Supervised by PhD Watheq .J

Normal distribution of data is so important in statistic and in construction geostatistical modeling in order to obtain accurate models .There are several ways to transform data from non normal distribution into normal distribution .In this project , we are going to make prediction for core permeability by using Log and BOX-COX transformation and then we compare the results.

data<-read.csv("karpur.csv",header=T)
summary(data)
##      depth         caliper         ind.deep          ind.med       
##  Min.   :5667   Min.   :8.487   Min.   :  6.532   Min.   :  9.386  
##  1st Qu.:5769   1st Qu.:8.556   1st Qu.: 28.799   1st Qu.: 27.892  
##  Median :5872   Median :8.588   Median :217.849   Median :254.383  
##  Mean   :5873   Mean   :8.622   Mean   :275.357   Mean   :273.357  
##  3rd Qu.:5977   3rd Qu.:8.686   3rd Qu.:566.793   3rd Qu.:544.232  
##  Max.   :6083   Max.   :8.886   Max.   :769.484   Max.   :746.028  
##      gamma            phi.N            R.deep            R.med        
##  Min.   : 16.74   Min.   :0.0150   Min.   :  1.300   Min.   :  1.340  
##  1st Qu.: 40.89   1st Qu.:0.2030   1st Qu.:  1.764   1st Qu.:  1.837  
##  Median : 51.37   Median :0.2450   Median :  4.590   Median :  3.931  
##  Mean   : 53.42   Mean   :0.2213   Mean   : 24.501   Mean   : 21.196  
##  3rd Qu.: 62.37   3rd Qu.:0.2640   3rd Qu.: 34.724   3rd Qu.: 35.853  
##  Max.   :112.40   Max.   :0.4100   Max.   :153.085   Max.   :106.542  
##        SP          density.corr          density         phi.core    
##  Min.   :-73.95   Min.   :-0.067000   Min.   :1.758   Min.   :15.70  
##  1st Qu.:-42.01   1st Qu.:-0.016000   1st Qu.:2.023   1st Qu.:23.90  
##  Median :-32.25   Median :-0.007000   Median :2.099   Median :27.60  
##  Mean   :-30.98   Mean   :-0.008883   Mean   :2.102   Mean   :26.93  
##  3rd Qu.:-19.48   3rd Qu.: 0.002000   3rd Qu.:2.181   3rd Qu.:30.70  
##  Max.   : 25.13   Max.   : 0.089000   Max.   :2.387   Max.   :36.30  
##      k.core            Facies          phi.core.frac   
##  Min.   :    0.42   Length:819         Min.   :0.1570  
##  1st Qu.:  657.33   Class :character   1st Qu.:0.2390  
##  Median : 1591.22   Mode  :character   Median :0.2760  
##  Mean   : 2251.91                      Mean   :0.2693  
##  3rd Qu.: 3046.82                      3rd Qu.:0.3070  
##  Max.   :15600.00                      Max.   :0.3630
model1 <- lm(data$phi.core/100 ~ data$phi.N)
summary(model1)
## 
## Call:
## lm(formula = data$phi.core/100 ~ data$phi.N)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.135237 -0.030779  0.009432  0.033563  0.104025 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.30962    0.00485  63.846   <2e-16 ***
## data$phi.N  -0.18207    0.02080  -8.753   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.04368 on 817 degrees of freedom
## Multiple R-squared:  0.08573,    Adjusted R-squared:  0.08462 
## F-statistic: 76.61 on 1 and 817 DF,  p-value: < 2.2e-16
plot(data$phi.N,data$phi.core,xlab="phi.log",ylab="phi.core",axes = F)
axis(2,col = "darkgreen",col.axis="black")
axis(1,col = "darkgreen",col.axis="red")
abline(model1, lwd=3, col='green')

par(mfrow=c(1,1))
hist(data$k.core, main='Histogram of Permeability', xlab='Permeability, md', col='GOLD')

