matA <- matrix(c(2,0,7,8,6,4,6,-2,0,7,9,2,6,5,4,-8), nrow = 4, byrow = TRUE)
matB <- matrix(c(2,0,-5,3,6,9,0,-2), nrow = 4 ,byrow = TRUE)
matC <- matrix(c(3,-3,6,9,4,0,-2,0), nrow = 2, byrow = TRUE)transMatB <- t(matB)
result1 = transMatB %*% matA
# [,1] [,2] [,3] [,4]
# [1,] -26 22 38 38
# [2,] 6 65 91 28# mat2A <- 2*matA
# mat5B <- 5*matB
# result2 <- mat2A + mat5B
# No se pude sumar dado no tienen las mismas dimensiones [4,4] vs [4,2]mat3BC <- 3 * (matB %*% matC) # mat3BC <- 3 * matB %*% matC = Mismo resultado
mat4A <- 4 * matA
result3 <- mat3BC + mat4A
# [,1] [,2] [,3] [,4]
# [1,] 26 -18 64 86
# [2,] 15 61 -84 -143
# [3,] 162 -26 90 170
# [4,] 0 20 28 -32transmatC <- t(matC)
mat5transmatC <- 5 * transmatC
mat6B <- 6 * matB
result4 <- mat5transmatC - mat6B
# [,1] [,2]
# [1,] 3 20
# [2,] 15 -18
# [3,] -6 -64
# [4,] 45 12# result5 <- matB %*% matA
# No se puede multiplicar dado el numero de columnas de la primera matriz no coincide con el numero de renglones de las segunda matriz. Si hubiera sido al reves, si se hubiera podido. Determinar las matrices para expresarlas en formato AX = C
x <- "x"
y <- "y"
z <- "z"
w <- "w"matA <- matrix(c(6,2,3,1), nrow = 2, byrow = TRUE)
matX <- matrix(c(x,y), nrow = 2, byrow = TRUE)
matC <- matrix(c(5,8), nrow = 2, byrow = TRUE)
# > matA
# [,1] [,2]
# [1,] 6 2
# [2,] 3 1
# > matX
# [,1]
# [1,] "x"
# [2,] "y"
# > matC
# [,1]
# [1,] 5
# [2,] 8matA <- matrix(c(4,5,10,6,2,5,5,3,0), nrow = 3, byrow = TRUE)
matX <- matrix(c(x,y,z), nrow = 3, byrow = TRUE)
matC <- matrix(c(0,12,9), nrow = 3, byrow = TRUE)
# [,1] [,2] [,3]
# [1,] 4 5 10
# [2,] 6 2 5
# [3,] 5 3 0
# > matX
# [,1]
# [1,] "x"
# [2,] "y"
# [3,] "z"
# > matC
# [,1]
# [1,] 0
# [2,] 12
# [3,] 9matA <- matrix(c(2,5,-8,4,6,0,9,-10,4,3,0,-9,7,0,-8,0), nrow = 4, byrow = TRUE)
matX <- matrix(c(x,y,z,w), nrow = 4, byrow = TRUE)
matC <- matrix(c(6,8,15,30), nrow = 4, byrow = TRUE)
# [,1] [,2] [,3] [,4]
# [1,] 2 5 -8 4
# [2,] 6 0 9 -10
# [3,] 4 3 0 -9
# [4,] 7 0 -8 0
# > matX
# [,1]
# [1,] "x"
# [2,] "y"
# [3,] "z"
# [4,] "w"
# > matC
# [,1]
# [1,] 6
# [2,] 8
# [3,] 15
# [4,] 30Verificar si las inversas de las siguientes matrices son correctas (Ver PDF tarea)
matA <- matrix(c(2,5,4,8), nrow = 2, byrow = TRUE)
matB <- matrix(c(2,4,0,-3,5,2,8,0,-2), nrow = 3, byrow = TRUE)
matC<- matrix(c(0,0,0,-5,1,1,1,0,0,2,0,1,6,0,1,1), nrow = 4, byrow = TRUE)solve(matA)## [,1] [,2]
## [1,] -2 1.25
## [2,] 1 -0.50
#La inversa del documento de la tarea es correcta solve(matB)## [,1] [,2] [,3]
## [1,] -0.5 0.4 0.4
## [2,] 0.5 -0.2 -0.2
## [3,] -2.0 1.6 1.1
#La inversa del documento de la tarea es correcta solve(matC)## [,1] [,2] [,3] [,4]
## [1,] 0.06 -0.2 0.1 0.2
## [2,] 0.10 0.0 0.5 0.0
## [3,] -0.16 1.2 -0.6 -0.2
## [4,] -0.20 0.0 0.0 0.0
#La inversa del documento de la tarea es correcta Sea A una matrix con la forma siguiente y que cada elemento no sea igual a
