#Tujuan 1

Memprediksi nilai variabel dari unit sampel Sakernas Agustus 2019 yang tidak diobservasi di Sakernas Februari 2020 menggunakan Mass Imputation.

##1. Import Library

library(survey)
library(readxl)
library(caret)
library(dplyr)
library(stringr)

##2. Load Data

sakernas2019_diy <- read_excel("sak0819(edit B5_R17A).xlsx")
sakernas2020_diy <- read_excel("sak0220(edit B5_R17A).xlsx")

##3. Membuat Variabel PSU, SSU, Strata di Sakernas 2019 dan Sakernas 2020

sakernas2020_diy['KODE_KAB']=str_pad(sakernas2020_diy$KODE_KAB, width = 2, side = 'left', pad = '0')
sakernas2020_diy['NO_DSRT']=str_pad(sakernas2020_diy$NO_DSRT, width = 2, side = 'left', pad = '0')

sakernas2019_diy['KODE_KAB']=str_pad(sakernas2019_diy$KODE_KAB, width = 2, side = 'left', pad = '0')
sakernas2019_diy['NO_DSRT']=str_pad(sakernas2019_diy$NO_DSRT, width = 2, side = 'left', pad = '0')

sakernas2020_diy["psu"]=paste(sakernas2020_diy$KODE_PROV, sakernas2020_diy$KODE_KAB, sakernas2020_diy$nks_ok, sep = "")
sakernas2019_diy["psu"]=paste(sakernas2019_diy$KODE_PROV, sakernas2019_diy$KODE_KAB, sakernas2019_diy$nks_ok, sep = "")

sakernas2020_diy["ssu"]=paste(sakernas2020_diy$KODE_PROV, sakernas2020_diy$KODE_KAB, sakernas2020_diy$nks_ok, sakernas2020_diy$NO_DSRT, sep = "")
sakernas2019_diy["ssu"]=paste(sakernas2019_diy$KODE_PROV, sakernas2019_diy$KODE_KAB, sakernas2019_diy$nks_ok, sakernas2019_diy$NO_DSRT, sep = "")

sakernas2020_diy["strata"]=paste(sakernas2020_diy$KODE_PROV, sakernas2020_diy$KODE_KAB, sakernas2020_diy$KLASIFIKAS, sep = "")
sakernas2019_diy["strata"]=paste(sakernas2019_diy$KODE_PROV, sakernas2019_diy$KODE_KAB, sakernas2019_diy$KLASIFIKAS, sep = "")

