The Multinomial Logistic Regression (MLR) was adopted to estimate the maximum likelihood and minimize the standard error for the nonlinear relationships between facies & core and log data in sandstone formation. The MLR is used to predict the probabilities of the different possible facies given each independent variable by constructing a linear predictor function having a set of weights that are linearly combined with the independent variables by using a dot product. Beta distribution of facies was considered as prior knowledge and the resulted predicted probability (posterior) was estimated from MLR based on Bayes’ theorem that represents the relationship between predicted probability (posterior) with the conditional probability and the prior knowledge.

In this work, MLR was adopted here to model Lithofacies given core analysis and well logs data in order to predict posterior probability distributions of the Lithofacies in Karpur Dataset.

Install the packages required to implement MLR algorithm with their functions.

#First, install the required packages.
require(foreign)
## Loading required package: foreign
require(nnet)
## Loading required package: nnet
require(ggplot2)
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked _by_ '.GlobalEnv':
## 
##     mpg
require(reshape2)
## Loading required package: reshape2
require(MASS)
## Loading required package: MASS
require(lattice)
## Loading required package: lattice
library(foreign)
library(nnet)
library(ggplot2)
library(reshape2)
library(MASS)
library(lattice)

Call the dataset and show the dataset head: -

##    depth caliper ind.deep ind.med  gamma phi.N R.deep  R.med      SP
## 1 5667.0   8.685  618.005 569.781 98.823 0.410  1.618  1.755 -56.587
## 2 5667.5   8.686  497.547 419.494 90.640 0.307  2.010  2.384 -61.916
## 3 5668.0   8.686  384.935 300.155 78.087 0.203  2.598  3.332 -55.861
## 4 5668.5   8.686  278.324 205.224 66.232 0.119  3.593  4.873 -41.860
## 5 5669.0   8.686  183.743 131.155 59.807 0.069  5.442  7.625 -34.934
## 6 5669.5   8.686  109.512  75.633 57.109 0.048  9.131 13.222 -39.769
##   density.corr density phi.core   k.core Facies
## 1       -0.033   2.205  33.9000 2442.590     F1
## 2       -0.067   2.040  33.4131 3006.989     F1
## 3       -0.064   1.888  33.1000 3370.000     F1
## 4       -0.053   1.794  34.9000 2270.000     F1
## 5       -0.054   1.758  35.0644 2530.758     F1
## 6       -0.058   1.759  35.3152 2928.314     F1

Summary of the dataset.

##      depth         caliper         ind.deep          ind.med       
##  Min.   :5667   Min.   :8.487   Min.   :  6.532   Min.   :  9.386  
##  1st Qu.:5769   1st Qu.:8.556   1st Qu.: 28.799   1st Qu.: 27.892  
##  Median :5872   Median :8.588   Median :217.849   Median :254.383  
##  Mean   :5873   Mean   :8.622   Mean   :275.357   Mean   :273.357  
##  3rd Qu.:5977   3rd Qu.:8.686   3rd Qu.:566.793   3rd Qu.:544.232  
##  Max.   :6083   Max.   :8.886   Max.   :769.484   Max.   :746.028  
##                                                                    
##      gamma            phi.N            R.deep            R.med        
##  Min.   : 16.74   Min.   :0.0150   Min.   :  1.300   Min.   :  1.340  
##  1st Qu.: 40.89   1st Qu.:0.2030   1st Qu.:  1.764   1st Qu.:  1.837  
##  Median : 51.37   Median :0.2450   Median :  4.590   Median :  3.931  
##  Mean   : 53.42   Mean   :0.2213   Mean   : 24.501   Mean   : 21.196  
##  3rd Qu.: 62.37   3rd Qu.:0.2640   3rd Qu.: 34.724   3rd Qu.: 35.853  
##  Max.   :112.40   Max.   :0.4100   Max.   :153.085   Max.   :106.542  
##                                                                       
##        SP          density.corr          density         phi.core    
##  Min.   :-73.95   Min.   :-0.067000   Min.   :1.758   Min.   :15.70  
##  1st Qu.:-42.01   1st Qu.:-0.016000   1st Qu.:2.023   1st Qu.:23.90  
##  Median :-32.25   Median :-0.007000   Median :2.099   Median :27.60  
##  Mean   :-30.98   Mean   :-0.008883   Mean   :2.102   Mean   :26.93  
##  3rd Qu.:-19.48   3rd Qu.: 0.002000   3rd Qu.:2.181   3rd Qu.:30.70  
##  Max.   : 25.13   Max.   : 0.089000   Max.   :2.387   Max.   :36.30  
##                                                                      
##      k.core             Facies   
##  Min.   :    0.42   F8     :184  
##  1st Qu.:  657.33   F9     :172  
##  Median : 1591.22   F10    :171  
##  Mean   : 2251.91   F1     :111  
##  3rd Qu.: 3046.82   F5     :109  
##  Max.   :15600.00   F3     : 55  
##                     (Other): 17

