Wizualizacja danych z biblioteką ggplot2
- Wykresy zmiennej ilościowej
- Wykresy zmiennej jakościowej
- Wykresy dwóch zmiennych ilościowych
- Wykresy dwóch zmiennych jakościowych
- Wykresy zmiennej ilościowej vs zmiennej jakościowej
- Wykresy bąbelkowe (3x Challenge)
- Kilka wykresów na jednym panelu (2x Challenge).
Przydatne materiały:
- ggplot2
cheatsheet
- A.
Kassambara - Guide to Create Beautiful Graphics in R. - Hadley Wickham “ggplot2”
Dane pochodzą ze strony https://flixgem.com/ (wersja zbioru danych z dnia 12 marca 2021). Dane zawierają informacje na temat 9425 filmów i seriali dostępnych na Netlix.
Wizualizacja danych z ggplot2
theme_set(theme_bw())
Podstawowe zasady tworzenia wykresów z ggplot2:
- do funkcji ggplot() podajemy ramkę danych oraz opcjonalnie
osie x, y i parametry shape, color,
fill, group
- dodajemy wykresy za pomocą funkcji zaczynających się geom_
lub stat_
- modyfikujemy wykresy dodając legendy, tytuły, znaczniki na osiach
etc.
Do szybkich analiz można skorzystać z funkcji qplot(), która automatycznie dobiera typ wykresu do rodzaju danych.
Wykresy zmiennej ilościowej
dane %>%
filter(Languages=="Polish") %>%
ggplot(aes(x = IMDb.Score)) +
geom_histogram(
aes(fill = Series.or.Movie)
,bins = 10
,color = 'black'
) +
labs(title = 'Polskie filmy i seriale')
ggplot(dane, aes(x=IMDb.Score, fill=Series.or.Movie)) +
geom_density(alpha=.25) +
labs(title = 'Gęstość rozkładu ocen')
Wykresy zmiennej jakościowej
dane %>%
filter(Runtime != '') %>%
ggplot(aes(Runtime)) +
geom_bar(aes(fill = Runtime))+
scale_x_discrete(
limits = c('< 30 minutes'
,'30-60 mins'
,'1-2 hour'
,'> 2 hrs')
,labels = function(x) str_wrap(x, width = 8)
) +
theme(
legend.position = 'none'
,axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
) +
scale_fill_manual(values = brewer.pal(4, 'Accent'))
Wykresy dwóch zmiennych ilościowych
ggplot(dane, aes(x = IMDb.Score, y = IMDb.Votes)) +
geom_point(aes(color = Series.or.Movie)) +
geom_smooth(
method = 'loess'
,se = FALSE
) +
theme(legend.position = c(0.2, 0.8))
Wykresy dwóch zmiennych jakościowych
dane %>%
filter(Runtime != '') %>%
ggplot(aes(x = Series.or.Movie, y = Runtime)) +
geom_jitter(aes(color = Runtime)) +
theme(legend.position = 'none') +
scale_y_discrete(
limits = c('< 30 minutes'
,'30-60 mins'
,'1-2 hour'
,'> 2 hrs')
) +
labs(x = '', y = '')
Wykresy zmiennej ilościowej vs zmiennej jakościowej
medians = dane %>%
group_by(Series.or.Movie) %>%
summarize(m = median(IMDb.Score, na.rm = TRUE))
ggplot(dane, aes(x = Series.or.Movie, y = IMDb.Score)) +
geom_boxplot(
aes(fill = Series.or.Movie)
,outlier.alpha = 0.25
) +
geom_text(
data = medians
,aes(x = Series.or.Movie, y = m, label = m)
,color = 'blue'
,hjust = 7
) +
stat_boxplot(geom ='errorbar', position = 'dodge') +
stat_summary(
aes(ymax = ..y.., ymin = ..y..)
,fun = mean
,geom = 'errorbar'
,width = .75
,linetype = 'solid'
,position = 'dodge'
,color = 'white'
,size = 1
) +
theme(legend.position = 'none')
Wykresy bąbelkowe
gatunki <- dane %>%
select(Genre) %>%
unlist() %>%
strsplit(',') %>%
unlist() %>%
trimws() %>%
table() %>%
as.data.frame()
gatunki <- data.frame(
Gatunek = gatunki$.
,`Count` = gatunki$Freq
,`IMDb Score Average` = NA
,`IMDb Votes Average` = NA
)
for (i in 1:nrow(gatunki)) {
gatunki$IMDb.Score.Average[i] <- dane %>%
filter(str_detect(Genre, gatunki$Gatunek[i] %>%
as.character() %>% eval())) %>%
select(IMDb.Score) %>% unlist() %>% mean(na.rm = TRUE)
gatunki$IMDb.Votes.Average[i] <- dane %>%
filter(str_detect(Genre, gatunki$Gatunek[i] %>%
as.character() %>% eval())) %>%
select(IMDb.Votes) %>% unlist() %>% mean(na.rm = TRUE)
}
ggplot(gatunki, aes(IMDb.Score.Average, IMDb.Votes.Average, label = Gatunek)) +
geom_point(aes(color = Gatunek, size = Count)) +
geom_text_repel() +
theme(legend.position = 'none')
Kilka wykresów na jednym panelu
dane %>%
filter(Runtime != '') %>%
ggplot(aes(x = IMDb.Score)) +
geom_histogram(
aes(fill = Series.or.Movie)
,bins = 50
,color = 'black'
) +
# facet_grid(.~ Series.or.Movie) +
# facet_grid(Series.or.Movie ~ .) +
# facet_grid(Runtime ~ Series.or.Movie, scales = 'free') +
# facet_wrap(vars(Series.or.Movie), ncol = 2) +
facet_wrap(vars(Series.or.Movie), nrow = 2) +
# facet_wrap(vars(Series.or.Movie, Runtime), nrow = 2, scales = 'free') +
theme(legend.position = 'none')
Zadanie domowe
Korzystając z paczki danych “germancredit” dotyczącą oceny kredytowej (creditability) wybranych klientów pewnego banku wykreśl zmienną ilościową (np. wysokość kredytu); zmienną jakościową (ryzyko); ilościową wg jakościowej (np. wiek wg ryzyka); 2 ilościowe (wiek wg wysokości kredytu) oraz wykres bąbelkowy wg własnego pomysłu + przedstaw kilka wykresów na 1 panelu.