##4. Mengubah Tipe Data Variabel Sakernas 2019

sakernas2019_diy$B4_K6=as.factor(sakernas2019_diy$B4_K6)
sakernas2019_diy$B4_K9=as.factor(sakernas2019_diy$B4_K9)
sakernas2019_diy$B4_K10=as.factor(sakernas2019_diy$B4_K10)
sakernas2019_diy$B5_R1A=as.factor(sakernas2019_diy$B5_R1A)
sakernas2019_diy$B5_R4A=as.factor(sakernas2019_diy$B5_R4A)
sakernas2019_diy$B5_R4B=as.factor(sakernas2019_diy$B5_R4B)
sakernas2019_diy$B5_R4C=as.factor(sakernas2019_diy$B5_R4C)
sakernas2019_diy$B5_R4D=as.factor(sakernas2019_diy$B5_R4D)
sakernas2019_diy$B5_R4E=as.factor(sakernas2019_diy$B5_R4E)
sakernas2019_diy$B5_R4F=as.factor(sakernas2019_diy$B5_R4F)
sakernas2019_diy$B5_R5A1=as.factor(sakernas2019_diy$B5_R5A1)
sakernas2019_diy$B5_R5A2=as.factor(sakernas2019_diy$B5_R5A2)
sakernas2019_diy$B5_R5A3=as.factor(sakernas2019_diy$B5_R5A3)
sakernas2019_diy$B5_R5A4=as.factor(sakernas2019_diy$B5_R5A4)
sakernas2019_diy$B5_R5B=as.factor(sakernas2019_diy$B5_R5B)
sakernas2019_diy$B5_R6=as.factor(sakernas2019_diy$B5_R6)
sakernas2019_diy$B5_R20_KAT=as.factor(sakernas2019_diy$B5_R20_KAT)
sakernas2019_diy$B5_R24A=as.factor(sakernas2019_diy$B5_R24A)
sakernas2019_diy$B5_R30A=as.factor(sakernas2019_diy$B5_R30A)
sakernas2019_diy$B5_R1F=as.factor(sakernas2019_diy$B5_R1F)
sakernas2019_diy$B5_R6=as.factor(sakernas2019_diy$B5_R6)
sakernas2019_diy$B5_R7A=as.factor(sakernas2019_diy$B5_R7A)
sakernas2019_diy$B5_R7B=as.factor(sakernas2019_diy$B5_R7B)
sakernas2019_diy$B5_R9=as.factor(sakernas2019_diy$B5_R9)
sakernas2019_diy$B5_R10=as.factor(sakernas2019_diy$B5_R10)
sakernas2019_diy$B5_R12A=as.factor(sakernas2019_diy$B5_R12A)
sakernas2019_diy$B5_R12B=as.factor(sakernas2019_diy$B5_R12B)
sakernas2019_diy$B5_R13A=as.factor(sakernas2019_diy$B5_R13A)
sakernas2019_diy$B5_R13B=as.factor(sakernas2019_diy$B5_R13B)
sakernas2019_diy$B5_R17A=as.factor(sakernas2019_diy$B5_R17A)
sakernas2019_diy$B5_R17B=as.factor(sakernas2019_diy$B5_R17B)
sakernas2019_diy$B5_R21_KJI=as.factor(sakernas2019_diy$B5_R21_KJI)
sakernas2019_diy$B5_R21_KBJ=as.factor(sakernas2019_diy$B5_R21_KBJ)
sakernas2019_diy$B5_R22A=as.factor(sakernas2019_diy$B5_R22A)
sakernas2019_diy$B5_R24B=as.factor(sakernas2019_diy$B5_R24B)
sakernas2019_diy$B5_R24C1=as.factor(sakernas2019_diy$B5_R24C1)
sakernas2019_diy$B5_R24C2=as.factor(sakernas2019_diy$B5_R24C2)
sakernas2019_diy$B5_R24D=as.factor(sakernas2019_diy$B5_R24D)
sakernas2019_diy$B5_R25A1=as.factor(sakernas2019_diy$B5_R25A1)
sakernas2019_diy$B5_R25A2=as.factor(sakernas2019_diy$B5_R25A2)
sakernas2019_diy$B5_R25A3=as.factor(sakernas2019_diy$B5_R25A3)
sakernas2019_diy$B5_R25B=as.factor(sakernas2019_diy$B5_R25B)
sakernas2019_diy$B5_R25C1=as.factor(sakernas2019_diy$B5_R25C1)
sakernas2019_diy$B5_R25C2=as.factor(sakernas2019_diy$B5_R25C2)
sakernas2019_diy$B5_R25C3=as.factor(sakernas2019_diy$B5_R25C3)
sakernas2019_diy$B5_R25C4=as.factor(sakernas2019_diy$B5_R25C4)
sakernas2019_diy$B5_R25C5=as.factor(sakernas2019_diy$B5_R25C5)
sakernas2019_diy$B5_R26=as.factor(sakernas2019_diy$B5_R26)
sakernas2019_diy$B5_R27=as.factor(sakernas2019_diy$B5_R27)
sakernas2019_diy$B5_R29=as.factor(sakernas2019_diy$B5_R29)
sakernas2019_diy$B5_R30A=as.factor(sakernas2019_diy$B5_R30A)
sakernas2019_diy$B5_R30B=as.factor(sakernas2019_diy$B5_R30B)
sakernas2019_diy$B5_R30C=as.factor(sakernas2019_diy$B5_R30C)
sakernas2019_diy$B5_R30D=as.factor(sakernas2019_diy$B5_R30D)
sakernas2019_diy$B5_R30E=as.factor(sakernas2019_diy$B5_R30E)
sakernas2019_diy$B5_R30F=as.factor(sakernas2019_diy$B5_R30F)
sakernas2019_diy$B5_R31=as.factor(sakernas2019_diy$B5_R31)
sakernas2019_diy$B5_R34=as.factor(sakernas2019_diy$B5_R34)
sakernas2019_diy$B5_R36E=as.factor(sakernas2019_diy$B5_R36E)
sakernas2019_diy$B5_R47=as.factor(sakernas2019_diy$B5_R47)
sakernas2019_diy$B5_R48=as.factor(sakernas2019_diy$B5_R48)

