffences_Conv                     -0.19
## Per_Failed_PublicOrderOffences                    0.19
## Per_Others_Ex_Motoring                           -0.06
## Per_Failed_Others_Ex_Motoring                     0.06
## Per_Motoring_Offences_Conv                       -0.15
## Per_Failed_Motoring_Offences                      0.15
## Per_Failed_AdminFinalised_Conv                   -0.03
##                                Per_PublicOrderOffences_Conv
## Per_Homicide_Conv                                      0.01
## Per_Failed_Homicide                                   -0.05
## Per_Conv_Offence                                       0.35
## Per_Failed_Conv_Offence                               -0.35
## Per_Sex_Offence_Conv                                   0.08
## Per_Failed_Sex_Offence                                -0.08
## Per_Burg_Conv                                          0.14
## Per_Failed_Burg_Conv                                  -0.14
## Per_Rob_Conv                                           0.00
## Per_Failed_Rob_Conv                                   -0.04
## Per_TheftAndHandling_Conv                              0.33
## Per_Failed_TheftAndHandling                           -0.33
## Per_FraudAndForgery_Conv                               0.07
## Per_Failed_FraudAndForgery                            -0.07
## Per_CrimeDamage_Conv                                   0.25
## Per_Failed_CrimeDamage                                -0.25
## Per_DrugOffences_Conv                                  0.19
## Per_Failed_Drug_Offence                               -0.19
## Per_PublicOrderOffences_Conv                           1.00
## Per_Failed_PublicOrderOffences                        -1.00
## Per_Others_Ex_Motoring                                 0.10
## Per_Failed_Others_Ex_Motoring                         -0.09
## Per_Motoring_Offences_Conv                             0.17
## Per_Failed_Motoring_Offences                          -0.17
## Per_Failed_AdminFinalised_Conv                         0.02
##                                Per_Failed_PublicOrderOffences
## Per_Homicide_Conv                                       -0.01
## Per_Failed_Homicide                                      0.05
## Per_Conv_Offence                                        -0.35
## Per_Failed_Conv_Offence                                  0.35
## Per_Sex_Offence_Conv                                    -0.08
## Per_Failed_Sex_Offence                                   0.08
## Per_Burg_Conv                                           -0.14
## Per_Failed_Burg_Conv                                     0.14
## Per_Rob_Conv                                             0.00
## Per_Failed_Rob_Conv                                      0.04
## Per_TheftAndHandling_Conv                               -0.33
## Per_Failed_TheftAndHandling                              0.33
## Per_FraudAndForgery_Conv                                -0.07
## Per_Failed_FraudAndForgery                               0.07
## Per_CrimeDamage_Conv                                    -0.25
## Per_Failed_CrimeDamage                                   0.25
## Per_DrugOffences_Conv                                   -0.19
## Per_Failed_Drug_Offence                                  0.19
## Per_PublicOrderOffences_Conv                            -1.00
## Per_Failed_PublicOrderOffences                           1.00
## Per_Others_Ex_Motoring                                  -0.10
## Per_Failed_Others_Ex_Motoring                            0.09
## Per_Motoring_Offences_Conv                              -0.17
## Per_Failed_Motoring_Offences                             0.17
## Per_Failed_AdminFinalised_Conv                          -0.02
##                                Per_Others_Ex_Motoring
## Per_Homicide_Conv                                0.00
## Per_Failed_Homicide                              0.00
## Per_Conv_Offence                                 0.14
## Per_Failed_Conv_Offence                         -0.14
## Per_Sex_Offence_Conv                             0.07
## Per_Failed_Sex_Offence                          -0.07
## Per_Burg_Conv                                    0.05
## Per_Failed_Burg_Conv                            -0.05
## Per_Rob_Conv                                     0.02
## Per_Failed_Rob_Conv                             -0.06
## Per_TheftAndHandling_Conv                        0.13
## Per_Failed_TheftAndHandling                     -0.13
## Per_FraudAndForgery_Conv                         0.02
## Per_Failed_FraudAndForgery                      -0.02
## Per_CrimeDamage_Conv                             0.09
## Per_Failed_CrimeDamage                          -0.09
## Per_DrugOffences_Conv                            0.06
## Per_Failed_Drug_Offence                         -0.06
## Per_PublicOrderOffences_Conv                     0.10
## Per_Failed_PublicOrderOffences                  -0.10
## Per_Others_Ex_Motoring                           1.00
## Per_Failed_Others_Ex_Motoring                   -0.98
## Per_Motoring_Offences_Conv                       0.04
## Per_Failed_Motoring_Offences                    -0.04
## Per_Failed_AdminFinalised_Conv                  -0.03
##                                Per_Failed_Others_Ex_Motoring
## Per_Homicide_Conv                                       0.01
## Per_Failed_Homicide                                     0.00
## Per_Conv_Offence                                       -0.14
## Per_Failed_Conv_Offence                                 0.14
## Per_Sex_Offence_Conv                                   -0.08
## Per_Failed_Sex_Offence                                  0.08
## Per_Burg_Conv                                          -0.05
## Per_Failed_Burg_Conv                                    0.05
## Per_Rob_Conv                                           -0.02
## Per_Failed_Rob_Conv                                     0.06
## Per_TheftAndHandling_Conv                              -0.13
## Per_Failed_TheftAndHandling                             0.13
## Per_FraudAndForgery_Conv                               -0.02
## Per_Failed_FraudAndForgery                              0.03
## Per_CrimeDamage_Conv                                   -0.09
## Per_Failed_CrimeDamage                                  0.09
## Per_DrugOffences_Conv                                  -0.06
## Per_Failed_Drug_Offence                                 0.06
## Per_PublicOrderOffences_Conv                           -0.09
## Per_Failed_PublicOrderOffences                          0.09
## Per_Others_Ex_Motoring                                 -0.98
## Per_Failed_Others_Ex_Motoring                           1.00
## Per_Motoring_Offences_Conv                             -0.04
## Per_Failed_Motoring_Offences                            0.04
## Per_Failed_AdminFinalised_Conv                          0.03
##                                Per_Motoring_Offences_Conv
## Per_Homicide_Conv                                   -0.12
## Per_Failed_Homicide                                 -0.07
## Per_Conv_Offence                                     0.28
## Per_Failed_Conv_Offence                             -0.28
## Per_Sex_Offence_Conv                                 0.12
## Per_Failed_Sex_Offence                              -0.12
## Per_Burg_Conv                                        0.09
## Per_Failed_Burg_Conv                                -0.09
## Per_Rob_Conv                                        -0.02
## Per_Failed_Rob_Conv                                 -0.03
## Per_TheftAndHandling_Conv                            0.23
## Per_Failed_TheftAndHandling                         -0.23
## Per_FraudAndForgery_Conv                             0.05
## Per_Failed_FraudAndForgery                          -0.06
## Per_CrimeDamage_Conv                                 0.15
## Per_Failed_CrimeDamage                              -0.15
## Per_DrugOffences_Conv                                0.15
## Per_Failed_Drug_Offence                             -0.15
## Per_PublicOrderOffences_Conv                         0.17
## Per_Failed_PublicOrderOffences                      -0.17
## Per_Others_Ex_Motoring                               0.04
## Per_Failed_Others_Ex_Motoring                       -0.04
## Per_Motoring_Offences_Conv                           1.00
## Per_Failed_Motoring_Offences                        -1.00
## Per_Failed_AdminFinalised_Conv                      -0.03
##                                Per_Failed_Motoring_Offences
## Per_Homicide_Conv                                      0.12
## Per_Failed_Homicide                                    0.07
## Per_Conv_Offence                                      -0.28
## Per_Failed_Conv_Offence                                0.28
## Per_Sex_Offence_Conv                                  -0.12
## Per_Failed_Sex_Offence                                 0.12
## Per_Burg_Conv                                         -0.09
## Per_Failed_Burg_Conv                                   0.09
## Per_Rob_Conv                                           0.02
## Per_Failed_Rob_Conv                                    0.03
## Per_TheftAndHandling_Conv                             -0.23
## Per_Failed_TheftAndHandling                            0.23
## Per_FraudAndForgery_Conv                              -0.05
## Per_Failed_FraudAndForgery                             0.06
## Per_CrimeDamage_Conv                                  -0.15
## Per_Failed_CrimeDamage                                 0.15
## Per_DrugOffences_Conv                                 -0.15
## Per_Failed_Drug_Offence                                0.15
## Per_PublicOrderOffences_Conv                          -0.17
## Per_Failed_PublicOrderOffences                         0.17
## Per_Others_Ex_Motoring                                -0.04
## Per_Failed_Others_Ex_Motoring                          0.04
## Per_Motoring_Offences_Conv                            -1.00
## Per_Failed_Motoring_Offences                           1.00
## Per_Failed_AdminFinalised_Conv                         0.03
##                                Per_Failed_AdminFinalised_Conv
## Per_Homicide_Conv                                        0.04
## Per_Failed_Homicide                                     -0.01
## Per_Conv_Offence                                         0.01
## Per_Failed_Conv_Offence                                 -0.01
## Per_Sex_Offence_Conv                                     0.03
## Per_Failed_Sex_Offence                                  -0.03
## Per_Burg_Conv                                           -0.05
## Per_Failed_Burg_Conv                                     0.05
## Per_Rob_Conv                                            -0.01
## Per_Failed_Rob_Conv                                      0.01
## Per_TheftAndHandling_Conv                                0.00
## Per_Failed_TheftAndHandling                              0.00
## Per_FraudAndForgery_Conv                                 0.00
## Per_Failed_FraudAndForgery                               0.00
## Per_CrimeDamage_Conv                                     0.00
## Per_Failed_CrimeDamage                                   0.00
## Per_DrugOffences_Conv                                    0.03
## Per_Failed_Drug_Offence                                 -0.03
## Per_PublicOrderOffences_Conv                             0.02
## Per_Failed_PublicOrderOffences                          -0.02
## Per_Others_Ex_Motoring                                  -0.03
## Per_Failed_Others_Ex_Motoring                            0.03
## Per_Motoring_Offences_Conv                              -0.03
## Per_Failed_Motoring_Offences                             0.03
## Per_Failed_AdminFinalised_Conv                           1.00
## 
## n= 2142 
## 
## 
## P
##                                Per_Homicide_Conv Per_Failed_Homicide
## Per_Homicide_Conv                                0.0000             
## Per_Failed_Homicide            0.0000                               
## Per_Conv_Offence               0.0068            0.0015             
## Per_Failed_Conv_Offence        0.0068            0.0015             
## Per_Sex_Offence_Conv           0.3480            0.0992             
## Per_Failed_Sex_Offence         0.3333            0.1656             
## Per_Burg_Conv                  0.5370            0.6085             
## Per_Failed_Burg_Conv           0.5368            0.6084             
## Per_Rob_Conv                   0.8072            0.9755             
## Per_Failed_Rob_Conv            0.0028            0.0152             
## Per_TheftAndHandling_Conv      0.9059            0.4434             
## Per_Failed_TheftAndHandling    0.9098            0.4445             
## Per_FraudAndForgery_Conv       0.2328            0.8476             
## Per_Failed_FraudAndForgery     0.1449            0.7749             
## Per_CrimeDamage_Conv           0.0185            0.6942             
## Per_Failed_CrimeDamage         0.0185            0.6950             
## Per_DrugOffences_Conv          0.0006            0.0015             
## Per_Failed_Drug_Offence        0.0006            0.0015             
## Per_PublicOrderOffences_Conv   0.7995            0.0146             
## Per_Failed_PublicOrderOffences 0.7998            0.0146             
## Per_Others_Ex_Motoring         0.9019            0.8218             
## Per_Failed_Others_Ex_Motoring  0.7260            0.8842             
## Per_Motoring_Offences_Conv     0.0000            0.0013             
## Per_Failed_Motoring_Offences   0.0000            0.0013             
## Per_Failed_AdminFinalised_Conv 0.0952            0.7423             
##                                Per_Conv_Offence Per_Failed_Conv_Offence
## Per_Homicide_Conv              0.0068           0.0068                 
## Per_Failed_Homicide            0.0015           0.0015                 
## Per_Conv_Offence                                0.0000                 
## Per_Failed_Conv_Offence        0.0000                                  
## Per_Sex_Offence_Conv           0.0000           0.0000                 
## Per_Failed_Sex_Offence         0.0000           0.0000                 
## Per_Burg_Conv                  0.0000           0.0000                 
## Per_Failed_Burg_Conv           0.0000           0.0000                 
## Per_Rob_Conv                   0.0698           0.0701                 
## Per_Failed_Rob_Conv            0.0002           0.0002                 
## Per_TheftAndHandling_Conv      0.0000           0.0000                 
## Per_Failed_TheftAndHandling    0.0000           0.0000                 
## Per_FraudAndForgery_Conv       0.0000           0.0000                 
## Per_Failed_FraudAndForgery     0.0000           0.0000                 
## Per_CrimeDamage_Conv           0.0000           0.0000                 
## Per_Failed_CrimeDamage         0.0000           0.0000                 
## Per_DrugOffences_Conv          0.0000           0.0000                 
## Per_Failed_Drug_Offence        0.0000           0.0000                 
## Per_PublicOrderOffences_Conv   0.0000           0.0000                 
## Per_Failed_PublicOrderOffences 0.0000           0.0000                 
## Per_Others_Ex_Motoring         0.0000           0.0000                 
## Per_Failed_Others_Ex_Motoring  0.0000           0.0000                 
## Per_Motoring_Offences_Conv     0.0000           0.0000                 
## Per_Failed_Motoring_Offences   0.0000           0.0000                 
## Per_Failed_AdminFinalised_Conv 0.7696           0.7699                 
##                                Per_Sex_Offence_Conv Per_Failed_Sex_Offence
## Per_Homicide_Conv              0.3480               0.3333                
## Per_Failed_Homicide            0.0992               0.1656                
## Per_Conv_Offence               0.0000               0.0000                
## Per_Failed_Conv_Offence        0.0000               0.0000                
## Per_Sex_Offence_Conv                                0.0000                
## Per_Failed_Sex_Offence         0.0000                                     
## Per_Burg_Conv                  0.0725               0.0410                
## Per_Failed_Burg_Conv           0.0729               0.0413                
## Per_Rob_Conv                   0.0752               0.0595                
## Per_Failed_Rob_Conv            0.7818               0.6596                
## Per_TheftAndHandling_Conv      0.0022               0.0028                
## Per_Failed_TheftAndHandling    0.0023               0.0029                
## Per_FraudAndForgery_Conv       0.0029               0.0024                
## Per_Failed_FraudAndForgery     0.0055               0.0046                
## Per_CrimeDamage_Conv           0.0000               0.0000                
## Per_Failed_CrimeDamage         0.0000               0.0000                
## Per_DrugOffences_Conv          0.0022               0.0027                
## Per_Failed_Drug_Offence        0.0022               0.0027                
## Per_PublicOrderOffences_Conv   0.0002               0.0000                
## Per_Failed_PublicOrderOffences 0.0002               0.0000                
## Per_Others_Ex_Motoring         0.0007               0.0018                
## Per_Failed_Others_Ex_Motoring  0.0002               0.0005                
## Per_Motoring_Offences_Conv     0.0000               0.0000                
## Per_Failed_Motoring_Offences   0.0000               0.0000                
## Per_Failed_AdminFinalised_Conv 0.2080               0.2000                
##                                Per_Burg_Conv Per_Failed_Burg_Conv Per_Rob_Conv
## Per_Homicide_Conv              0.5370        0.5368               0.8072      
## Per_Failed_Homicide            0.6085        0.6084               0.9755      
## Per_Conv_Offence               0.0000        0.0000               0.0698      
## Per_Failed_Conv_Offence        0.0000        0.0000               0.0701      
## Per_Sex_Offence_Conv           0.0725        0.0729               0.0752      
## Per_Failed_Sex_Offence         0.0410        0.0413               0.0595      
## Per_Burg_Conv                                0.0000               0.0028      
## Per_Failed_Burg_Conv           0.0000                             0.0028      
## Per_Rob_Conv                   0.0028        0.0028                           
## Per_Failed_Rob_Conv            0.0003        0.0003               0.0000      
## Per_TheftAndHandling_Conv      0.0000        0.0000               0.0071      
## Per_Failed_TheftAndHandling    0.0000        0.0000               0.0072      
## Per_FraudAndForgery_Conv       0.2402        0.2408               0.3250      
## Per_Failed_FraudAndForgery     0.5470        0.5481               0.6497      
## Per_CrimeDamage_Conv           0.0000        0.0000               0.4311      
## Per_Failed_CrimeDamage         0.0000        0.0000               0.4324      
## Per_DrugOffences_Conv          0.0000        0.0000               0.3760      
## Per_Failed_Drug_Offence        0.0000        0.0000               0.3763      
## Per_PublicOrderOffences_Conv   0.0000        0.0000               0.8718      
## Per_Failed_PublicOrderOffences 0.0000        0.0000               0.8683      
## Per_Others_Ex_Motoring         0.0143        0.0144               0.2902      
## Per_Failed_Others_Ex_Motoring  0.0133        0.0134               0.3148      
## Per_Motoring_Offences_Conv     0.0000        0.0000               0.2899      
## Per_Failed_Motoring_Offences   0.0000        0.0000               0.2919      
## Per_Failed_AdminFinalised_Conv 0.0126        0.0125               0.7644      
##                                Per_Failed_Rob_Conv Per_TheftAndHandling_Conv
## Per_Homicide_Conv              0.0028              0.9059                   
## Per_Failed_Homicide            0.0152              0.4434                   
## Per_Conv_Offence               0.0002              0.0000                   
## Per_Failed_Conv_Offence        0.0002              0.0000                   
## Per_Sex_Offence_Conv           0.7818              0.0022                   
## Per_Failed_Sex_Offence         0.6596              0.0028                   
## Per_Burg_Conv                  0.0003              0.0000                   
## Per_Failed_Burg_Conv           0.0003              0.0000                   
## Per_Rob_Conv                   0.0000              0.0071                   
## Per_Failed_Rob_Conv                                0.5791                   
## Per_TheftAndHandling_Conv      0.5791                                       
## Per_Failed_TheftAndHandling    0.5825              0.0000                   
## Per_FraudAndForgery_Conv       0.0046              0.0000                   
## Per_Failed_FraudAndForgery     0.0023              0.0000                   
## Per_CrimeDamage_Conv           0.2379              