tinytex::install_tinytex(force=TRUE)
#QUESTION 1
#Data frame is the tabular format in which data is stored in R. It has rows and columns. The type of data in columns should be the same. Data frame stores data in a structured manner which makes it easy to analyse. #mtcars is an example of dataframe in R. #my examples:
dataframe1 <- data.frame(
Name = c("Jon", "Elsa", "Bran"),
Age = c(25, 19, 17),
Gender = c("Male", "Female", "Male")
)
print(dataframe1)
## Name Age Gender
## 1 Jon 25 Male
## 2 Elsa 19 Female
## 3 Bran 17 Male
dataframe2 <- data.frame(
ChargerType = c("A", "C", "Mini"),
Availability = c("Yes", "No", "Yes"),
Price = c(15, 10, 20)
)
print(dataframe2)
## ChargerType Availability Price
## 1 A Yes 15
## 2 C No 10
## 3 Mini Yes 20
#QUESTION 2
dataframe3 <- data.frame(
cars = c("Truck", "Car", "SUV"),
mpg = c(11, 30, 24),
cost = c(45000, 25000, 35000)
)
print(dataframe3)
## cars mpg cost
## 1 Truck 11 45000
## 2 Car 30 25000
## 3 SUV 24 35000
#QUESTION 2a
dataframe3[1,3]
## [1] 45000
#45000 is selected
dataframe3[1:3,]
#the whole dataframe is selected
dataframe3[ , 3]
## [1] 45000 25000 35000
#the cost column data is selected
#QUESTION 3
head(mtcars, n = 3)
tail(mtcars, n = 5)
#QUESTION 4
#categorical columns:
mtcars [ , c(8,10)]
#continuous columns:
mtcars [ , c(1,4)]
#QUESTION 5
library(ggplot2)
ggplot(mtcars, aes(x=disp, y=mpg))
#incomplete code as no geom function to specify
library(ggplot2)
ggplot(data=mtcars) + geom_point(mapping= aes(x=disp, y=mpg))
#updated code showing relationship between disp and mpg
#QUESTION 6
library(ggplot2)
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = cyl))
#QUESTION 7
library(ggplot2)
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = cyl)) +
facet_wrap(~drv, nrow =2)
#With Rear wd has less cylinders with more engine disp. f has lesser engine disp and 4 wd is spread out for engine disp.