##5. Mengubah Tipe Data Sakernas 2020

sakernas2020_diy$B4_K6=as.factor(sakernas2020_diy$B4_K6)
sakernas2020_diy$B4_K9=as.factor(sakernas2020_diy$B4_K9)
sakernas2020_diy$B4_K10=as.factor(sakernas2020_diy$B4_K10)
sakernas2020_diy$B5_R1A=as.factor(sakernas2020_diy$B5_R1A)
sakernas2020_diy$B5_R4A=as.factor(sakernas2020_diy$B5_R4A)
sakernas2020_diy$B5_R4B=as.factor(sakernas2020_diy$B5_R4B)
sakernas2020_diy$B5_R4C=as.factor(sakernas2020_diy$B5_R4C)
sakernas2020_diy$B5_R4D=as.factor(sakernas2020_diy$B5_R4D)
sakernas2020_diy$B5_R4E=as.factor(sakernas2020_diy$B5_R4E)
sakernas2020_diy$B5_R4F=as.factor(sakernas2020_diy$B5_R4F)
sakernas2020_diy$B5_R5A1=as.factor(sakernas2020_diy$B5_R5A1)
sakernas2020_diy$B5_R5A2=as.factor(sakernas2020_diy$B5_R5A2)
sakernas2020_diy$B5_R5A3=as.factor(sakernas2020_diy$B5_R5A3)
sakernas2020_diy$B5_R5A4=as.factor(sakernas2020_diy$B5_R5A4)
sakernas2020_diy$B5_R5B=as.factor(sakernas2020_diy$B5_R5B)
sakernas2020_diy$B5_R6=as.factor(sakernas2020_diy$B5_R6)
sakernas2020_diy$B5_R20_KAT=as.factor(sakernas2020_diy$B5_R20_KAT)
sakernas2020_diy$B5_R24A=as.factor(sakernas2020_diy$B5_R24A)
sakernas2020_diy$B5_R30A=as.factor(sakernas2020_diy$B5_R30A)
sakernas2020_diy$B5_R1F=as.factor(sakernas2020_diy$B5_R1F)
sakernas2020_diy$B5_R6=as.factor(sakernas2020_diy$B5_R6)
sakernas2020_diy$B5_R7A=as.factor(sakernas2020_diy$B5_R7A)
sakernas2020_diy$B5_R7B=as.factor(sakernas2020_diy$B5_R7B)
sakernas2020_diy$B5_R9=as.factor(sakernas2020_diy$B5_R9)
sakernas2020_diy$B5_R10=as.factor(sakernas2020_diy$B5_R10)
sakernas2020_diy$B5_R12A=as.factor(sakernas2020_diy$B5_R12A)
sakernas2020_diy$B5_R12B=as.factor(sakernas2020_diy$B5_R12B)
sakernas2020_diy$B5_R13A=as.factor(sakernas2020_diy$B5_R13A)
sakernas2020_diy$B5_R13B=as.factor(sakernas2020_diy$B5_R13B)
sakernas2020_diy$B5_R17A=as.factor(sakernas2020_diy$B5_R17A)
sakernas2020_diy$B5_R17B=as.factor(sakernas2020_diy$B5_R17B)
sakernas2020_diy$B5_R21_KJI=as.factor(sakernas2020_diy$B5_R21_KJI)
sakernas2020_diy$B5_R21_KBJ=as.factor(sakernas2020_diy$B5_R21_KBJ)
sakernas2020_diy$B5_R22A=as.factor(sakernas2020_diy$B5_R22A)
sakernas2020_diy$B5_R24B=as.factor(sakernas2020_diy$B5_R24B)
sakernas2020_diy$B5_R24C1=as.factor(sakernas2020_diy$B5_R24C1)
sakernas2020_diy$B5_R24C2=as.factor(sakernas2020_diy$B5_R24C2)
sakernas2020_diy$B5_R24D=as.factor(sakernas2020_diy$B5_R24D)
sakernas2020_diy$B5_R25A1=as.factor(sakernas2020_diy$B5_R25A1)
sakernas2020_diy$B5_R25A2=as.factor(sakernas2020_diy$B5_R25A2)
sakernas2020_diy$B5_R25A3=as.factor(sakernas2020_diy$B5_R25A3)
sakernas2020_diy$B5_R25B=as.factor(sakernas2020_diy$B5_R25B)
sakernas2020_diy$B5_R25C1=as.factor(sakernas2020_diy$B5_R25C1)
sakernas2020_diy$B5_R25C2=as.factor(sakernas2020_diy$B5_R25C2)
sakernas2020_diy$B5_R25C3=as.factor(sakernas2020_diy$B5_R25C3)
sakernas2020_diy$B5_R25C4=as.factor(sakernas2020_diy$B5_R25C4)
sakernas2020_diy$B5_R25C5=as.factor(sakernas2020_diy$B5_R25C5)
sakernas2020_diy$B5_R26=as.factor(sakernas2020_diy$B5_R26)
sakernas2020_diy$B5_R27=as.factor(sakernas2020_diy$B5_R27)
sakernas2020_diy$B5_R29=as.factor(sakernas2020_diy$B5_R29)
sakernas2020_diy$B5_R30A=as.factor(sakernas2020_diy$B5_R30A)
sakernas2020_diy$B5_R30B=as.factor(sakernas2020_diy$B5_R30B)
sakernas2020_diy$B5_R30C=as.factor(sakernas2020_diy$B5_R30C)
sakernas2020_diy$B5_R30D=as.factor(sakernas2020_diy$B5_R30D)
sakernas2020_diy$B5_R30E=as.factor(sakernas2020_diy$B5_R30E)
sakernas2020_diy$B5_R30F=as.factor(sakernas2020_diy$B5_R30F)
sakernas2020_diy$B5_R31=as.factor(sakernas2020_diy$B5_R31)
sakernas2020_diy$B5_R34=as.factor(sakernas2020_diy$B5_R34)
sakernas2020_diy$B5_R36E=as.factor(sakernas2020_diy$B5_R36E)
sakernas2020_diy$B5_R47=as.factor(sakernas2020_diy$B5_R47)
sakernas2020_diy$B5_R48=as.factor(sakernas2020_diy$B5_R48)