0.0000                   
## Per_Failed_CrimeDamage         0.2382              0.0000                   
## Per_DrugOffences_Conv          0.0506              0.0000                   
## Per_Failed_Drug_Offence        0.0508              0.0000                   
## Per_PublicOrderOffences_Conv   0.0664              0.0000                   
## Per_Failed_PublicOrderOffences 0.0664              0.0000                   
## Per_Others_Ex_Motoring         0.0077              0.0000                   
## Per_Failed_Others_Ex_Motoring  0.0102              0.0000                   
## Per_Motoring_Offences_Conv     0.1204              0.0000                   
## Per_Failed_Motoring_Offences   0.1200              0.0000                   
## Per_Failed_AdminFinalised_Conv 0.5727              0.8186                   
##                                Per_Failed_TheftAndHandling
## Per_Homicide_Conv              0.9098                     
## Per_Failed_Homicide            0.4445                     
## Per_Conv_Offence               0.0000                     
## Per_Failed_Conv_Offence        0.0000                     
## Per_Sex_Offence_Conv           0.0023                     
## Per_Failed_Sex_Offence         0.0029                     
## Per_Burg_Conv                  0.0000                     
## Per_Failed_Burg_Conv           0.0000                     
## Per_Rob_Conv                   0.0072                     
## Per_Failed_Rob_Conv            0.5825                     
## Per_TheftAndHandling_Conv      0.0000                     
## Per_Failed_TheftAndHandling                               
## Per_FraudAndForgery_Conv       0.0000                     
## Per_Failed_FraudAndForgery     0.0000                     
## Per_CrimeDamage_Conv           0.0000                     
## Per_Failed_CrimeDamage         0.0000                     
## Per_DrugOffences_Conv          0.0000                     
## Per_Failed_Drug_Offence        0.0000                     
## Per_PublicOrderOffences_Conv   0.0000                     
## Per_Failed_PublicOrderOffences 0.0000                     
## Per_Others_Ex_Motoring         0.0000                     
## Per_Failed_Others_Ex_Motoring  0.0000                     
## Per_Motoring_Offences_Conv     0.0000                     
## Per_Failed_Motoring_Offences   0.0000                     
## Per_Failed_AdminFinalised_Conv 0.8178                     
##                                Per_FraudAndForgery_Conv
## Per_Homicide_Conv              0.2328                  
## Per_Failed_Homicide            0.8476                  
## Per_Conv_Offence               0.0000                  
## Per_Failed_Conv_Offence        0.0000                  
## Per_Sex_Offence_Conv           0.0029                  
## Per_Failed_Sex_Offence         0.0024                  
## Per_Burg_Conv                  0.2402                  
## Per_Failed_Burg_Conv           0.2408                  
## Per_Rob_Conv                   0.3250                  
## Per_Failed_Rob_Conv            0.0046                  
## Per_TheftAndHandling_Conv      0.0000                  
## Per_Failed_TheftAndHandling    0.0000                  
## Per_FraudAndForgery_Conv                               
## Per_Failed_FraudAndForgery     0.0000                  
## Per_CrimeDamage_Conv           0.0092                  
## Per_Failed_CrimeDamage         0.0092                  
## Per_DrugOffences_Conv          0.0330                  
## Per_Failed_Drug_Offence        0.0329                  
## Per_PublicOrderOffences_Conv   0.0016                  
## Per_Failed_PublicOrderOffences 0.0016                  
## Per_Others_Ex_Motoring         0.4758                  
## Per_Failed_Others_Ex_Motoring  0.3517                  
## Per_Motoring_Offences_Conv     0.0117                  
## Per_Failed_Motoring_Offences   0.0118                  
## Per_Failed_AdminFinalised_Conv 0.9558                  
##                                Per_Failed_FraudAndForgery Per_CrimeDamage_Conv
## Per_Homicide_Conv              0.1449                     0.0185              
## Per_Failed_Homicide            0.7749                     0.6942              
## Per_Conv_Offence               0.0000                     0.0000              
## Per_Failed_Conv_Offence        0.0000                     0.0000              
## Per_Sex_Offence_Conv           0.0055                     0.0000              
## Per_Failed_Sex_Offence         0.0046                     0.0000              
## Per_Burg_Conv                  0.5470                     0.0000              
## Per_Failed_Burg_Conv           0.5481                     0.0000              
## Per_Rob_Conv                   0.6497                     0.4311              
## Per_Failed_Rob_Conv            0.0023                     0.2379              
## Per_TheftAndHandling_Conv      0.0000                     0.0000              
## Per_Failed_TheftAndHandling    0.0000                     0.0000              
## Per_FraudAndForgery_Conv       0.0000                     0.0092              
## Per_Failed_FraudAndForgery                                0.0224              
## Per_CrimeDamage_Conv           0.0224                                         
## Per_Failed_CrimeDamage         0.0224                     0.0000              
## Per_DrugOffences_Conv          0.0175                     0.0000              
## Per_Failed_Drug_Offence        0.0175                     0.0000              
## Per_PublicOrderOffences_Conv   0.0017                     0.0000              
## Per_Failed_PublicOrderOffences 0.0017                     0.0000              
## Per_Others_Ex_Motoring         0.3356                     0.0000              
## Per_Failed_Others_Ex_Motoring  0.2355                     0.0000              
## Per_Motoring_Offences_Conv     0.0108                     0.0000              
## Per_Failed_Motoring_Offences   0.0108                     0.0000              
## Per_Failed_AdminFinalised_Conv 0.9421                     0.9895              
##                                Per_Failed_CrimeDamage Per_DrugOffences_Conv
## Per_Homicide_Conv              0.0185                 0.0006               
## Per_Failed_Homicide            0.6950                 0.0015               
## Per_Conv_Offence               0.0000                 0.0000               
## Per_Failed_Conv_Offence        0.0000                 0.0000               
## Per_Sex_Offence_Conv           0.0000                 0.0022               
## Per_Failed_Sex_Offence         0.0000                 0.0027               
## Per_Burg_Conv                  0.0000                 0.0000               
## Per_Failed_Burg_Conv           0.0000                 0.0000               
## Per_Rob_Conv                   0.4324                 0.3760               
## Per_Failed_Rob_Conv            0.2382                 0.0506               
## Per_TheftAndHandling_Conv      0.0000                 0.0000               
## Per_Failed_TheftAndHandling    0.0000                 0.0000               
## Per_FraudAndForgery_Conv       0.0092                 0.0330               
## Per_Failed_FraudAndForgery     0.0224                 0.0175               
## Per_CrimeDamage_Conv           0.0000                 0.0000               
## Per_Failed_CrimeDamage                                0.0000               
## Per_DrugOffences_Conv          0.0000                                      
## Per_Failed_Drug_Offence        0.0000                 0.0000               
## Per_PublicOrderOffences_Conv   0.0000                 0.0000               
## Per_Failed_PublicOrderOffences 0.0000                 0.0000               
## Per_Others_Ex_Motoring         0.0000                 0.0039               
## Per_Failed_Others_Ex_Motoring  0.0000                 0.0031               
## Per_Motoring_Offences_Conv     0.0000                 0.0000               
## Per_Failed_Motoring_Offences   0.0000                 0.0000               
## Per_Failed_AdminFinalised_Conv 0.9902                 0.1115               
##                                Per_Failed_Drug_Offence
## Per_Homicide_Conv              0.0006                 
## Per_Failed_Homicide            0.0015                 
## Per_Conv_Offence               0.0000                 
## Per_Failed_Conv_Offence        0.0000                 
## Per_Sex_Offence_Conv           0.0022                 
## Per_Failed_Sex_Offence         0.0027                 
## Per_Burg_Conv                  0.0000                 
## Per_Failed_Burg_Conv           0.0000                 
## Per_Rob_Conv                   0.3763                 
## Per_Failed_Rob_Conv            0.0508                 
## Per_TheftAndHandling_Conv      0.0000                 
## Per_Failed_TheftAndHandling    0.0000                 
## Per_FraudAndForgery_Conv       0.0329                 
## Per_Failed_FraudAndForgery     0.0175                 
## Per_CrimeDamage_Conv           0.0000                 
## Per_Failed_CrimeDamage         0.0000                 
## Per_DrugOffences_Conv          0.0000                 
## Per_Failed_Drug_Offence                               
## Per_PublicOrderOffences_Conv   0.0000                 
## Per_Failed_PublicOrderOffences 0.0000                 
## Per_Others_Ex_Motoring         0.0039                 
## Per_Failed_Others_Ex_Motoring  0.0030                 
## Per_Motoring_Offences_Conv     0.0000                 
## Per_Failed_Motoring_Offences   0.0000                 
## Per_Failed_AdminFinalised_Conv 0.1118                 
##                                Per_PublicOrderOffences_Conv
## Per_Homicide_Conv              0.7995                      
## Per_Failed_Homicide            0.0146                      
## Per_Conv_Offence               0.0000                      
## Per_Failed_Conv_Offence        0.0000                      
## Per_Sex_Offence_Conv           0.0002                      
## Per_Failed_Sex_Offence         0.0000                      
## Per_Burg_Conv                  0.0000                      
## Per_Failed_Burg_Conv           0.0000                      
## Per_Rob_Conv                   0.8718                      
## Per_Failed_Rob_Conv            0.0664                      
## Per_TheftAndHandling_Conv      0.0000                      
## Per_Failed_TheftAndHandling    0.0000                      
## Per_FraudAndForgery_Conv       