Visualize the dataset:

Modeling the Facies given well logs and core data through logit model:

## # weights:  120 (98 variable)
## initial  value 1703.062623 
## iter  10 value 1179.097291
## iter  20 value 923.251965
## iter  30 value 741.869499
## iter  40 value 699.925734
## iter  50 value 669.052852
## iter  60 value 511.166733
## iter  70 value 233.307615
## iter  80 value 165.773024
## iter  90 value 149.046112
## iter 100 value 143.271119
## final  value 143.271119 
## stopped after 100 iterations
## Call:
## multinom(formula = Facies ~ ., data = karpur)
## 
## Coefficients:
##     (Intercept)       depth   caliper     ind.deep      ind.med
## F10   1.3249216  0.03558881 -23.79343 -0.078893229  0.107200338
## F2   -0.7030409 -0.07139423  42.94152 -0.138309461  0.094987785
## F3   -4.7420964  0.03411561 -18.00088 -0.034711051  0.039036141
## F5   -2.3328252  0.04777032 -36.80878 -0.005556634  0.049998192
## F7   -2.9665276  0.08969584 -49.46010 -0.111723916  0.093393279
## F8    5.9191162  0.11246371 -67.57402  0.136081879 -0.108676043
## F9  -24.4366661  0.10627313 -70.16444  0.021352685  0.008709291
##            gamma      phi.N      R.deep       R.med        SP density.corr
## F10  0.001451278  -4.075735 -1.14305785  0.78639406 0.2163548  -26.5048743
## F2  -0.268862190  64.296752  0.14138328 -0.10051642 0.3389351   20.6189492
## F3   0.006513390 -17.915430 -0.37171801 -0.81591784 0.2382539   11.7895843
## F5  -0.104520300 -26.816641  0.37442197 -0.07980776 0.2715597    0.1183814
## F7  -0.250153962   5.570544  0.63917019 -1.60843274 0.5370318  -12.6942142
## F8  -0.250816269 140.286848  0.09286815  0.37789591 0.3635810   26.0160718
## F9  -0.034391343 -38.296631  0.50692783 -0.76910395 0.2345840    6.9857913
##        density   phi.core        k.core
## F10  21.253094 -1.3484797  0.0014794057
## F2   39.113017 -1.2693197  0.0026765722
## F3    7.939868 -1.0247206  0.0004440008
## F5   42.617126 -1.3637551  0.0015651948
## F7   -6.913537 -1.7189047  0.0022511295
## F8  -57.534546  0.4215114  0.0006056535
## F9   15.174861 -0.3494023 -0.0003468794
## 
## Std. Errors:
##      (Intercept)        depth      caliper   ind.deep    ind.med
## F10 1.626525e-04 0.0006739397 0.0034151428 0.02839299 0.03094461
## F2  1.699411e-05 0.0018016739 0.0003965183 0.04506779 0.03116101
## F3  2.234001e-04 0.0008718193 0.0039348955 0.03021259 0.03229385
## F5  3.512388e-04 0.0007780270 0.0034591822 0.03173309 0.03220826
## F7  6.214727e-05 0.0009936439 0.0006544188 0.04594043 0.04629303
## F8  8.597274e-05 0.0009490570 0.0011032899 0.03977366 0.03987110
## F9  3.240219e-04 0.0012325262 0.0019039931 0.03534800 0.03522616
##          gamma        phi.N     R.deep       R.med         SP density.corr
## F10 0.05188385 0.0008041702 0.06617982 0.085732712 0.05486889 1.544571e-04
## F2  0.08475352 0.0002983262 0.01152008 0.009430983 0.12515670 1.246482e-04
## F3  0.05653545 0.0010860058 0.10046459 0.079686076 0.05507273 3.062929e-04
## F5  0.05588490 0.0006352753 0.06145501 0.081607216 0.06220176 5.555157e-05
## F7  0.12325414 0.0002492856 0.02874876 0.032669869 0.11723949 6.568225e-05
## F8  0.09334847 0.0001407760 0.06321059 0.073479428 0.07039828 7.945238e-05
## F9  0.07228661 0.0007118421 0.01420407 0.012703081 0.07062237 1.514685e-04
##          density    phi.core       k.core
## F10 0.0011094519 0.099443804 0.0006273644
## F2  0.0003240220 0.001857373 0.0015358179
## F3  0.0014522702 0.100665839 0.0006140135
## F5  0.0011722261 0.126498651 0.0008243391
## F7  0.0002077363 0.012529974 0.0008988777
## F8  0.0002166092 0.013373048 0.0009730033
## F9  0.0007852280 0.137385218 0.0009459605
## 
## Residual Deviance: 286.5422 
## AIC: 482.5422