##6. Membuat Variabel Jenis Kegiatan Seminggu yang Lalu

sakernas2020_diy$jk=ifelse(sakernas2020_diy$B5_R5A1 == "1" | sakernas2020_diy$B5_R6=="1", 1, ifelse(sakernas2020_diy$B5_R5A1=="2" & sakernas2020_diy$B5_R6=="2" & sakernas2020_diy$B5_R12A=="1" |sakernas2020_diy$B5_R5A1=="2" & sakernas2020_diy$B5_R6=="2" & sakernas2020_diy$B5_R12A=="2" & sakernas2020_diy$B5_R12B=="1" | sakernas2020_diy$B5_R5A1=="2" & sakernas2020_diy$B5_R6=="2" & sakernas2020_diy$B5_R12A=="2" & sakernas2020_diy$B5_R12B=="2" & between(sakernas2020_diy$B5_R17A, 0, 4), 2, ifelse(sakernas2020_diy$B5_R5A1=="2" & sakernas2020_diy$B5_R5B=="2" & sakernas2020_diy$B5_R6=="2" & sakernas2020_diy$B5_R12A=="2" & sakernas2020_diy$B5_R12B=="2" & sakernas2020_diy$B5_R17A=="4", 4, ifelse(sakernas2020_diy$B5_R5A1=="2" & sakernas2020_diy$B5_R5B=="3" & sakernas2020_diy$B5_R6=="2" & sakernas2020_diy$B5_R12A=="2" & sakernas2020_diy$B5_R12B=="2" & sakernas2020_diy$B5_R17A=="4", 5, ifelse(sakernas2020_diy$B5_R5A1=="2" & sakernas2020_diy$B5_R5B=="4" & sakernas2020_diy$B5_R6=="2" & sakernas2020_diy$B5_R12A=="2" & sakernas2020_diy$B5_R12B=="2" & sakernas2020_diy$B5_R17A=="4", 6, 0)))))

sakernas2019_diy$jk=ifelse(sakernas2019_diy$B5_R5A1 == "1" | sakernas2019_diy$B5_R6=="1", 1, ifelse(sakernas2019_diy$B5_R5A1=="2" & sakernas2019_diy$B5_R6=="2" & sakernas2019_diy$B5_R12A=="1" |sakernas2019_diy$B5_R5A1=="2" & sakernas2019_diy$B5_R6=="2" & sakernas2019_diy$B5_R12A=="2" & sakernas2019_diy$B5_R12B=="1" | sakernas2019_diy$B5_R5A1=="2" & sakernas2019_diy$B5_R6=="2" & sakernas2019_diy$B5_R12A=="2" & sakernas2019_diy$B5_R12B=="2" & between(sakernas2019_diy$B5_R17A, 0, 4), 2, ifelse(sakernas2019_diy$B5_R5A1=="2" & sakernas2019_diy$B5_R5B=="2" & sakernas2019_diy$B5_R6=="2" & sakernas2019_diy$B5_R12A=="2" & sakernas2019_diy$B5_R12B=="2" & sakernas2019_diy$B5_R17A=="4", 4, ifelse(sakernas2019_diy$B5_R5A1=="2" & sakernas2019_diy$B5_R5B=="3" & sakernas2019_diy$B5_R6=="2" & sakernas2019_diy$B5_R12A=="2" & sakernas2019_diy$B5_R12B=="2" & sakernas2019_diy$B5_R17A=="4", 5, ifelse(sakernas2019_diy$B5_R5A1=="2" & sakernas2019_diy$B5_R5B=="4" & sakernas2019_diy$B5_R6=="2" & sakernas2019_diy$B5_R12A=="2" & sakernas2019_diy$B5_R12B=="2" & sakernas2019_diy$B5_R17A=="4", 6, 0)))))

table(sakernas2020_diy$jk)
table(sakernas2019_diy$jk)
sakernas2020_diy$jk=as.factor(sakernas2020_diy$jk)
sakernas2019_diy$jk=as.factor(sakernas2019_diy$jk)
## 
##    1    2    4    5    6 
## 1628   51  258  347   93 
## 
##    1    2    4    5    6 
## 6610  207  834 1434  329

##7. Identifikasi Sampel yang Diobservasi di Sakernas 2020 dan Sakernas 2019

df_intersect2019 <- sakernas2019_diy[(sakernas2019_diy$id_unik %in% sakernas2020_diy$id_unik), ]
df_intersect2020 <- sakernas2020_diy[(sakernas2020_diy$id_unik %in% sakernas2019_diy$id_unik), ]
dim(df_intersect2020)
## [1] 1501  106

##8. Identifikasi Sampel yang Diobservasi di Sakernas 2020 saja dan Sakernas 2019 saja

df_predict <- sakernas2019_diy[!(sakernas2019_diy$id_unik %in% sakernas2020_diy$id_unik), ]
df_test <- sakernas2020_diy[!(sakernas2020_diy$id_unik %in% sakernas2019_diy$id_unik), ]
dim(df_predict) #Diobservasi di Sakernas 2019 saja
dim(df_test) #Diobservasi di Sakernas 2019 saja
## [1] 7913  103
## [1] 876 106

##9. Merge Sampel yang Diobservasi di Sakernas 2020 dan Sakernas 2019

sak = merge(x= df_intersect2019, y =df_intersect2020, by = "id_unik")
dim(sak)

set.seed(1)
Train <- createDataPartition(sak$B5_R12A.x, p=0.8, list=FALSE)
training <- sak[Train, ]
testing <- sak[-Train, ]
## [1] 1501  208

