Unordered Factor Levels
# Transform Data: Calculate average TV hours by religion
tvhours_by_relig <- gss_cat %>%
group_by(relig) %>%
summarise(
avg_tvhours = mean(tvhours, na.rm = TRUE)
)
# Plot
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = relig)) +
geom_point()
Ordered Factor Levels
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours, y = fct_reorder(.f = relig, .x = avg_tvhours))) +
geom_point()
# Labeling
labs(y = NULL, x = "Mean Daily Hour Watching TV")
## $y
## NULL
##
## $x
## [1] "Mean Daily Hour Watching TV"
##
## attr(,"class")
## [1] "labels"
Moving a Single Level to the Front
tvhours_by_relig %>%
ggplot(aes(x = avg_tvhours,
y = fct_reorder(.f = relig, .x = avg_tvhours) %>%
fct_relabel("Don't Know"))) +
geom_point()
# Labeling
labs(y = NULL, x = "Mean Daily Hour Watching TV")
gss_cat %>% distinct(race)
## # A tibble: 3 × 1
## race
## <fct>
## 1 White
## 2 Black
## 3 Other
# Recode Function
gss_cat %>%
#Rename Levels
mutate(race_rev = fct_recode(race, "African American" = "Black")) %>%
select(race, race_rev) %>%
filter(race == "Black")
## # A tibble: 3,129 × 2
## race race_rev
## <fct> <fct>
## 1 Black African American
## 2 Black African American
## 3 Black African American
## 4 Black African American
## 5 Black African American
## 6 Black African American
## 7 Black African American
## 8 Black African American
## 9 Black African American
## 10 Black African American
## # … with 3,119 more rows
# Collapse Multiple Levels into one
gss_cat %>%
mutate(race_col = fct_collapse(race, "Minority" = c("Black","Other"))) %>%
select(race, race_col) %>%
filter(race != "White")
## # A tibble: 5,088 × 2
## race race_col
## <fct> <fct>
## 1 Black Minority
## 2 Black Minority
## 3 Black Minority
## 4 Other Minority
## 5 Black Minority
## 6 Other Minority
## 7 Black Minority
## 8 Other Minority
## 9 Black Minority
## 10 Black Minority
## # … with 5,078 more rows
# Lump small level into other levels
gss_cat %>% count(race)
## # A tibble: 3 × 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395
gss_cat %>% mutate(race_lump = fct_lump(race)) %>% distinct(race_lump)
## # A tibble: 2 × 1
## race_lump
## <fct>
## 1 White
## 2 Other
# From Strings
"2022/10/28" %>% ymd()
## [1] "2022-10-28"
# From Numbers
20221028 %>% ymd()
## [1] "2022-10-28"
"2022-10-28 4-41-30" %>% ymd_hms()
## [1] "2022-10-28 04:41:30 UTC"
flights %>%
select(year: day, hour, minute) %>%
mutate(departure = make_datetime(year = year, month = month,
day = day, hour = hour, min = minute))
## # A tibble: 336,776 × 6
## year month day hour minute departure
## <int> <int> <int> <dbl> <dbl> <dttm>
## 1 2013 1 1 5 15 2013-01-01 05:15:00
## 2 2013 1 1 5 29 2013-01-01 05:29:00
## 3 2013 1 1 5 40 2013-01-01 05:40:00
## 4 2013 1 1 5 45 2013-01-01 05:45:00
## 5 2013 1 1 6 0 2013-01-01 06:00:00
## 6 2013 1 1 5 58 2013-01-01 05:58:00
## 7 2013 1 1 6 0 2013-01-01 06:00:00
## 8 2013 1 1 6 0 2013-01-01 06:00:00
## 9 2013 1 1 6 0 2013-01-01 06:00:00
## 10 2013 1 1 6 0 2013-01-01 06:00:00
## # … with 336,766 more rows
# From Date to Date Time
today() %>% as_datetime()
## [1] "2023-01-13 UTC"
# From Date time to date
now() %>% as_date()
## [1] "2023-01-13"
date_time <- ymd_hms(“2022-10-28 18-18-18”) date_time
year(date_time) months(date_time, label= TRUE, abbr= FALSE) yday(date_time) mday(date_time) wday(date_time, label= TRUE, abbr = FALSE)
# Create flights_dt
make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)
}
flights_dt <- flights %>%
filter(!is.na(dep_time), !is.na(arr_time)) %>%
mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)
) %>%
select(origin, dest, ends_with("delay"), ends_with("time"))
flights_dt %>%
transmute(wday = wday(dep_time, label = TRUE)) %>%
ggplot(aes(wday)) +
geom_bar()
# floor_date for Rounding Down
flights_dt %>%
mutate(week = floor_date(dep_time, "month")) %>%
select(dep_time, week) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time week
## <dttm> <dttm>
## 1 2013-10-18 12:42:00 2013-10-01 00:00:00
## 2 2013-07-31 08:10:00 2013-07-01 00:00:00
## 3 2013-04-28 18:13:00 2013-04-01 00:00:00
## 4 2013-04-05 07:27:00 2013-04-01 00:00:00
## 5 2013-10-07 23:18:00 2013-10-01 00:00:00
## 6 2013-08-11 21:12:00 2013-08-01 00:00:00
## 7 2013-04-21 20:37:00 2013-04-01 00:00:00
## 8 2013-09-18 16:05:00 2013-09-01 00:00:00
## 9 2013-07-27 07:54:00 2013-07-01 00:00:00
## 10 2013-04-22 19:16:00 2013-04-01 00:00:00
flights_dt %>%
mutate(dep_hour = update(dep_time, yday = 1)) %>%
select(dep_time, dep_hour) %>%
sample_n(10)
## # A tibble: 10 × 2
## dep_time dep_hour
## <dttm> <dttm>
## 1 2013-01-04 08:42:00 2013-01-01 08:42:00
## 2 2013-02-21 08:55:00 2013-01-01 08:55:00
## 3 2013-08-01 12:41:00 2013-01-01 12:41:00
## 4 2013-08-05 09:10:00 2013-01-01 09:10:00
## 5 2013-04-30 20:20:00 2013-01-01 20:20:00
## 6 2013-08-30 17:58:00 2013-01-01 17:58:00
## 7 2013-06-11 13:54:00 2013-01-01 13:54:00
## 8 2013-11-10 18:23:00 2013-01-01 18:23:00
## 9 2013-03-12 08:22:00 2013-01-01 08:22:00
## 10 2013-11-27 09:28:00 2013-01-01 09:28:00