model1<-lm(k.core~.-1 ,data=data)
par(mfrow=c(2,2))
plot (model1)

phi.corel <- predict(model1,data)
## Warning in predict.lm(model1, data): prediction from a rank-deficient fit may be
## misleading
model2<-lm(k.core~phi.corel+Facies-1,data=data)
summary(model2)
## 
## Call:
## lm(formula = k.core ~ phi.corel + Facies - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5585.6  -568.9    49.2   476.5  8928.4 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## phi.corel  1.000e+00  4.690e-02   21.32   <2e-16 ***
## FaciesF1  -9.839e-11  1.617e+02    0.00        1    
## FaciesF10  4.592e-11  1.026e+02    0.00        1    
## FaciesF2  -5.209e-11  4.433e+02    0.00        1    
## FaciesF3  -3.671e-11  1.766e+02    0.00        1    
## FaciesF5  -6.181e-12  2.795e+02    0.00        1    
## FaciesF7  -7.466e-11  4.261e+02    0.00        1    
## FaciesF8   2.026e-11  1.851e+02    0.00        1    
## FaciesF9  -5.942e-11  1.046e+02    0.00        1    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1253 on 810 degrees of freedom
## Multiple R-squared:  0.8457, Adjusted R-squared:  0.844 
## F-statistic: 493.2 on 9 and 810 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(model2)

m1.red <- lm(k.core ~ depth+gamma+R.deep+R.med+SP+density+phi.core+Facies-1, data = data)
summary(m1.red)
## 
## Call:
## lm(formula = k.core ~ depth + gamma + R.deep + R.med + SP + density + 
##     phi.core + Facies - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5461.7  -545.5    37.0   505.0  9072.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## depth          8.088      1.059   7.639 6.23e-14 ***
## gamma        -51.915      4.526 -11.471  < 2e-16 ***
## R.deep       -22.467      6.261  -3.588 0.000353 ***
## R.med         48.859      8.730   5.597 2.99e-08 ***
## SP            -6.490      3.118  -2.082 0.037671 *  
## density     2013.607   1047.054   1.923 0.054818 .  
## phi.core     188.002     21.791   8.628  < 2e-16 ***
## FaciesF1  -51703.918   5802.150  -8.911  < 2e-16 ***
## FaciesF10 -50893.923   5917.391  -8.601  < 2e-16 ***
## FaciesF2  -51009.565   5854.625  -8.713  < 2e-16 ***
## FaciesF3  -51322.213   5871.731  -8.741  < 2e-16 ***
## FaciesF5  -51174.044   6008.663  -8.517  < 2e-16 ***
## FaciesF7  -52302.690   5971.976  -8.758  < 2e-16 ***
## FaciesF8  -53362.629   6033.789  -8.844  < 2e-16 ***
## FaciesF9  -54796.231   6100.716  -8.982  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1266 on 804 degrees of freedom
## Multiple R-squared:  0.8436, Adjusted R-squared:  0.8407 
## F-statistic: 289.1 on 15 and 804 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(m1.red)

k.core.pred1 <- predict(m1.red,data)
par(mfrow=c(1,3))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="l", col="red", lwd = 5, pch=17, xlab='Measured',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred1),type="l", col="blue", lwd = 5, pch=17, xlab='Predicted',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2,)
grid()
par(mfrow=c(1,1))

plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="l", col="red", lwd = 5, xlab='Permeability',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred1),type="l", col="blue", lwd = 5, xlab='',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='R-sq=8436')
grid()
legend('topright', legend=c("Observed", "Predicted"), lty=c(1,1), col=c("red", "blue"))