##10. Mengubah Nama Variabel Supaya dapat Diolah di Pemodelan

df_predict$B2_R1.x=df_predict$B2_R1
df_predict$B2_R2.x=df_predict$B2_R2
df_predict$B4_K3.x=df_predict$B4_K3
df_predict$B4_K6.x=df_predict$B4_K6
df_predict$B4_K8.x=df_predict$B4_K8
df_predict$B4_K9.x=df_predict$B4_K9
df_predict$B4_K10.x=df_predict$B4_K10
df_predict$B5_R4A.x=df_predict$B5_R4A
df_predict$B5_R4B.x=df_predict$B5_R4B
df_predict$B5_R4C.x=df_predict$B5_R4C
df_predict$B5_R4D.x=df_predict$B5_R4D
df_predict$B5_R4E.x=df_predict$B5_R4E
df_predict$B5_R5A1.x=df_predict$B5_R5A1
df_predict$B5_R5A2.x=df_predict$B5_R5A2
df_predict$B5_R5A3.x=df_predict$B5_R5A3
df_predict$B5_R5A4.x=df_predict$B5_R5A4
df_predict$B5_R5B.x=df_predict$B5_R5B
df_predict$B5_R6.x=df_predict$B5_R6
df_predict$B5_R12A.x=df_predict$B5_R12A
df_predict$B5_R12B.x=df_predict$B5_R12B
df_predict$B5_R17A.x=df_predict$B5_R17A
df_predict$B5_R20_KAT.x=df_predict$B5_R20_KAT
df_predict$jk.x=df_predict$jk
df_predict$jkeg.x=df_predict$jkeg

df_predict$B5_R24A.x=df_predict$B5_R24A
df_predict$B5_R28A1.x=df_predict$B5_R28A1
df_predict$B5_R28B1.x=df_predict$B5_R28B1
df_predict$B5_R28B2.x=df_predict$B5_R28B2
df_predict$B5_R28C1.x=df_predict$B5_R28C1
df_predict$B5_R28C2.x=df_predict$B5_R28C2
df_predict$FINAL_WEIG.x=df_predict$FINAL_WEIG

##11. Setting Desain Survei

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~psu.y+ssu.y, strata=~strata.y, weights=~FINAL_WEIG.y, data = training)

##12. Pemodelan Variabel Bekerja Minimal 1 Jam Tanpa Terputus Seminggu yang Lalu

fit.logit6 <- svyglm(B5_R5A1.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                     +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                     +B5_R4D.x+B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x
                     +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x,
                     design=des,family=binomial)
summary(fit.logit6)

predict = predict(fit.logit6, newdata = testing, type = "response")

predict <- cut(predict, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
log_conf <- confusionMatrix(predict, testing$B5_R5A1.y)
log_conf