0.0016                      
## Per_Failed_FraudAndForgery     0.0017                      
## Per_CrimeDamage_Conv           0.0000                      
## Per_Failed_CrimeDamage         0.0000                      
## Per_DrugOffences_Conv          0.0000                      
## Per_Failed_Drug_Offence        0.0000                      
## Per_PublicOrderOffences_Conv                               
## Per_Failed_PublicOrderOffences 0.0000                      
## Per_Others_Ex_Motoring         0.0000                      
## Per_Failed_Others_Ex_Motoring  0.0000                      
## Per_Motoring_Offences_Conv     0.0000                      
## Per_Failed_Motoring_Offences   0.0000                      
## Per_Failed_AdminFinalised_Conv 0.4512                      
##                                Per_Failed_PublicOrderOffences
## Per_Homicide_Conv              0.7998                        
## Per_Failed_Homicide            0.0146                        
## Per_Conv_Offence               0.0000                        
## Per_Failed_Conv_Offence        0.0000                        
## Per_Sex_Offence_Conv           0.0002                        
## Per_Failed_Sex_Offence         0.0000                        
## Per_Burg_Conv                  0.0000                        
## Per_Failed_Burg_Conv           0.0000                        
## Per_Rob_Conv                   0.8683                        
## Per_Failed_Rob_Conv            0.0664                        
## Per_TheftAndHandling_Conv      0.0000                        
## Per_Failed_TheftAndHandling    0.0000                        
## Per_FraudAndForgery_Conv       0.0016                        
## Per_Failed_FraudAndForgery     0.0017                        
## Per_CrimeDamage_Conv           0.0000                        
## Per_Failed_CrimeDamage         0.0000                        
## Per_DrugOffences_Conv          0.0000                        
## Per_Failed_Drug_Offence        0.0000                        
## Per_PublicOrderOffences_Conv   0.0000                        
## Per_Failed_PublicOrderOffences                               
## Per_Others_Ex_Motoring         0.0000                        
## Per_Failed_Others_Ex_Motoring  0.0000                        
## Per_Motoring_Offences_Conv     0.0000                        
## Per_Failed_Motoring_Offences   0.0000                        
## Per_Failed_AdminFinalised_Conv 0.4517                        
##                                Per_Others_Ex_Motoring
## Per_Homicide_Conv              0.9019                
## Per_Failed_Homicide            0.8218                
## Per_Conv_Offence               0.0000                
## Per_Failed_Conv_Offence        0.0000                
## Per_Sex_Offence_Conv           0.0007                
## Per_Failed_Sex_Offence         0.0018                
## Per_Burg_Conv                  0.0143                
## Per_Failed_Burg_Conv           0.0144                
## Per_Rob_Conv                   0.2902                
## Per_Failed_Rob_Conv            0.0077                
## Per_TheftAndHandling_Conv      0.0000                
## Per_Failed_TheftAndHandling    0.0000                
## Per_FraudAndForgery_Conv       0.4758                
## Per_Failed_FraudAndForgery     0.3356                
## Per_CrimeDamage_Conv           0.0000                
## Per_Failed_CrimeDamage         0.0000                
## Per_DrugOffences_Conv          0.0039                
## Per_Failed_Drug_Offence        0.0039                
## Per_PublicOrderOffences_Conv   0.0000                
## Per_Failed_PublicOrderOffences 0.0000                
## Per_Others_Ex_Motoring                               
## Per_Failed_Others_Ex_Motoring  0.0000                
## Per_Motoring_Offences_Conv     0.0486                
## Per_Failed_Motoring_Offences   0.0482                
## Per_Failed_AdminFinalised_Conv 0.2087                
##                                Per_Failed_Others_Ex_Motoring
## Per_Homicide_Conv              0.7260                       
## Per_Failed_Homicide            0.8842                       
## Per_Conv_Offence               0.0000                       
## Per_Failed_Conv_Offence        0.0000                       
## Per_Sex_Offence_Conv           0.0002                       
## Per_Failed_Sex_Offence         0.0005                       
## Per_Burg_Conv                  0.0133                       
## Per_Failed_Burg_Conv           0.0134                       
## Per_Rob_Conv                   0.3148                       
## Per_Failed_Rob_Conv            0.0102                       
## Per_TheftAndHandling_Conv      0.0000                       
## Per_Failed_TheftAndHandling    0.0000                       
## Per_FraudAndForgery_Conv       0.3517                       
## Per_Failed_FraudAndForgery     0.2355                       
## Per_CrimeDamage_Conv           0.0000                       
## Per_Failed_CrimeDamage         0.0000                       
## Per_DrugOffences_Conv          0.0031                       
## Per_Failed_Drug_Offence        0.0030                       
## Per_PublicOrderOffences_Conv   0.0000                       
## Per_Failed_PublicOrderOffences 0.0000                       
## Per_Others_Ex_Motoring         0.0000                       
## Per_Failed_Others_Ex_Motoring                               
## Per_Motoring_Offences_Conv     0.0468                       
## Per_Failed_Motoring_Offences   0.0464                       
## Per_Failed_AdminFinalised_Conv 0.2088                       
##                                Per_Motoring_Offences_Conv
## Per_Homicide_Conv              0.0000                    
## Per_Failed_Homicide            0.0013                    
## Per_Conv_Offence               0.0000                    
## Per_Failed_Conv_Offence        0.0000                    
## Per_Sex_Offence_Conv           0.0000                    
## Per_Failed_Sex_Offence         0.0000                    
## Per_Burg_Conv                  0.0000                    
## Per_Failed_Burg_Conv           0.0000                    
## Per_Rob_Conv                   0.2899                    
## Per_Failed_Rob_Conv            0.1204                    
## Per_TheftAndHandling_Conv      0.0000                    
## Per_Failed_TheftAndHandling    0.0000                    
## Per_FraudAndForgery_Conv       0.0117                    
## Per_Failed_FraudAndForgery     0.0108                    
## Per_CrimeDamage_Conv           0.0000                    
## Per_Failed_CrimeDamage         0.0000                    
## Per_DrugOffences_Conv          0.0000                    
## Per_Failed_Drug_Offence        0.0000                    
## Per_PublicOrderOffences_Conv   0.0000                    
## Per_Failed_PublicOrderOffences 0.0000                    
## Per_Others_Ex_Motoring         0.0486                    
## Per_Failed_Others_Ex_Motoring  0.0468                    
## Per_Motoring_Offences_Conv                               
## Per_Failed_Motoring_Offences   0.0000                    
## Per_Failed_AdminFinalised_Conv 0.2004                    
##                                Per_Failed_Motoring_Offences
## Per_Homicide_Conv              0.0000                      
## Per_Failed_Homicide            0.0013                      
## Per_Conv_Offence               0.0000                      
## Per_Failed_Conv_Offence        0.0000                      
## Per_Sex_Offence_Conv           0.0000                      
## Per_Failed_Sex_Offence         0.0000                      
## Per_Burg_Conv                  0.0000                      
## Per_Failed_Burg_Conv           0.0000                      
## Per_Rob_Conv                   0.2919                      
## Per_Failed_Rob_Conv            0.1200                      
## Per_TheftAndHandling_Conv      0.0000                      
## Per_Failed_TheftAndHandling    0.0000                      
## Per_FraudAndForgery_Conv       0.0118                      
## Per_Failed_FraudAndForgery     0.0108                      
## Per_CrimeDamage_Conv           0.0000                      
## Per_Failed_CrimeDamage         0.0000                      
## Per_DrugOffences_Conv          0.0000                      
## Per_Failed_Drug_Offence        0.0000                      
## Per_PublicOrderOffences_Conv   0.0000                      
## Per_Failed_PublicOrderOffences 0.0000                      
## Per_Others_Ex_Motoring         0.0482                      
## Per_Failed_Others_Ex_Motoring  0.0464                      
## Per_Motoring_Offences_Conv     0.0000                      
## Per_Failed_Motoring_Offences                               
## Per_Failed_AdminFinalised_Conv 0.2001                      
##                                Per_Failed_AdminFinalised_Conv
## Per_Homicide_Conv              0.0952                        
## Per_Failed_Homicide            0.7423                        
## Per_Conv_Offence               0.7696                        
## Per_Failed_Conv_Offence        0.7699                        
## Per_Sex_Offence_Conv           0.2080                        
## Per_Failed_Sex_Offence         0.2000                        
## Per_Burg_Conv                  0.0126                        
## Per_Failed_Burg_Conv           0.0125                        
## Per_Rob_Conv                   0.7644                        
## Per_Failed_Rob_Conv            0.5727                        
## Per_TheftAndHandling_Conv      0.8186                        
## Per_Failed_TheftAndHandling    0.8178                        
## Per_FraudAndForgery_Conv       0.9558                        
## Per_Failed_FraudAndForgery     0.9421                        
## Per_CrimeDamage_Conv           0.9895                        
## Per_Failed_CrimeDamage         0.9902                        
## Per_DrugOffences_Conv          0.1115                        
## Per_Failed_Drug_Offence        0.1118                        
## Per_PublicOrderOffences_Conv   0.4512                        
## Per_Failed_PublicOrderOffences 0.4517                        
## Per_Others_Ex_Motoring         0.2087                        
## Per_Failed_Others_Ex_Motoring  0.2088                        
## Per_Motoring_Offences_Conv     0.2004                        
## Per_Failed_Motoring_Offences   0.2001                        
## Per_Failed_AdminFinalised_Conv