Test data and extract coefficients:

##     (Intercept)     depth    caliper   ind.deep    ind.med       gamma
## F10    8145.719  52.80710  -6967.037 -2.7786164  3.4642650  0.02797168
## F2   -41369.686 -39.62661 108296.429 -3.0689204  3.0482898 -3.17228362
## F3   -21226.920  39.13152  -4574.678 -1.1488937  1.2087795  0.11520895
## F5    -6641.707  61.39931 -10640.890 -0.1751054  1.5523406 -1.87027788
## F7   -47733.839  90.26960 -75578.664 -2.4319301  2.0174372 -2.02957863
## F8    68848.759 118.50048 -61247.749  3.4214070 -2.7256849 -2.68688145
## F9   -75416.708  86.22383 -36851.207  0.6040706  0.2472393 -0.47576369
##          phi.N     R.deep       R.med       SP density.corr     density
## F10  -5068.249 -17.271999   9.1726255 3.943122  -171600.285   19156.390
## F2  215524.956  12.272773 -10.6581062 2.708086   165417.209  120710.987
## F3  -16496.625  -3.699990 -10.2391519 4.326169    38491.210    5467.212
## F5  -42212.628   6.092619  -0.9779498 4.365788     2131.019   36355.722
## F7   22346.033  22.232968 -49.2329112 4.580640  -193267.048  -33280.359
## F8  996525.431   1.469187   5.1428804 5.164629   327442.330 -265614.525
## F9  -53799.338  35.688909 -60.5446771 3.321667    46120.427   19325.420
##        phi.core     k.core
## F10  -13.560218  2.3581282
## F2  -683.395216  1.7427666
## F3   -10.179427  0.7231125
## F5   -10.780788  1.8987269
## F7  -137.183425  2.5043781
## F8    31.519471  0.6224578
## F9    -2.543231 -0.3666955
##     (Intercept) depth caliper     ind.deep      ind.med       gamma phi.N
## F10           0     0       0 0.0054590949 0.0005316825 0.977684738     0
## F2            0     0       0 0.0021483384 0.0023014786 0.001512452     0
## F3            0     0       0 0.2505998251 0.2267475633 0.908279508     0
## F5            0     0       0 0.8609968293 0.1205807437 0.061445240     0
## F7            0     0       0 0.0150186052 0.0436499079 0.042399389     0
## F8            0     0       0 0.0006229803 0.0064168233 0.007212255     0
## F9            0     0       0 0.5457967013 0.8047230304 0.634242741     0
##           R.deep        R.med           SP density.corr density   phi.core
## F10 0.000000e+00 0.000000e+00 8.042759e-05            0       0 0.00000000
## F2  0.000000e+00 0.000000e+00 6.767252e-03            0       0 0.00000000
## F3  2.156077e-04 0.000000e+00 1.517248e-05            0       0 0.00000000
## F5  1.110784e-09 3.280991e-01 1.266652e-05            0       0 0.00000000
## F7  0.000000e+00 0.000000e+00 4.635562e-06            0       0 0.00000000
## F8  1.417822e-01 2.705579e-07 2.409160e-07            0       0 0.00000000
## F9  0.000000e+00 0.000000e+00 8.948150e-04            0       0 0.01098326
##         k.core
## F10 0.01836735
## F2  0.08137438
## F3  0.46961079
## F5  0.05760039
## F7  0.01226669
## F8  0.53364089
## F9  0.71384620
##      (Intercept)     depth      caliper  ind.deep  ind.med     gamma
## F10 3.761890e+00 1.0362297 4.641375e-11 0.9241386 1.113157 1.0014523
## F2  4.950775e-01 0.9310948 4.459289e+18 0.8708292 1.099645 0.7642486
## F3  8.720346e-03 1.0347042 1.521657e-08 0.9658845 1.039808 1.0065346
## F5  9.702126e-02 1.0489297 1.033121e-16 0.9944588 1.051269 0.9007565
## F7  5.148177e-02 1.0938415 3.309431e-22 0.8942911 1.097893 0.7786809
## F8  3.720827e+02 1.1190316 4.497530e-30 1.1457757 0.897021 0.7781653
## F9  2.439443e-11 1.1121256 3.372642e-31 1.0215823 1.008747 0.9661933
##            phi.N    R.deep     R.med       SP density.corr      density
## F10 1.697973e-02 0.3188426 2.1954654 1.241543 3.083751e-12 1.698640e+09
## F2  8.389274e+27 1.1518661 0.9043703 1.403452 9.009400e+08 9.695434e+16
## F3  1.657401e-08 0.6895487 0.4422332 1.269031 1.318716e+05 2.806991e+03
## F5  2.257776e-12 1.4541506 0.9232938 1.312009 1.125673e+00 3.223909e+18
## F7  2.625769e+02 1.8949078 0.2002011 1.710921 3.068830e-06 9.942347e-04
## F8  8.429543e+60 1.0973170 1.4592110 1.438471 1.989008e+11 1.030539e-25
## F9  2.333374e-17 1.6601830 0.4634281 1.264383 1.081162e+03 3.893665e+06
##      phi.core    k.core
## F10 0.2596347 1.0014805
## F2  0.2810227 1.0026802
## F3  0.3588967 1.0004441
## F5  0.2556988 1.0015664
## F7  0.1792624 1.0022537
## F8  1.5242636 1.0006058
## F9  0.7051094 0.9996532