B5_R5A1 = predict(fit.logit6, newdata = df_predict, type = "response")
B5_R5A1 = as.data.frame(B5_R5A1)
B5_R5A1 = B5_R5A1$response
df_predict['B5_R5A1.y'] <- cut(B5_R5A1, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(df_predict$B5_R5A1.y)
summary(df_predict$B5_R5A1.x)
## 
## Call:
## svyglm(formula = B5_R5A1.y ~ B2_R1.x + B2_R2.x + B4_K3.x + B4_K6.x + 
##     B4_K8.x + B4_K9.x + B4_K10.x + B5_R4A.x + B5_R4B.x + B5_R4C.x + 
##     B5_R4D.x + B5_R4E.x + B5_R5A1.x + B5_R5A2.x + B5_R5A3.x + 
##     B5_R5A4.x + B5_R5B.x + B5_R20_KAT.x, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu.y + ssu.y, strata = ~strata.y, weights = ~FINAL_WEIG.y, 
##     data = training)
## 
## Coefficients:
##                     Estimate    Std. Error t value             Pr(>|t|)    
## (Intercept)      1.576679724   1.566320151   1.007             0.326769    
## B2_R1.x          0.115662007   0.203145120   0.569             0.575784    
## B2_R2.x         -0.301365195   0.182855079  -1.648             0.115768    
## B4_K3.x          0.231261430   0.069235923   3.340             0.003439 ** 
## B4_K6.x2         0.289793431   0.221268792   1.310             0.205917    
## B4_K8.x          0.012268954   0.008502926   1.443             0.165330    
## B4_K9.x2        -0.081281964   1.101536208  -0.074             0.941949    
## B4_K9.x3        -1.194954395   0.579298336  -2.063             0.053075 .  
## B4_K10.x2       -0.036138486   0.442830691  -0.082             0.935812    
## B4_K10.x3       -0.625789847   0.633214025  -0.988             0.335437    
## B4_K10.x4       -0.589954903   0.547919066  -1.077             0.295088    
## B5_R4A.x2       -0.818732173   0.497397817  -1.646             0.116199    
## B5_R4A.x3       13.964839386   1.212612130  11.516   0.0000000005173919 ***
## B5_R4B.x5        0.000002265   0.710880344   0.000             0.999997    
## B5_R4B.x6        2.265728577   1.364626406   1.660             0.113262    
## B5_R4C.x2        1.631253609   0.674967984   2.417             0.025884 *  
## B5_R4C.x3       15.739005707   1.241864974  12.674   0.0000000001024353 ***
## B5_R4D.x5       14.120168676   0.753867882  18.730   0.0000000000001046 ***
## B5_R4D.x6        0.667324555   1.492176269   0.447             0.659776    
## B5_R4E.x2        1.167460001   0.752860882   1.551             0.137471    
## B5_R4E.x3       -0.874596869   1.124801362  -0.778             0.446405    
## B5_R5A1.x2      -0.993629606   0.641183145  -1.550             0.137715    
## B5_R5A2.x4      -0.373478162   1.164985508  -0.321             0.752023    
## B5_R5A3.x2      -0.492286449   0.416000034  -1.183             0.251254    
## B5_R5A4.x4      -0.015694166   0.287585830  -0.055             0.957049    
## B5_R5B.x2        2.244643929   0.836125491   2.685             0.014669 *  
## B5_R5B.x3        1.734484610   0.293912726   5.901   0.0000110774392183 ***
## B5_R5B.x4        1.466172482   0.635133990   2.308             0.032387 *  
## B5_R20_KAT.x1   -3.393921028   0.644077188  -5.269   0.0000437082271855 ***
## B5_R20_KAT.x2  -17.358608347   0.800006492 -21.698   0.0000000000000072 ***
## B5_R20_KAT.x3   -2.733042507   0.716317588  -3.815             0.001168 ** 
## B5_R20_KAT.x4  -18.128030929   1.218858054 -14.873   0.0000000000063917 ***
## B5_R20_KAT.x5  -17.281268426   1.221168485 -14.151   0.0000000000152611 ***
## B5_R20_KAT.x6   -2.653975279   0.798271296  -3.325             0.003562 ** 
## B5_R20_KAT.x7   -2.652145116   0.714836134  -3.710             0.001485 ** 
## B5_R20_KAT.x8   -2.133059124   0.756786262  -2.819             0.010970 *  
## B5_R20_KAT.x9   -3.881251764   0.779526525  -4.979   0.0000833205769088 ***
## B5_R20_KAT.x10  -2.701630560   1.172336956  -2.304             0.032651 *  
## B5_R20_KAT.x11  -2.611079591   0.908371361  -2.874             0.009708 ** 
## B5_R20_KAT.x12   0.239340573   1.259984548   0.190             0.851359    
## B5_R20_KAT.x13 -18.821876263   1.070214211 -17.587   0.0000000000003251 ***
## B5_R20_KAT.x14  -4.217814555   1.233929857  -3.418             0.002883 ** 
## B5_R20_KAT.x15  -3.986642881   0.918101676  -4.342             0.000351 ***
## B5_R20_KAT.x16 -18.147612325   0.691822650 -26.232 < 0.0000000000000002 ***
## B5_R20_KAT.x17  -3.938405487   0.786775950  -5.006   0.0000784852775388 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9582358)
## 
## Number of Fisher Scoring iterations: 16
## 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1 198  23
##          2  14  64
##                                            
##                Accuracy : 0.8763           
##                  95% CI : (0.8335, 0.9114) 
##     No Information Rate : 0.709            
##     P-Value [Acc > NIR] : 0.000000000004647
##                                            
##                   Kappa : 0.6907           
##                                            
##  Mcnemar's Test P-Value : 0.1884           
##                                            
##             Sensitivity : 0.9340           
##             Specificity : 0.7356           
##          Pos Pred Value : 0.8959           
##          Neg Pred Value : 0.8205           
##              Prevalence : 0.7090           
##          Detection Rate : 0.6622           
##    Detection Prevalence : 0.7391           
##       Balanced Accuracy : 0.8348           
##                                            
##        'Positive' Class : 1                
##                                            
##    1    2 
## 5441 2472 
##    1    2 
## 5375 2538
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##13. Pemodelan Variabel Kegiatan dengan Waktu Terbanyak Selama Seminggu yang Lalu

fit.logit7 <- svyglm(B5_R5B.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                     +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                     +B5_R4D.x+B5_R4E.x+B5_R5A2.x+B5_R5A3.x
                     +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x+B5_R5A1.y+B5_R5A1.x,
                     design=des,family=binomial)
summary(fit.logit7)

predict = predict(fit.logit7, newdata = testing, type = "response")

predict <- cut(predict, breaks = c(0, 0.25, 0.5, 0.75, 1), labels = c(1, 2, 3, 4), right = TRUE)
log_conf <- confusionMatrix(predict, testing$B5_R5B.y)
log_conf