Correlations of Successful Convictions

Creating Subset of Successful Convictions

LN_Matrix_Succ_Convic = LN_Per_Convictions[c(
  'Per_Homicide_Conv',
  'Per_Conv_Offence',
  'Per_Sex_Offence_Conv',
  'Per_Burg_Conv',
  'Per_Rob_Conv',
  'Per_TheftAndHandling_Conv',
  'Per_FraudAndForgery_Conv',
  'Per_CrimeDamage_Conv',
  'Per_DrugOffences_Conv',
  'Per_PublicOrderOffences_Conv',
  'Per_Others_Ex_Motoring',
  'Per_Motoring_Offences_Conv'
)]
                                  
summary(LN_Matrix_Succ_Convic)
##  Per_Homicide_Conv Per_Conv_Offence Per_Sex_Offence_Conv Per_Burg_Conv   
##  Min.   :  0.00    Min.   :55.10    Min.   :  0.00       Min.   : 50.00  
##  1st Qu.:  0.00    1st Qu.:75.60    1st Qu.: 68.20       1st Qu.: 81.50  
##  Median : 75.00    Median :79.30    Median : 76.35       Median : 87.50  
##  Mean   : 56.29    Mean   :79.05    Mean   : 77.23       Mean   : 86.83  
##  3rd Qu.:100.00    3rd Qu.:82.60    3rd Qu.: 85.70       3rd Qu.: 92.90  
##  Max.   :100.00    Max.   :94.20    Max.   :100.00       Max.   :100.00  
##   Per_Rob_Conv    Per_TheftAndHandling_Conv Per_FraudAndForgery_Conv
##  Min.   :  0.00   Min.   : 72.20            Min.   :  0.00          
##  1st Qu.: 66.70   1st Qu.: 90.70            1st Qu.: 81.30          
##  Median : 83.30   Median : 92.90            Median : 87.90          
##  Mean   : 76.22   Mean   : 92.56            Mean   : 87.22          
##  3rd Qu.:100.00   3rd Qu.: 94.80            3rd Qu.: 96.20          
##  Max.   :100.00   Max.   :100.00            Max.   :100.00          
##  Per_CrimeDamage_Conv Per_DrugOffences_Conv Per_PublicOrderOffences_Conv
##  Min.   : 44.40       Min.   : 75.00        Min.   : 40.00              
##  1st Qu.: 81.83       1st Qu.: 92.20        1st Qu.: 82.60              
##  Median : 86.50       Median : 94.60        Median : 87.00              
##  Mean   : 86.06       Mean   : 94.36        Mean   : 86.25              
##  3rd Qu.: 90.60       3rd Qu.: 97.00        3rd Qu.: 90.60              
##  Max.   :100.00       Max.   :100.00        Max.   :100.00              
##  Per_Others_Ex_Motoring Per_Motoring_Offences_Conv
##  Min.   :  0.00         Min.   : 61.50            
##  1st Qu.: 80.00         1st Qu.: 84.30            
##  Median : 86.35         Median : 88.00            
##  Mean   : 85.44         Mean   : 87.34            
##  3rd Qu.: 93.80         3rd Qu.: 91.10            
##  Max.   :100.00         Max.   :100.00

To determine the correlation coefficients with p-value for successful convictions