data("germancredit")
attach(germancredit)
# http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
Wykres 1 zmiennej ilościowej -
dane2 <- germancredit
attach(dane2)
## Następujące obiekty zostały zakryte z germancredit:
##
## age.in.years, credit.amount, credit.history, creditability,
## duration.in.month, foreign.worker, housing,
## installment.rate.in.percentage.of.disposable.income, job,
## number.of.existing.credits.at.this.bank,
## number.of.people.being.liable.to.provide.maintenance.for,
## other.debtors.or.guarantors, other.installment.plans,
## personal.status.and.sex, present.employment.since,
## present.residence.since, property, purpose,
## savings.account.and.bonds, status.of.existing.checking.account,
## telephone
dane2 %>%
ggplot(aes(x = credit.amount)) +
geom_histogram(color = 'red') +
labs(title = 'WYSOKOŚĆ KREDYTÓW')
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
dane2 %>%
ggplot(aes(creditability)) +
geom_bar(aes(fill = creditability))+
scale_x_discrete(
limits = c('good'
,'bad')
,labels = function(x) str_wrap(x, width = 4)
) +
theme(
legend.position = 'none'
,axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)
) +
scale_fill_manual(values = brewer.pal(4, 'Accent'))+
labs(title = 'ZDOLNOŚĆ KREDYTOWA')
medians = dane2 %>%
group_by(creditability) %>%
summarize(m = median(age.in.years, na.rm = TRUE))
ggplot(dane2, aes(x = creditability , y = age.in.years)) +
geom_boxplot(
aes(fill = creditability)
,outlier.alpha = 0.25
) +
geom_text(
data = medians
,aes(x = creditability, y = m, label = m)
,color = 'green'
,hjust = 7
) +
stat_boxplot(geom ='errorbar', position = 'dodge') +
stat_summary(
aes(ymax = ..y.., ymin = ..y..)
,fun = mean
,geom = 'errorbar'
,width = .75
,linetype = 'solid'
,position = 'dodge'
,color = 'red'
,size = 1
) +
theme(legend.position = 'none')+
labs(title = 'Zdolność kredyowa a wiek')
ggplot(dane2, aes(x = age.in.years, y = credit.amount)) +
geom_point()+
geom_smooth(
method = 'lm'
,se = FALSE
) +
theme(legend.position = c(0.2, 0.8))+
labs(title = 'Wysokość kredytu a wiek')
## `geom_smooth()` using formula = 'y ~ x'
cel <- dane2$purpose %>%
unlist() %>%
table() %>%
as.data.frame()
cel <- data.frame(
Purpose = cel$.
,`Count` = cel$Freq
,`Credit amount average` = NA
,`Age in years average` = NA
)
for (i in 1:nrow(cel)) {
cel$Credit.amount.average[i] <- dane2 %>%
filter(str_detect(purpose, cel$Purpose[i] %>%
as.character() %>% eval())) %>%
select(credit.amount) %>% unlist() %>% mean(na.rm = TRUE)
cel$Age.in.years.average[i] <- dane2 %>%
filter(str_detect(purpose, cel$Purpose[i] %>%
as.character() %>% eval())) %>%
select(age.in.years) %>% unlist() %>% mean(na.rm = TRUE)
}
ggplot(cel, aes(Age.in.years.average, Credit.amount.average, label = Purpose)) +
geom_point(aes(color = Purpose, size = Count)) +
geom_text_repel() +
theme(legend.position = 'none')+
labs(title = 'Wiek kredytobiorców względem wysokości kredytu i jego przeznaczenia')
## Warning: Removed 2 rows containing missing values (`geom_point()`).
## Warning: Removed 2 rows containing missing values (`geom_text_repel()`).
dane2 %>%
filter(credit.amount != '') %>%
ggplot(aes(x = credit.amount)) +
geom_histogram(
aes(fill = credit.amount)
,bins = 50
,color = 'red'
) +
facet_wrap(vars(purpose), ncol = 2) +
theme(legend.position = 'none')+
labs(title = 'WYSOKOŚĆ KREDYTU WZGLĘDEM JEGO PRZEZNACZENIA')
## Warning: The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?
## The following aesthetics were dropped during statistical transformation: fill
## ℹ This can happen when ggplot fails to infer the correct grouping structure in
## the data.
## ℹ Did you forget to specify a `group` aesthetic or to convert a numerical
## variable into a factor?