B5_R5B = predict(fit.logit7, newdata = df_predict, type = "response")
B5_R5B = as.data.frame(B5_R5B)
B5_R5B = B5_R5B$response
df_predict['B5_R5B.y'] <- cut(B5_R5B, breaks = c(0, 0.25, 0.5, 0.75, 1), labels = c(1, 2, 3, 4), right = TRUE)
summary(df_predict$B5_R5B.y)
summary(df_predict$B5_R5B.x)
## 
## Call:
## svyglm(formula = B5_R5B.y ~ B2_R1.x + B2_R2.x + B4_K3.x + B4_K6.x + 
##     B4_K8.x + B4_K9.x + B4_K10.x + B5_R4A.x + B5_R4B.x + B5_R4C.x + 
##     B5_R4D.x + B5_R4E.x + B5_R5A2.x + B5_R5A3.x + B5_R5A4.x + 
##     B5_R5B.x + B5_R20_KAT.x + B5_R5A1.y + B5_R5A1.x, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu.y + ssu.y, strata = ~strata.y, weights = ~FINAL_WEIG.y, 
##     data = training)
## 
## Coefficients:
##                 Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)     23.42932    2.20145  10.643  0.00000000339605962 ***
## B2_R1.x         -0.36745    0.33192  -1.107             0.282857    
## B2_R2.x          0.29967    0.35943   0.834             0.415352    
## B4_K3.x          0.12348    0.12206   1.012             0.325153    
## B4_K6.x2         0.30816    0.29392   1.048             0.308309    
## B4_K8.x          0.01238    0.01680   0.736             0.470932    
## B4_K9.x2       -23.38619    1.34541 -17.382  0.00000000000106891 ***
## B4_K9.x3         1.54299    1.00845   1.530             0.143387    
## B4_K10.x2        0.91546    0.72842   1.257             0.224902    
## B4_K10.x3        0.67594    1.28151   0.527             0.604317    
## B4_K10.x4        1.09324    0.77020   1.419             0.172860    
## B5_R4A.x2        0.46648    0.52404   0.890             0.385125    
## B5_R4A.x3      -22.28674    2.24666  -9.920  0.00000001010557071 ***
## B5_R4B.x5      -16.16098    0.87755 -18.416  0.00000000000039825 ***
## B5_R4B.x6       -9.91775    2.41287  -4.110             0.000657 ***
## B5_R4C.x2      -12.89852    1.00766 -12.801  0.00000000017722028 ***
## B5_R4C.x3       -5.67939    2.49482  -2.276             0.035265 *  
## B5_R4D.x5        2.83309    1.72630   1.641             0.118126    
## B5_R4D.x6      -11.26317    2.88884  -3.899             0.001052 ** 
## B5_R4E.x2      -15.02835    0.89840 -16.728  0.00000000000205220 ***
## B5_R4E.x3      -19.09168    1.29191 -14.778  0.00000000001654144 ***
## B5_R5A2.x4     -29.18260    1.23976 -23.539  0.00000000000000569 ***
## B5_R5A3.x2      -0.24319    0.66255  -0.367             0.717855    
## B5_R5A4.x4       0.78214    0.55366   1.413             0.174806    
## B5_R5B.x2        0.66084    1.20273   0.549             0.589450    
## B5_R5B.x3        2.63726    0.47953   5.500  0.00003189723722048 ***
## B5_R5B.x4        1.94533    0.58775   3.310             0.003896 ** 
## B5_R20_KAT.x1   -0.85936    1.22360  -0.702             0.491465    
## B5_R20_KAT.x2  -19.47853    1.23231 -15.806  0.00000000000534988 ***
## B5_R20_KAT.x3   -0.17139    1.13704  -0.151             0.881865    
## B5_R20_KAT.x4  -18.94247    1.74644 -10.846  0.00000000252244444 ***
## B5_R20_KAT.x5  -19.61910    1.53016 -12.822  0.00000000017253413 ***
## B5_R20_KAT.x6   -1.13800    1.27040  -0.896             0.382193    
## B5_R20_KAT.x7   -1.03955    1.39246  -0.747             0.464973    
## B5_R20_KAT.x8  -22.19883    0.92707 -23.945  0.00000000000000422 ***
## B5_R20_KAT.x9   -1.65414    1.13119  -1.462             0.160900    
## B5_R20_KAT.x10 -22.42211    1.53813 -14.578  0.00000000002077011 ***
## B5_R20_KAT.x11 -20.31590    1.30562 -15.560  0.00000000000696761 ***
## B5_R20_KAT.x12 -31.30079    2.90617 -10.770  0.00000000281649184 ***
## B5_R20_KAT.x13 -21.77935    1.66680 -13.067  0.00000000012664187 ***
## B5_R20_KAT.x14  -0.47491    1.29680  -0.366             0.718472    
## B5_R20_KAT.x15  -2.28098    1.42553  -1.600             0.126983    
## B5_R20_KAT.x16 -19.91729    1.12673 -17.677  0.00000000000080228 ***
## B5_R20_KAT.x17  -0.36300    1.16595  -0.311             0.759121    
## B5_R5A1.y2      62.00238    2.12713  29.148 < 0.0000000000000002 ***
## B5_R5A1.x2      -1.36789    1.10298  -1.240             0.230835    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.5695314)
## 
## Number of Fisher Scoring iterations: 21
## 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2   3   4
##          1 188   0   5   0
##          2  12   1   3   0
##          3   2   0   1   0
##          4   0  28  38  21
## 
## Overall Statistics
##                                           
##                Accuracy : 0.7057          
##                  95% CI : (0.6505, 0.7567)
##     No Information Rate : 0.6756          
##     P-Value [Acc > NIR] : 0.1467          
##                                           
##                   Kappa : 0.4516          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: 1 Class: 2 Class: 3 Class: 4
## Sensitivity            0.9307 0.034483 0.021277  1.00000
## Specificity            0.9485 0.944444 0.992063  0.76259
## Pos Pred Value         0.9741 0.062500 0.333333  0.24138
## Neg Pred Value         0.8679 0.901060 0.844595  1.00000
## Prevalence             0.6756 0.096990 0.157191  0.07023
## Detection Rate         0.6288 0.003344 0.003344  0.07023
## Detection Prevalence   0.6455 0.053512 0.010033  0.29097
## Balanced Accuracy      0.9396 0.489464 0.506670  0.88129
##    1    2    3    4 
## 5058  307   69 2479 
##    1    2    3    4 
## 4739  782 1985  407
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("4", "3", "2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##14. Pemodelan Variabel Bekerja Minimal 1 Jam Tanpa Terputus dalam Seminggu tetapi Saat Ini Sementara Tidak Bekerja

fit.logit5 <- svyglm(B5_R6.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                     +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                     +B5_R4D.x+B5_R4E.x+B5_R5A2.x+B5_R5A3.x
                     +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x+B5_R6.x,
                     design=des,family=binomial)
summary(fit.logit5)

predict = predict(fit.logit5, newdata = testing, type = "response")

predict <- cut(predict, breaks = c(0, 0.3333, 0.6666, 1), labels = c(0, 1, 2), right = TRUE)
log_conf <- confusionMatrix(predict, testing$B5_R6.y)
log_conf