Corr_Coef_Succ_Convic = rcorr(as.matrix(LN_Matrix_Succ_Convic))
Corr_Coef_Succ_Convic
##                              Per_Homicide_Conv Per_Conv_Offence
## Per_Homicide_Conv                         1.00            -0.06
## Per_Conv_Offence                         -0.06             1.00
## Per_Sex_Offence_Conv                     -0.02             0.18
## Per_Burg_Conv                             0.01             0.20
## Per_Rob_Conv                              0.01            -0.04
## Per_TheftAndHandling_Conv                 0.00             0.39
## Per_FraudAndForgery_Conv                 -0.03             0.10
## Per_CrimeDamage_Conv                     -0.05             0.27
## Per_DrugOffences_Conv                    -0.07             0.20
## Per_PublicOrderOffences_Conv              0.01             0.35
## Per_Others_Ex_Motoring                    0.00             0.14
## Per_Motoring_Offences_Conv               -0.12             0.28
##                              Per_Sex_Offence_Conv Per_Burg_Conv Per_Rob_Conv
## Per_Homicide_Conv                           -0.02          0.01         0.01
## Per_Conv_Offence                             0.18          0.20        -0.04
## Per_Sex_Offence_Conv                         1.00          0.04        -0.04
## Per_Burg_Conv                                0.04          1.00         0.06
## Per_Rob_Conv                                -0.04          0.06         1.00
## Per_TheftAndHandling_Conv                    0.07          0.13        -0.06
## Per_FraudAndForgery_Conv                     0.06          0.03         0.02
## Per_CrimeDamage_Conv                         0.10          0.14        -0.02
## Per_DrugOffences_Conv                        0.07          0.11        -0.02
## Per_PublicOrderOffences_Conv                 0.08          0.14         0.00
## Per_Others_Ex_Motoring                       0.07          0.05         0.02
## Per_Motoring_Offences_Conv                   0.12          0.09        -0.02
##                              Per_TheftAndHandling_Conv Per_FraudAndForgery_Conv
## Per_Homicide_Conv                                 0.00                    -0.03
## Per_Conv_Offence                                  0.39                     0.10
## Per_Sex_Offence_Conv                              0.07                     0.06
## Per_Burg_Conv                                     0.13                     0.03
## Per_Rob_Conv                                     -0.06                     0.02
## Per_TheftAndHandling_Conv                         1.00                     0.09
## Per_FraudAndForgery_Conv                          0.09                     1.00
## Per_CrimeDamage_Conv                              0.27                     0.06
## Per_DrugOffences_Conv                             0.19                     0.05
## Per_PublicOrderOffences_Conv                      0.33                     0.07
## Per_Others_Ex_Motoring                            0.13                     0.02
## Per_Motoring_Offences_Conv                        0.23                     0.05
##                              Per_CrimeDamage_Conv Per_DrugOffences_Conv
## Per_Homicide_Conv                           -0.05                 -0.07
## Per_Conv_Offence                             0.27                  0.20
## Per_Sex_Offence_Conv                         0.10                  0.07
## Per_Burg_Conv                                0.14                  0.11
## Per_Rob_Conv                                -0.02                 -0.02
## Per_TheftAndHandling_Conv                    0.27                  0.19
## Per_FraudAndForgery_Conv                     0.06                  0.05
## Per_CrimeDamage_Conv                         1.00                  0.18
## Per_DrugOffences_Conv                        0.18                  1.00
## Per_PublicOrderOffences_Conv                 0.25                  0.19
## Per_Others_Ex_Motoring                       0.09                  0.06
## Per_Motoring_Offences_Conv                   0.15                  0.15
##                              Per_PublicOrderOffences_Conv
## Per_Homicide_Conv                                    0.01
## Per_Conv_Offence                                     0.35
## Per_Sex_Offence_Conv                                 0.08
## Per_Burg_Conv                                        0.14
## Per_Rob_Conv                                         0.00
## Per_TheftAndHandling_Conv                            0.33
## Per_FraudAndForgery_Conv                             0.07
## Per_CrimeDamage_Conv                                 0.25
## Per_DrugOffences_Conv                                0.19
## Per_PublicOrderOffences_Conv                         1.00
## Per_Others_Ex_Motoring                               0.10
## Per_Motoring_Offences_Conv                           0.17
##                              Per_Others_Ex_Motoring Per_Motoring_Offences_Conv
## Per_Homicide_Conv                              0.00                      -0.12
## Per_Conv_Offence                               0.14                       0.28
## Per_Sex_Offence_Conv                           0.07                       0.12
## Per_Burg_Conv                                  0.05                       0.09
## Per_Rob_Conv                                   0.02                      -0.02
## Per_TheftAndHandling_Conv                      0.13                       0.23
## Per_FraudAndForgery_Conv                       0.02                       0.05
## Per_CrimeDamage_Conv                           0.09                       0.15
## Per_DrugOffences_Conv                          0.06                       0.15
## Per_PublicOrderOffences_Conv                   0.10                       0.17
## Per_Others_Ex_Motoring                         1.00                       0.04
## Per_Motoring_Offences_Conv                     0.04                       1.00
## 
## n= 2142 
## 
## 
## P
##                              Per_Homicide_Conv Per_Conv_Offence
## Per_Homicide_Conv                              0.0068          
## Per_Conv_Offence             0.0068                            
## Per_Sex_Offence_Conv         0.3480            0.0000          
## Per_Burg_Conv                0.5370            0.0000          
## Per_Rob_Conv                 0.8072            0.0698          
## Per_TheftAndHandling_Conv    0.9059            0.0000          
## Per_FraudAndForgery_Conv     0.2328            0.0000          
## Per_CrimeDamage_Conv         0.0185            0.0000          
## Per_DrugOffences_Conv        0.0006            0.0000          
## Per_PublicOrderOffences_Conv 0.7995            0.0000          
## Per_Others_Ex_Motoring       0.9019            0.0000          
## Per_Motoring_Offences_Conv   0.0000            0.0000          
##                              Per_Sex_Offence_Conv Per_Burg_Conv Per_Rob_Conv
## Per_Homicide_Conv            0.3480               0.5370        0.8072      
## Per_Conv_Offence             0.0000               0.0000        0.0698      
## Per_Sex_Offence_Conv                              0.0725        0.0752      
## Per_Burg_Conv                0.0725                             0.0028      
## Per_Rob_Conv                 0.0752               0.0028                    
## Per_TheftAndHandling_Conv    0.0022               0.0000        0.0071      
## Per_FraudAndForgery_Conv     0.0029               0.2402        0.3250      
## Per_CrimeDamage_Conv         0.0000               0.0000        0.4311      
## Per_DrugOffences_Conv        0.0022               0.0000        0.3760      
## Per_PublicOrderOffences_Conv 0.0002               0.0000        0.8718      
## Per_Others_Ex_Motoring       0.0007               0.0143        0.2902      
## Per_Motoring_Offences_Conv   0.0000               0.0000        0.2899      
##                              Per_TheftAndHandling_Conv Per_FraudAndForgery_Conv
## Per_Homicide_Conv            0.9059                    0.2328                  
## Per_Conv_Offence             0.0000                    0.0000                  
## Per_Sex_Offence_Conv         0.0022                    0.0029                  
## Per_Burg_Conv                0.0000                    0.2402                  
## Per_Rob_Conv                 0.0071                    0.3250                  
## Per_TheftAndHandling_Conv                              0.0000                  
## Per_FraudAndForgery_Conv     0.0000                                            
## Per_CrimeDamage_Conv         0.0000                    0.0092                  
## Per_DrugOffences_Conv        0.0000                    0.0330                  
## Per_PublicOrderOffences_Conv 0.0000                    0.0016                  
## Per_Others_Ex_Motoring       0.0000                    0.4758                  
## Per_Motoring_Offences_Conv   0.0000                    0.0117                  
##                              Per_CrimeDamage_Conv Per_DrugOffences_Conv
## Per_Homicide_Conv            0.0185               0.0006               
## Per_Conv_Offence             0.0000               0.0000               
## Per_Sex_Offence_Conv         0.0000               0.0022               
## Per_Burg_Conv                0.0000               0.0000               
## Per_Rob_Conv                 0.4311               0.3760               
## Per_TheftAndHandling_Conv    0.0000               0.0000               
## Per_FraudAndForgery_Conv     0.0092               0.0330               
## Per_CrimeDamage_Conv                              0.0000               
## Per_DrugOffences_Conv        0.0000                                    
## Per_PublicOrderOffences_Conv 0.0000               0.0000               
## Per_Others_Ex_Motoring       0.0000               0.0039               
## Per_Motoring_Offences_Conv   0.0000               0.0000               
##                              Per_PublicOrderOffences_Conv
## Per_Homicide_Conv            0.7995                      
## Per_Conv_Offence             0.0000                      
## Per_Sex_Offence_Conv         0.0002                      
## Per_Burg_Conv                0.0000                      
## Per_Rob_Conv                 0.8718                      
## Per_TheftAndHandling_Conv    0.0000                      
## Per_FraudAndForgery_Conv     0.0016                      
## Per_CrimeDamage_Conv         0.0000                      
## Per_DrugOffences_Conv        0.0000                      
## Per_PublicOrderOffences_Conv                             
## Per_Others_Ex_Motoring       0.0000                      
## Per_Motoring_Offences_Conv   0.0000                      
##                              Per_Others_Ex_Motoring Per_Motoring_Offences_Conv
## Per_Homicide_Conv            0.9019                 0.0000                    
## Per_Conv_Offence             0.0000                 0.0000                    
## Per_Sex_Offence_Conv         0.0007                 0.0000                    
## Per_Burg_Conv                0.0143                 0.0000                    
## Per_Rob_Conv                 0.2902                 0.2899                    
## Per_TheftAndHandling_Conv    0.0000                 0.0000                    
## Per_FraudAndForgery_Conv     0.4758                 0.0117                    
## Per_CrimeDamage_Conv         0.0000                 0.0000                    
## Per_DrugOffences_Conv        0.0039                 0.0000                    
## Per_PublicOrderOffences_Conv 0.0000                 0.0000                    
## Per_Others_Ex_Motoring                              0.0486                    
## Per_Motoring_Offences_Conv   0.0486