AdjR.sq1 <- 1-sum((k.core.pred1 - data$k.core)^2)/sum((data$k.core-mean(data$k.core))^2)
AdjR.sq1
## [1] 0.6847518
mspe.model1 <- sqrt(sum((k.core.pred1 - data$k.core)^2)/nrow(data))
mspe.model1
## [1] 1254.46
par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="red", lwd = 5, pch=16, xlab='Permeability',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred1),type="p", col="blue", lwd = 5, pch=15, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='AdjR.sq1=0.6847 & RMSE=1254')
grid()
legend('topright', legend=c("Observed", "Predicted"), pch=c(16,15), col=c("red", "blue"))

hist(log10(data$k.core) ,main='Histogram of log Permeability', xlab='log Permeability, md', col='GOLD')

m2<-lm(log10(k.core) ~ .-1,data=data)
summary(m2)
## 
## Call:
## lm(formula = log10(k.core) ~ . - 1, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.5804 -0.1138  0.0322  0.1529  0.7384 
## 
## Coefficients: (1 not defined because of singularities)
##                 Estimate Std. Error t value Pr(>|t|)    
## depth          0.0007425  0.0004718   1.574   0.1160    
## caliper       -0.4605945  0.2693103  -1.710   0.0876 .  
## ind.deep      -0.0007951  0.0006222  -1.278   0.2017    
## ind.med        0.0007137  0.0006833   1.044   0.2966    
## gamma         -0.0091269  0.0015885  -5.746 1.30e-08 ***
## phi.N         -1.7628155  0.3901024  -4.519 7.16e-06 ***
## R.deep        -0.0025878  0.0016620  -1.557   0.1199    
## R.med          0.0044073  0.0023960   1.839   0.0662 .  
## SP            -0.0016935  0.0008312  -2.037   0.0419 *  
## density.corr   1.4462633  1.2712045   1.138   0.2556    
## density        1.6148374  0.3100921   5.208 2.44e-07 ***
## phi.core       0.0948634  0.0060329  15.724  < 2e-16 ***
## FaciesF1      -2.3461877  4.6532000  -0.504   0.6143    
## FaciesF10     -2.2675417  4.6652182  -0.486   0.6271    
## FaciesF2      -2.3646211  4.6544047  -0.508   0.6116    
## FaciesF3      -2.3769425  4.6697172  -0.509   0.6109    
## FaciesF5      -2.2367684  4.6697432  -0.479   0.6321    
## FaciesF7      -2.0650257  4.6623059  -0.443   0.6579    
## FaciesF8      -2.4438111  4.6776859  -0.522   0.6015    
## FaciesF9      -2.7023993  4.7023453  -0.575   0.5657    
## phi.core.frac         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3335 on 799 degrees of freedom
## Multiple R-squared:  0.9891, Adjusted R-squared:  0.9888 
## F-statistic:  3613 on 20 and 799 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2)) 
plot(m2)

m2.red <- lm(log10(k.core) ~ caliper+gamma+phi.N+SP+density+phi.core+Facies-1,data=data)
summary(m2.red)
## 
## Call:
## lm(formula = log10(k.core) ~ caliper + gamma + phi.N + SP + density + 
##     phi.core + Facies - 1, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.60108 -0.11891  0.03253  0.15792  0.70925 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## caliper   -0.840136   0.182354  -4.607 4.74e-06 ***
## gamma     -0.010369   0.001337  -7.754 2.68e-14 ***
## phi.N     -1.596764   0.359392  -4.443 1.01e-05 ***
## SP        -0.001585   0.000793  -1.998  0.04600 *  
## density    1.762145   0.287056   6.139 1.31e-09 ***
## phi.core   0.093920   0.005931  15.835  < 2e-16 ***
## FaciesF1   4.981486   1.783281   2.793  0.00534 ** 
## FaciesF10  5.101106   1.793029   2.845  0.00455 ** 
## FaciesF2   4.995149   1.796855   2.780  0.00556 ** 
## FaciesF3   4.967152   1.799799   2.760  0.00591 ** 
## FaciesF5   5.158638   1.760353   2.930  0.00348 ** 
## FaciesF7   5.272425   1.759300   2.997  0.00281 ** 
## FaciesF8   4.952389   1.753512   2.824  0.00486 ** 
## FaciesF9   4.687264   1.762588   2.659  0.00799 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3346 on 805 degrees of freedom
## Multiple R-squared:  0.9889, Adjusted R-squared:  0.9887 
## F-statistic:  5128 on 14 and 805 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(m2.red)

