6.1 Sadece 1981 yılı için ,KİELMC.RAW, daki verileri kullanılarak aşağıdaki soruları cevap veriniz.1981,da kuzey Andover, Massachusetts,te satılan evlerdir.1981, yerel çöp yakma fırının kurtulmaya başlandığı yıldı.

##soru(i):Çöp fırının konumunun ev fiyatları üzerindeki etkisini incelemek için şu basit modeli ele alalım:

log(price)=β0+β1log(dist)+u

Burada price dolar cinsinden evin fiyatı ve dist, ev ile çöp yakma fırını arasındaki adım cinsinden uzaklıktır. Denklemin dikkatli biçimde yorumlanmasında çöp yakma fırınının bulunması ev fiyatlarını düşürüyorsa B1işaretini ne beklerseniz? Denklemi tahmin edin ve sonuçları yorumlayınız. ##cevap: B1 işaretini negatiftir

library(wooldridge)
data("kielmc",package = 'wooldridge') 
head(kielmc,20)
##    year age agesq nbh  cbd intst lintst price rooms area  land baths  dist
## 1  1978  48  2304   4 3000  1000 6.9078 60000     7 1660  4578     1 10700
## 2  1978  83  6889   4 4000  1000 6.9078 40000     6 2612  8370     2 11000
## 3  1978  58  3364   4 4000  1000 6.9078 34000     6 1144  5000     1 11500
## 4  1978  11   121   4 4000  1000 6.9078 63900     5 1136 10000     1 11900
## 5  1978  48  2304   4 4000  2000 7.6009 44000     5 1868 10000     1 12100
## 6  1978  78  6084   4 3000  2000 7.6009 46000     6 1780  9500     3 10000
## 7  1978  22   484   4 4000  2000 7.6009 56000     6 1700 10878     2 11700
## 8  1978  78  6084   4 3000  2000 7.6009 38500     6 1556  3870     2 10200
## 9  1978  42  1764   4 3000  2000 7.6009 60500     8 1642  7000     2 10500
## 10 1978  41  1681   4 3000  2000 7.6009 55000     5 1443  7950     2 11000
## 11 1978  78  6084   4 1000  4000 8.2940 39000     6 1439  4990     1  8600
## 12 1978  38  1444   0 6000  4000 8.2940 41000     5 1482  8017     1 12200
## 13 1978  18   324   0 5000  4000 8.2940 50900     6 1290 12538     2 12400
## 14 1978  32  1024   0 9000  7000 8.8537 52000     6 1274  7858     1 16800
## 15 1978  18   324   0 9000  8000 8.9872 49000     6 1476 15664     1 17200
## 16 1978  58  3364   4 2000  3000 8.0064 80000     7 1838  9249     2  9900
## 17 1978  56  3136   4 2000  3000 8.0064 50000     6 1536 10491     2 10000
## 18 1978  70  4900   4 2000  3000 8.0064 59000     5 2458  9400     2 10000
## 19 1978  26   676   4 3000  4000 8.2940 42000     4  750  8000     1 10600
## 20 1978  21   441   4 4000  4000 8.2940 71500     5 2106 13370     2 11700
##       ldist wind   lprice y81    larea    lland y81ldist lintstsq nearinc
## 1  9.277999    3 11.00210   0 7.414573 8.429017        0 47.71770       1
## 2  9.305651    3 10.59663   0 7.867871 9.032409        0 47.71770       1
## 3  9.350102    3 10.43412   0 7.042286 8.517193        0 47.71770       1
## 4  9.384294    3 11.06507   0 7.035269 9.210340        0 47.71770       1
## 5  9.400961    3 10.69195   0 7.532624 9.210340        0 57.77368       1
## 6  9.210340    3 10.73640   0 7.484369 9.159047        0 57.77368       1
## 7  9.367344    3 10.93311   0 7.438384 9.294497        0 57.77368       1
## 8  9.230143    3 10.55841   0 7.349874 8.261010        0 57.77368       1
## 9  9.259131    3 11.01040   0 7.403670 8.853665        0 57.77368       1
## 10 9.305651    3 10.91509   0 7.274479 8.980927        0 57.77368       1
## 11 9.059517    3 10.57132   0 7.271704 8.515191        0 68.79043       1
## 12 9.409191    3 10.62133   0 7.301148 8.989320        0 68.79043       1
## 13 9.425452    3 10.83762   0 7.162397 9.436520        0 68.79043       1
## 14 9.729134    3 10.85900   0 7.149917 8.969288        0 78.38800       0
## 15 9.752665    3 10.79958   0 7.297091 9.659121        0 80.76976       0
## 16 9.200290    3 11.28978   0 7.516433 9.132271        0 64.10244       1
## 17 9.210340    3 10.81978   0 7.336937 9.258273        0 64.10244       1
## 18 9.210340    3 10.98529   0 7.807103 9.148465        0 64.10244       1
## 19 9.268609    3 10.64542   0 6.620073 8.987197        0 68.79043       1
## 20 9.367344    3 11.17745   0 7.652546 9.500769        0 68.79043       1
##    y81nrinc rprice  lrprice
## 1         0  60000 11.00210
## 2         0  40000 10.59663
## 3         0  34000 10.43412
## 4         0  63900 11.06507
## 5         0  44000 10.69195
## 6         0  46000 10.73640
## 7         0  56000 10.93311
## 8         0  38500 10.55841
## 9         0  60500 11.01040
## 10        0  55000 10.91509
## 11        0  39000 10.57132
## 12        0  41000 10.62133
## 13        0  50900 10.83762
## 14        0  52000 10.85900
## 15        0  49000 10.79958
## 16        0  80000 11.28978
## 17        0  50000 10.81978
## 18        0  59000 10.98529
## 19        0  42000 10.64542
## 20        0  71500 11.17745
reg<-lm (log(price)~log(dist) ,data = kielmc )
summary(reg)
## 
## Call:
## lm(formula = log(price) ~ log(dist), data = kielmc)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.22356 -0.28076 -0.05527  0.27992  1.29332 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.25750    0.47383  17.427  < 2e-16 ***
## log(dist)    0.31722    0.04811   6.594 1.78e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4117 on 319 degrees of freedom
## Multiple R-squared:  0.1199, Adjusted R-squared:  0.1172 
## F-statistic: 43.48 on 1 and 319 DF,  p-value: 1.779e-10