Correlation measurement for visualization for successful convictions

CorrRound_Succ_Convic = round(cor(LN_Matrix_Succ_Convic), 1) #This is to round to one decimal place.

head(CorrRound_Succ_Convic)
##                           Per_Homicide_Conv Per_Conv_Offence
## Per_Homicide_Conv                       1.0             -0.1
## Per_Conv_Offence                       -0.1              1.0
## Per_Sex_Offence_Conv                    0.0              0.2
## Per_Burg_Conv                           0.0              0.2
## Per_Rob_Conv                            0.0              0.0
## Per_TheftAndHandling_Conv               0.0              0.4
##                           Per_Sex_Offence_Conv Per_Burg_Conv Per_Rob_Conv
## Per_Homicide_Conv                          0.0           0.0          0.0
## Per_Conv_Offence                           0.2           0.2          0.0
## Per_Sex_Offence_Conv                       1.0           0.0          0.0
## Per_Burg_Conv                              0.0           1.0          0.1
## Per_Rob_Conv                               0.0           0.1          1.0
## Per_TheftAndHandling_Conv                  0.1           0.1         -0.1
##                           Per_TheftAndHandling_Conv Per_FraudAndForgery_Conv
## Per_Homicide_Conv                               0.0                      0.0
## Per_Conv_Offence                                0.4                      0.1
## Per_Sex_Offence_Conv                            0.1                      0.1
## Per_Burg_Conv                                   0.1                      0.0
## Per_Rob_Conv                                   -0.1                      0.0
## Per_TheftAndHandling_Conv                       1.0                      0.1
##                           Per_CrimeDamage_Conv Per_DrugOffences_Conv
## Per_Homicide_Conv                         -0.1                  -0.1
## Per_Conv_Offence                           0.3                   0.2
## Per_Sex_Offence_Conv                       0.1                   0.1
## Per_Burg_Conv                              0.1                   0.1
## Per_Rob_Conv                               0.0                   0.0
## Per_TheftAndHandling_Conv                  0.3                   0.2
##                           Per_PublicOrderOffences_Conv Per_Others_Ex_Motoring
## Per_Homicide_Conv                                  0.0                    0.0
## Per_Conv_Offence                                   0.3                    0.1
## Per_Sex_Offence_Conv                               0.1                    0.1
## Per_Burg_Conv                                      0.1                    0.1
## Per_Rob_Conv                                       0.0                    0.0
## Per_TheftAndHandling_Conv                          0.3                    0.1
##                           Per_Motoring_Offences_Conv
## Per_Homicide_Conv                               -0.1
## Per_Conv_Offence                                 0.3
## Per_Sex_Offence_Conv                             0.1
## Per_Burg_Conv                                    0.1
## Per_Rob_Conv                                     0.0
## Per_TheftAndHandling_Conv                        0.2

This is to confirm that the calculated correlation coefficient has been rounded to one decimal place.

Computation of correlation p-values for successful convictions

PVcorr_Succ_Convic = cor_pmat(LN_Matrix_Succ_Convic)
head(PVcorr_Succ_Convic )
##                           Per_Homicide_Conv Per_Conv_Offence
## Per_Homicide_Conv               0.000000000     6.820633e-03
## Per_Conv_Offence                0.006820633     0.000000e+00
## Per_Sex_Offence_Conv            0.348010790     6.452465e-17
## Per_Burg_Conv                   0.537020086     2.746020e-21
## Per_Rob_Conv                    0.807207867     6.982532e-02
## Per_TheftAndHandling_Conv       0.905931034     2.379218e-78
##                           Per_Sex_Offence_Conv Per_Burg_Conv Per_Rob_Conv
## Per_Homicide_Conv                 3.480108e-01  5.370201e-01  0.807207867
## Per_Conv_Offence                  6.452465e-17  2.746020e-21  0.069825323
## Per_Sex_Offence_Conv              0.000000e+00  7.253813e-02  0.075240152
## Per_Burg_Conv                     7.253813e-02  0.000000e+00  0.002774121
## Per_Rob_Conv                      7.524015e-02  2.774121e-03  0.000000000
## Per_TheftAndHandling_Conv         2.227998e-03  4.239391e-10  0.007143215
##                           Per_TheftAndHandling_Conv Per_FraudAndForgery_Conv
## Per_Homicide_Conv                      9.059310e-01             2.327797e-01
## Per_Conv_Offence                       2.379218e-78             3.106134e-06
## Per_Sex_Offence_Conv                   2.227998e-03             2.877458e-03
## Per_Burg_Conv                          4.239391e-10             2.401552e-01
## Per_Rob_Conv                           7.143215e-03             3.249799e-01
## Per_TheftAndHandling_Conv              0.000000e+00             3.006188e-05
##                           Per_CrimeDamage_Conv Per_DrugOffences_Conv
## Per_Homicide_Conv                 1.851777e-02          5.740209e-04
## Per_Conv_Offence                  3.928852e-38          3.410485e-20
## Per_Sex_Offence_Conv              2.652135e-06          2.174705e-03
## Per_Burg_Conv                     5.376042e-11          1.466876e-07
## Per_Rob_Conv                      4.311071e-01          3.759707e-01
## Per_TheftAndHandling_Conv         6.087503e-37          5.811372e-19
##                           Per_PublicOrderOffences_Conv Per_Others_Ex_Motoring
## Per_Homicide_Conv                         7.994592e-01           9.019275e-01
## Per_Conv_Offence                          3.657528e-62           4.512655e-11
## Per_Sex_Offence_Conv                      1.778122e-04           6.809998e-04
## Per_Burg_Conv                             3.907023e-11           1.432420e-02
## Per_Rob_Conv                              8.717874e-01           2.901956e-01
## Per_TheftAndHandling_Conv                 8.697534e-56           4.078150e-10
##                           Per_Motoring_Offences_Conv
## Per_Homicide_Conv                       8.746040e-09
## Per_Conv_Offence                        6.137220e-41
## Per_Sex_Offence_Conv                    1.359617e-08
## Per_Burg_Conv                           1.907582e-05
## Per_Rob_Conv                            2.899495e-01
## Per_TheftAndHandling_Conv               7.936549e-28

This shows the correlation p-values for successful convictions

Graphical presentation of the correlation matrix for successful convictions

CorrRound_Succ_Convic.plot  = ggcorrplot(
  CorrRound_Succ_Convic, hc.order = TRUE, type='lower', outline.color = 'black', method = 'square', 
  p.mat = PVcorr_Succ_Convic
)

CorrRound_Succ_Convic.plot

ggplotly(CorrRound_Succ_Convic.plot)

This shows the relationships that exist between the principal offences.