# [,1] [,2] [,3] [,4]
# [1,] a11 0 0 0
# [2,] 0 a22 0 0
# [3,] 0 0 a33 0
# [4,] 0 0 0 a44verificar que su resultado de inversa es como la siguiente forma
# [,1] [,2] [,3] [,4]
# [1,] 1/a11 0 0 0
# [2,] 0 1/a22 0 0
# [3,] 0 0 1/a33 0
# [4,] 0 0 0 1/a44matA1 <- matrix(c(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1), nrow = 4, byrow = TRUE)
matA10 <- matrix(c(10,0,0,0,0,10,0,0,0,0,10,0,0,0,0,10), nrow = 4, byrow = TRUE)
matA123 <- matrix(c(123,0,0,0,0,123,0,0,0,0,123,0,0,0,0,123), nrow = 4, byrow = TRUE)
#Se cumple la aseveracion de las instrucciones
solve(matA1)## [,1] [,2] [,3] [,4]
## [1,] 1 0 0 0
## [2,] 0 1 0 0
## [3,] 0 0 1 0
## [4,] 0 0 0 1
#Se cumple la aseveracion de las instrucciones
solve(matA10)## [,1] [,2] [,3] [,4]
## [1,] 0.1 0.0 0.0 0.0
## [2,] 0.0 0.1 0.0 0.0
## [3,] 0.0 0.0 0.1 0.0
## [4,] 0.0 0.0 0.0 0.1
#Se cumple la aseveracion de las instrucciones
solve(matA123)## [,1] [,2] [,3] [,4]
## [1,] 0.008130081 0.000000000 0.000000000 0.000000000
## [2,] 0.000000000 0.008130081 0.000000000 0.000000000
## [3,] 0.000000000 0.000000000 0.008130081 0.000000000
## [4,] 0.000000000 0.000000000 0.000000000 0.008130081
verificar que la siguiente matriz es una raiz idempotente
matC <- matrix(c(2,-2,-4,-1,3,4,1,-2,-3), nrow = 3, byrow = TRUE)
# [,1] [,2] [,3]
# [1,] 2 -2 -4
# [2,] -1 3 4
# [3,] 1 -2 -3
matC %*% matC ## [,1] [,2] [,3]
## [1,] 2 -2 -4
## [2,] -1 3 4
## [3,] 1 -2 -3
#Se comprueba que la matriz es idempotente dado es cuadrada y su cuadrado resulta en la misma matriz Dar un ejemplo de una matriz A de orden 2x2 que no sea matriz cero (no todos sus elementos son ceros) y A^2 = 0
matC <- matrix(c(1,-.5,2,-1), nrow = 2, byrow = TRUE)
# [,1] [,2]
# [1,] 1 -0.5
# [2,] 2 -1.0
matC %*% matC## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
#Para poder lograr una dos por dos que de una matrix de ceros la segunda columna debe ser negativa e inversa al otro elemento de esa componente. Determinar un valor de X par que la matriz sea singular.
# [,1] [,2]
# [1,] x x+1
# [2,] 2 x+3
#ad -bc = x^2 + 3x - 2x -2 = x^2 + x - 2 **Resolver con formula general de ecuaciónes cuadraticas**
#x puede tomar el valor de 1 o -2 para que sea singular
matA = matrix(c(1,1+1,2,1+3), nrow = 2, byrow = TRUE)
det(matA)## [1] 0
#Dado el determinant es cero, la matriz es singularDeterminar las normas de los siguientes vectores
v1 <- c(2,-5)
norma1 <- sqrt(sum(v1^2))
# [1] 5.385165
v2 <- c(1,-2,8)
norma2 <- sqrt(sum(v2^2))
# [1] 8.306624
v3 <- c(2,5,-3,1,-1)
norma3 <- sqrt(sum(v3^2))
# [1] 6.324555Encontrar los eigen valores y eigen vectores de las matrices A y B
matA <- matrix(c(1,2,3,0), nrow = 2, byrow = TRUE)
matA## [,1] [,2]
## [1,] 1 2
## [2,] 3 0
eigen(matA)## eigen() decomposition
## $values
## [1] 3 -2
##
## $vectors
## [,1] [,2]
## [1,] 0.7071068 -0.5547002
## [2,] 0.7071068 0.8320503
matB <- matrix(c(2,0,0,0,3,0,0,0,5), nrow = 3, byrow = TRUE)
matB## [,1] [,2] [,3]
## [1,] 2 0 0
## [2,] 0 3 0
## [3,] 0 0 5
eigen(matB)## eigen() decomposition
## $values
## [1] 5 3 2
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0 0 1
## [2,] 0 1 0
## [3,] 1 0 0