##Bu basit regrasyonda diğer değişkenler farklı ve sabit tutuldu.

##soru(ii):(i)şıkkındaki basit regresyon modeline log(intst) ,log(area),log(land),oda sayısı (rooms),banyo sayısı (baths) ve yaş (age)değişkenin ekliyim.Burada intst ,ev ile otoyol arasındaki uzaklık; area, evin adım karesi; land, evin kurulu olduğu alanın adım Karesi, rooms,oda sayısı; ages, evin yıl cinsinden yaşıdır. Şimdi çöp yakma fırınının etkileri hakkında nasıl bir sonuca ulaşırsınız? (i)ve(ii) neden birbiriyle çelişkili sonuçlar verir açıklayınız.

##cevap:

reg2<-lm (log(price)~log(dist)+log(intst)+log(area)+log(land)+rooms+baths+age ,data = kielmc)
summary(reg2)
## 
## Call:
## lm(formula = log(price) ~ log(dist) + log(intst) + log(area) + 
##     log(land) + rooms + baths + age, data = kielmc)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.35838 -0.18220  0.00115  0.20532  0.82180 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.2996586  0.5960546  10.569  < 2e-16 ***
## log(dist)    0.0281887  0.0532130   0.530  0.59667    
## log(intst)  -0.0437804  0.0424359  -1.032  0.30302    
## log(area)    0.5124071  0.0698229   7.339 1.87e-12 ***
## log(land)    0.0782098  0.0337206   2.319  0.02102 *  
## rooms        0.0503129  0.0235113   2.140  0.03313 *  
## baths        0.1070528  0.0352304   3.039  0.00258 ** 
## age         -0.0035630  0.0005774  -6.171 2.10e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2828 on 313 degrees of freedom
## Multiple R-squared:  0.5925, Adjusted R-squared:  0.5834 
## F-statistic: 65.02 on 7 and 313 DF,  p-value: < 2.2e-16
reg3<-lm (log(price)~log(dist)+log(intst)+log(area)+log(land)+rooms+baths+age+(log(intst))^2,data = kielmc)
summary(reg3)
## 
## Call:
## lm(formula = log(price) ~ log(dist) + log(intst) + log(area) + 
##     log(land) + rooms + baths + age + (log(intst))^2, data = kielmc)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.35838 -0.18220  0.00115  0.20532  0.82180 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.2996586  0.5960546  10.569  < 2e-16 ***
## log(dist)    0.0281887  0.0532130   0.530  0.59667    
## log(intst)  -0.0437804  0.0424359  -1.032  0.30302    
## log(area)    0.5124071  0.0698229   7.339 1.87e-12 ***
## log(land)    0.0782098  0.0337206   2.319  0.02102 *  
## rooms        0.0503129  0.0235113   2.140  0.03313 *  
## baths        0.1070528  0.0352304   3.039  0.00258 ** 
## age         -0.0035630  0.0005774  -6.171 2.10e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2828 on 313 degrees of freedom
## Multiple R-squared:  0.5925, Adjusted R-squared:  0.5834 
## F-statistic: 65.02 on 7 and 313 DF,  p-value: < 2.2e-16

soru(iv):log(dist),in karesi (iii)şıktakı modele eklendiğin anlamlı nedir?

##cevap:

reg4<-lm (log(price)~log(dist)+log(intst)+log(area)+log(land)+rooms+baths+age+(log(intst))^2+(log(dist))^2,data = kielmc)
summary(reg4)
## 
## Call:
## lm(formula = log(price) ~ log(dist) + log(intst) + log(area) + 
##     log(land) + rooms + baths + age + (log(intst))^2 + (log(dist))^2, 
##     data = kielmc)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.35838 -0.18220  0.00115  0.20532  0.82180 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  6.2996586  0.5960546  10.569  < 2e-16 ***
## log(dist)    0.0281887  0.0532130   0.530  0.59667    
## log(intst)  -0.0437804  0.0424359  -1.032  0.30302    
## log(area)    0.5124071  0.0698229   7.339 1.87e-12 ***
## log(land)    0.0782098  0.0337206   2.319  0.02102 *  
## rooms        0.0503129  0.0235113   2.140  0.03313 *  
## baths        0.1070528  0.0352304   3.039  0.00258 ** 
## age         -0.0035630  0.0005774  -6.171 2.10e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2828 on 313 degrees of freedom
## Multiple R-squared:  0.5925, Adjusted R-squared:  0.5834 
## F-statistic: 65.02 on 7 and 313 DF,  p-value: < 2.2e-16