Head of posterior distributions of Facies:

## [1] F10 F1  F1  F1  F1  F1 
## Levels: F1 F10 F2 F3 F5 F7 F8 F9
##          F1          F10           F2           F3           F5
## 1 0.4784723 5.199314e-01 8.499605e-16 1.587576e-03 8.701994e-06
## 2 0.9995572 2.379734e-04 2.495091e-19 2.048645e-04 7.624279e-10
## 3 0.9995367 2.771562e-06 5.128119e-20 4.604796e-04 5.623079e-12
## 4 0.9994384 2.615366e-08 3.208465e-20 5.616015e-04 4.778059e-14
## 5 0.9996121 5.312164e-08 1.189755e-17 3.878844e-04 4.161197e-14
## 6 0.9999993 3.287258e-08 3.409442e-16 6.290488e-07 8.830520e-15
##             F7           F8           F9
## 1 4.346820e-28 6.385823e-10 3.068157e-12
## 2 2.342604e-27 6.109100e-12 1.204613e-13
## 3 1.165913e-23 6.669840e-13 9.022499e-14
## 4 5.766942e-21 1.655538e-13 4.385275e-13
## 5 2.480422e-18 2.570030e-15 2.110662e-13
## 6 1.634648e-20 1.165861e-17 1.532638e-15

Means of the Well logs and core data given each Facies:

MLR Modeling Validation by computing the total correct percent.

##        F1       F10        F2        F3        F5        F7        F8 
## 0.9819820 0.8947368 1.0000000 0.6181818 0.9082569 1.0000000 0.9728261 
##        F9 
## 1.0000000

Total percent correct:

## [1] 0.9316239

Scatteratrix plot of Lithofacies Classification by MLR:

Visualizing the predicted posterior distribution of the Eight Facies.

Combining the posterior distribution of the eight Lithofacies in one plot.

## Warning in bxp(structure(list(stats = structure(c(5667, 5680.75, 5694.5, :
## some notches went outside hinges ('box'): maybe set notch=FALSE
## Warning in bxp(structure(list(stats = structure(c(5667.5, 5681.25, 5695, :
## some notches went outside hinges ('box'): maybe set notch=FALSE

References

  1. Pires, A.M. and J.A. Branco, Projection-pursuit approach to robust linear discriminant analysis. Journal of Multivariate Analysis 101 24642485 (2010).

  2. Al-Mudhafar, W. J. (2015). Integrating Component Analysis & Classification Techniques for Comparative Prediction of Continuous & Discrete Lithofacies Distributions. Offshore Technology Conference. doi:10.4043/25806-MS.

  3. Karpur, L., L. Lake, and K. Sepehrnoori. (2000). Probability Logs for Facies Classification. In Situ 24(1): 57.

  4. Al-Mudhafer, W. J. (2014). Multinomial Logistic Regression for Bayesian Estimation of Vertical Facies Modeling in Heterogeneous Sandstone Reservoirs. Offshore Technology Conference. doi:10.4043/24732-MS.

  5. Al-Mudhafar, W. J. (2015). Applied Geostatistics in R: 1. Naive Bayes Classifier for Lithofacies Modeling in a Sandstone Formation. RPubs.

  6. Al-Mudhafar, W. J. (2015). Applied Geostatistics in R: 2. Applied Geostatistics in R: 2. Logistic Boosting Regression (LogitBoost) for Multinomial Lithofacies Classification in a Sandstone Formation. RPubs.

  7. Al-Mudhafar, W. J. (2015). Applied Geostatistics in R: 3. Linear Discriminant Analysis (LDA) for Multinomial Lithofacies Classification in a Sandstone Formation. RPubs.