Linear Regression of the successful convictions

LNModel_Succ_Convic  = lm( formular = Per_All_Convictions ~ Per_Sex_Offence_Conv + Per_Burg_Conv                        + Per_TheftAndHandling_Conv + Per_CrimeDamage_Conv +                                 Per_DrugOffences_Conv + Per_PublicOrderOffences_Conv +                               Per_Rob_Conv + Per_Others_Ex_Motoring +                                              Per_Motoring_Offences_Conv, data=LN_Matrix_Succ_Convic)
summary(LNModel_Succ_Convic)
## 
## Call:
## lm(data = LN_Matrix_Succ_Convic, formular = Per_All_Convictions ~ 
##     Per_Sex_Offence_Conv + Per_Burg_Conv + Per_TheftAndHandling_Conv + 
##         Per_CrimeDamage_Conv + Per_DrugOffences_Conv + Per_PublicOrderOffences_Conv + 
##         Per_Rob_Conv + Per_Others_Ex_Motoring + Per_Motoring_Offences_Conv)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -77.40 -51.02  15.76  41.88  64.17 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  173.822908  35.298275   4.924 9.11e-07 ***
## Per_Conv_Offence              -0.344672   0.214704  -1.605   0.1086    
## Per_Sex_Offence_Conv           0.008437   0.072688   0.116   0.9076    
## Per_Burg_Conv                  0.166385   0.111890   1.487   0.1371    
## Per_Rob_Conv                  -0.000104   0.035362  -0.003   0.9977    
## Per_TheftAndHandling_Conv      0.612925   0.331547   1.849   0.0646 .  
## Per_FraudAndForgery_Conv      -0.074310   0.087533  -0.849   0.3960    
## Per_CrimeDamage_Conv          -0.254201   0.153509  -1.656   0.0979 .  
## Per_DrugOffences_Conv         -0.753211   0.273830  -2.751   0.0060 ** 
## Per_PublicOrderOffences_Conv   0.303841   0.171515   1.772   0.0766 .  
## Per_Others_Ex_Motoring         0.013167   0.082075   0.160   0.8726    
## Per_Motoring_Offences_Conv    -1.030608   0.199348  -5.170 2.56e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 44.78 on 2130 degrees of freedom
## Multiple R-squared:  0.02442,    Adjusted R-squared:  0.01938 
## F-statistic: 4.847 on 11 and 2130 DF,  p-value: 1.979e-07

The p-value is shown to be above 0.05 which imply that there could be a relationship between the variables.

To improve the model, dropping robbery conviction

LNModel_Succ_Convic  = lm( formular = Per_All_Convictions ~ Per_Sex_Offence_Conv +                          Per_Burg_Conv+ Per_TheftAndHandling_Conv +                                           Per_CrimeDamage_Conv + Per_DrugOffences_Conv +                                       Per_PublicOrderOffences_Conv  + Per_Others_Ex_Motoring +                             Per_Motoring_Offences_Conv, data=LN_Matrix_Succ_Convic)
summary(LNModel_Succ_Convic)
## 
## Call:
## lm(data = LN_Matrix_Succ_Convic, formular = Per_All_Convictions ~ 
##     Per_Sex_Offence_Conv + Per_Burg_Conv + Per_TheftAndHandling_Conv + 
##         Per_CrimeDamage_Conv + Per_DrugOffences_Conv + Per_PublicOrderOffences_Conv + 
##         Per_Others_Ex_Motoring + Per_Motoring_Offences_Conv)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -77.40 -51.02  15.76  41.88  64.17 
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  173.822908  35.298275   4.924 9.11e-07 ***
## Per_Conv_Offence              -0.344672   0.214704  -1.605   0.1086    
## Per_Sex_Offence_Conv           0.008437   0.072688   0.116   0.9076    
## Per_Burg_Conv                  0.166385   0.111890   1.487   0.1371    
## Per_Rob_Conv                  -0.000104   0.035362  -0.003   0.9977    
## Per_TheftAndHandling_Conv      0.612925   0.331547   1.849   0.0646 .  
## Per_FraudAndForgery_Conv      -0.074310   0.087533  -0.849   0.3960    
## Per_CrimeDamage_Conv          -0.254201   0.153509  -1.656   0.0979 .  
## Per_DrugOffences_Conv         -0.753211   0.273830  -2.751   0.0060 ** 
## Per_PublicOrderOffences_Conv   0.303841   0.171515   1.772   0.0766 .  
## Per_Others_Ex_Motoring         0.013167   0.082075   0.160   0.8726    
## Per_Motoring_Offences_Conv    -1.030608   0.199348  -5.170 2.56e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 44.78 on 2130 degrees of freedom
## Multiple R-squared:  0.02442,    Adjusted R-squared:  0.01938 
## F-statistic: 4.847 on 11 and 2130 DF,  p-value: 1.979e-07

Despite dropping robbery conviction, there still doesn’t seem to be a significant impact on the model.

#Predict the model by assigning abitrary values

Arbitrary_values = data.frame(
  Per_Conv_Offence = 0,
  Per_Rob_Conv = 0,
  Per_FraudAndForgery_Conv = 0,
  Per_Sex_Offence_Conv = 80.5,
  Per_Burg_Conv = 90.5,
  Per_TheftAndHandling_Conv = 86.5,
  Per_CrimeDamage_Conv = 60,
  Per_DrugOffences_Conv = 95.7,
  Per_PublicOrderOffences_Conv = 77.68,
  Per_Others_Ex_Motoring = 99.9,
  Per_Motoring_Offences_Conv = 92.0
)

To Predict the assigned values

predictSucConvic = predict(LNModel_Succ_Convic, Arbitrary_values, level=.95, interval='prediction')
print(predictSucConvic)
##        fit       lwr      upr
## 1 85.34545 -9.521973 180.2129

The lower limit shows -9.52, while the upper limit shows 180.21 with a fit of 85.34%. This shows a great fit for the model.

References

About CPS https://www.cps.gov.uk/about-cps

Define Libraries: https://hbctraining.github.io/Intro-to-R-flipped/lessons/04_introR_packages.html

Defining working directory https://r-coder.com/working-directory-r/#:~:text=The%20working%20directory%20in%20R,R%20objects%20will%20be%20saved.

Data Frame defined https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/data.frame

Data frame explained http://uc-r.github.io/dataframes

EDA DEFINED https://www.jmp.com/en_no/statistics-knowledge-portal/exploratory-data-analysis.html

Data Cleaning https://www.tableau.com/learn/articles/what-is-data-cleaning#:~:text=Data%20cleaning%20is%20the%20process,to%20be%20duplicated%20or%20mislabeled.

Data Structure https://www.geeksforgeeks.org/data-structures/

random sampling https://www.scribbr.co.uk/research-methods/simple-random-sampling-method/

k-means Clustering https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/

Removing columnhttps://www.listendata.com/2015/06/r-keep-drop-columns-from-data-frame.html

Missing valueshttps://www.geeksforgeeks.org/how-to-find-and-count-missing-values-in-r-dataframe/

Removing NAshttps://sparkbyexamples.com/r-programming/remove-rows-with-na-in-r/#:~:text=By%20using%20na.,values)%20from%20R%20data%20frame.

Random Samplinghttps://www.programmingr.com/examples/neat-tricks/sample-r-function/

Box Plothttps://www.simplypsychology.org/boxplots.html#:~:text=When%20the%20median%20is%20in,positively%20skewed%20(skewed%20right).

Outlier detection and treatmenthttp://r-statistics.co/Outlier-Treatment-With-R.html

Data Standardizationhttps://www.r-bloggers.com/2022/07/how-to-standardize-data-in-r/#:~:text=How%20to%20Standardize%20Data%20in%20R%3F%2C%20A%20dataset%20must%20be,used%20method%20for%20doing%20this.

https://www.egnyte.com/guides/life-sciences/data-standardization#:~:text=Data%20standardization%20is%20an%20important,Identifying%20data%20errors

k-mean clusteringhttps://www.geeksforgeeks.org/k-means-clustering-in-r-programming/

Correlation https://www.displayr.com/how-to-create-a-correlation-matrix-in-r/

Linear Regression https://www.scribbr.com/statistics/linear-regression-in-r/