k.core.pred2 <- predict(m2.red,data)
k.core.pred2 <- 10^(k.core.pred2) 
par(mfrow=c(1,3))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="l", col="red", lwd = 5, xlab='Measured',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred2),type="l", col="green", lwd = 5, xlab='Predicted',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2,)
grid()
par(mfrow=c(1,1))

plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="l", col="red", lwd = 5, xlab='Permeability',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred2),type="l", col="green", lwd = 5, xlab='',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='R-sq=8436')
grid()
legend('topright', legend=c("Observed", "Predicted"), lty=c(1,1), col=c("red", "green"))

AdjR.sq2 <- 1-sum((k.core.pred2 - data$k.core)^2)/sum((data$k.core-mean(data$k.core))^2)
AdjR.sq2
## [1] 0.6366977
mspe.model2 <- sqrt(sum((k.core.pred2 - data$k.core)^2)/nrow(data))
mspe.model2
## [1] 1346.681
par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="red", lwd = 5, pch=16, xlab='Permeability',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred2),type="p", col="green", lwd = 5, pch=17, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='AdjR.sq1=0.6367 & RMSE=1346')
grid()
legend('topright', legend=c("Observed", "Predicted"), pch=c(16,17), col=c("red", "green"))

require(MASS)
## Loading required package: MASS
library(MASS)
y <- data$k.core
x <- data$phi.core
bc <- boxcox(y ~ x, data=data)

lambda <- bc$x[which.max(bc$y)]
lambda
## [1] 0.2222222
k.corebc <- ((y^lambda-1)/lambda)
hist(k.corebc)

m3 <- lm(k.corebc ~ .-1,data=data)
summary(m3)
## 
## Call:
## lm(formula = k.corebc ~ . - 1, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.6183  -0.7390   0.1217   1.0871   4.9292 
## 
## Coefficients: (1 not defined because of singularities)
##                 Estimate Std. Error t value Pr(>|t|)    
## depth         -2.837e-03  2.923e-03  -0.971 0.331955    
## caliper       -4.670e+00  1.647e+00  -2.836 0.004688 ** 
## ind.deep      -4.252e-03  3.800e-03  -1.119 0.263538    
## ind.med        2.480e-03  4.174e-03   0.594 0.552529    
## gamma         -3.470e-02  1.005e-02  -3.453 0.000584 ***
## phi.N         -1.029e+01  2.385e+00  -4.315 1.79e-05 ***
## R.deep         3.507e-03  1.024e-02   0.343 0.732063    
## R.med         -2.005e-02  1.498e-02  -1.338 0.181359    
## SP            -4.665e-03  5.093e-03  -0.916 0.359998    
## density.corr   1.113e+01  7.766e+00   1.433 0.152239    
## density        8.304e+00  1.899e+00   4.374 1.38e-05 ***
## phi.core       5.314e-01  3.845e-02  13.821  < 2e-16 ***
## k.core         1.650e-03  5.711e-05  28.886  < 2e-16 ***
## FaciesF1       4.457e+01  2.868e+01   1.554 0.120574    
## FaciesF10      4.473e+01  2.875e+01   1.556 0.120154    
## FaciesF2       4.413e+01  2.868e+01   1.538 0.124356    
## FaciesF3       4.395e+01  2.878e+01   1.527 0.127158    
## FaciesF5       4.466e+01  2.878e+01   1.552 0.121080    
## FaciesF7       4.666e+01  2.874e+01   1.624 0.104864    
## FaciesF8       4.510e+01  2.884e+01   1.564 0.118309    
## FaciesF9       4.441e+01  2.900e+01   1.531 0.126140    
## phi.core.frac         NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.037 on 798 degrees of freedom
## Multiple R-squared:  0.9891, Adjusted R-squared:  0.9888 
## F-statistic:  3432 on 21 and 798 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(m3)

m3.red <- lm(k.corebc ~ caliper+gamma+phi.N+density+phi.core+Facies-1,data=data)
summary(m3.red)
## 
## Call:
## lm(formula = k.corebc ~ caliper + gamma + phi.N + density + phi.core + 
##     Facies - 1, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -11.9794  -1.4494   0.2455   1.7020   8.1339 
## 
## Coefficients:
##            Estimate Std. Error t value Pr(>|t|)    
## caliper    -7.93274    1.61041  -4.926 1.02e-06 ***
## gamma      -0.13535    0.01179 -11.476  < 2e-16 ***
## phi.N     -10.34785    3.17510  -3.259  0.00116 ** 
## density    12.82088    2.53438   5.059 5.23e-07 ***
## phi.core    0.85651    0.05240  16.344  < 2e-16 ***
## FaciesF1   46.56838   15.72569   2.961  0.00315 ** 
## FaciesF10  48.44570   15.81731   3.063  0.00227 ** 
## FaciesF2   47.61675   15.84673   3.005  0.00274 ** 
## FaciesF3   46.59335   15.87771   2.935  0.00344 ** 
## FaciesF5   48.82275   15.52754   3.144  0.00173 ** 
## FaciesF7   47.87893   15.52847   3.083  0.00212 ** 
## FaciesF8   45.68235   15.47125   2.953  0.00324 ** 
## FaciesF9   42.39103   15.55060   2.726  0.00655 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.956 on 806 degrees of freedom
## Multiple R-squared:  0.9767, Adjusted R-squared:  0.9763 
## F-statistic:  2600 on 13 and 806 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(m3.red)

k.core.pred3 <- predict(m3.red,data)

k.core.pred3 <-(1+(lambda*k.corebc))^(1/lambda)
par(mfrow=c(1,2))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="l", col="gold", lwd = 5, xlab='Measured',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred3),type="l", col="red", lwd = 5, xlab='Predicted',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2,)
grid()

par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="l", col="gold", lwd = 5, xlab='Permeability',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred3),type="l", col="red", lwd = 5, xlab='',
     ylab='Depth,m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='R-sq=8436')
grid()
legend('topright', legend=c("Observed", "Predicted"), lty=c(1,1), col=c("gold", "red"))

AdjR.sq3 <- 1-sum((k.core.pred3 - data$k.core)^2)/sum((data$k.core-mean(data$k.core))^2)
AdjR.sq3
## [1] 1
mspe.m3 <- sqrt(sum((k.core.pred3 - data$k.core)^2)/nrow(data))
mspe.m3
## [1] 1.560247e-12
par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="gold", lwd = 5, pch=16, xlab='Permeability',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred3),type="p", col="red", lwd = 5, pch=11, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2, main='AdjR.sq1=0.9999 & RMSE=0')
grid()
legend('topright', legend=c("Observed", "Predicted"), pch=c(16,15), col=c("gold", "red"))

par(mfrow=c(1,1))
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(data$k.core),type="p", col="gold", lwd = 5, pch=16, xlab='Permeability',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred1),type="p", col="blue", lwd = 5, pch=15, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred2),type="p", col="green", lwd = 5, pch=17, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
par(new = TRUE)
plot(y=y<-(data$depth),ylim=rev(range(data$depth)),x=x<-(k.core.pred3),type="p", col="red", lwd = 5, pch=11, xlab='',
     ylab='Depth, m', xlim=c(0,16000), cex=1.5, cex.lab=1.5, cex.axis=1.2)
grid()
legend('topright', legend=c("Observed", "Predicted1", "Predicted2", "Predicted3"), pch=c(16,15,17,11), col=c("gold", "blue", "green", "red"))