B5_R6 = predict(fit.logit5, newdata = df_predict, type = "response")
B5_R6 = as.data.frame(B5_R6)
B5_R6 = B5_R6$response
df_predict['B5_R6.y'] <- cut(B5_R6, breaks = c(0, 0.3333, 0.6666, 1), labels = c(0, 1, 2), right = TRUE)
summary(df_predict$B5_R6.y)
summary(df_predict$B5_R6.x)
## 
## Call:
## svyglm(formula = B5_R6.y ~ B2_R1.x + B2_R2.x + B4_K3.x + B4_K6.x + 
##     B4_K8.x + B4_K9.x + B4_K10.x + B5_R4A.x + B5_R4B.x + B5_R4C.x + 
##     B5_R4D.x + B5_R4E.x + B5_R5A2.x + B5_R5A3.x + B5_R5A4.x + 
##     B5_R5B.x + B5_R20_KAT.x + B5_R6.x, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu.y + ssu.y, strata = ~strata.y, weights = ~FINAL_WEIG.y, 
##     data = training)
## 
## Coefficients:
##                  Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)     -0.178187   1.682428  -0.106              0.91682    
## B2_R1.x          0.110702   0.206580   0.536              0.59860    
## B2_R2.x         -0.291318   0.184488  -1.579              0.13173    
## B4_K3.x          0.236857   0.072245   3.279              0.00417 ** 
## B4_K6.x2         0.287637   0.222127   1.295              0.21171    
## B4_K8.x          0.014075   0.008542   1.648              0.11678    
## B4_K9.x2        -0.030391   1.121471  -0.027              0.97868    
## B4_K9.x3        -1.149767   0.596695  -1.927              0.06993 .  
## B4_K10.x2       -0.106387   0.439060  -0.242              0.81128    
## B4_K10.x3       -0.661164   0.620704  -1.065              0.30087    
## B4_K10.x4       -0.619510   0.541902  -1.143              0.26793    
## B5_R4A.x2       -0.832964   0.503951  -1.653              0.11569    
## B5_R4A.x3       13.947686   1.224408  11.391    0.000000001161093 ***
## B5_R4B.x5       -0.049033   0.720191  -0.068              0.94647    
## B5_R4B.x6        2.195894   1.374839   1.597              0.12763    
## B5_R4C.x2        1.592814   0.681349   2.338              0.03115 *  
## B5_R4C.x3       15.680841   1.243578  12.609    0.000000000226394 ***
## B5_R4D.x5       14.136699   0.760055  18.600    0.000000000000336 ***
## B5_R4D.x6        0.676075   1.489663   0.454              0.65537    
## B5_R4E.x2        1.209949   0.747730   1.618              0.12302    
## B5_R4E.x3       -0.977262   1.147564  -0.852              0.40563    
## B5_R5A2.x4      -0.374244   1.180020  -0.317              0.75478    
## B5_R5A3.x2      -0.481435   0.417146  -1.154              0.26355    
## B5_R5A4.x4       0.006523   0.290883   0.022              0.98236    
## B5_R5B.x2        2.179771   0.843134   2.585              0.01867 *  
## B5_R5B.x3        1.739528   0.291498   5.968    0.000012045243506 ***
## B5_R5B.x4        1.467604   0.636057   2.307              0.03313 *  
## B5_R20_KAT.x1   -1.780212   0.685954  -2.595              0.01828 *  
## B5_R20_KAT.x2  -15.682806   0.848424 -18.485    0.000000000000374 ***
## B5_R20_KAT.x3   -1.062644   0.778606  -1.365              0.18913    
## B5_R20_KAT.x4  -16.492967   1.236348 -13.340    0.000000000090162 ***
## B5_R20_KAT.x5  -15.621556   1.258897 -12.409    0.000000000293696 ***
## B5_R20_KAT.x6   -0.992555   0.775647  -1.280              0.21692    
## B5_R20_KAT.x7   -1.042617   0.753271  -1.384              0.18324    
## B5_R20_KAT.x8   -0.330004   0.897178  -0.368              0.71729    
## B5_R20_KAT.x9   -2.110609   0.968865  -2.178              0.04291 *  
## B5_R20_KAT.x10  -1.075833   1.212516  -0.887              0.38663    
## B5_R20_KAT.x11  -0.952972   0.871833  -1.093              0.28878    
## B5_R20_KAT.x12   1.871161   1.465843   1.277              0.21800    
## B5_R20_KAT.x13 -17.112756   1.105256 -15.483    0.000000000007576 ***
## B5_R20_KAT.x14  -2.517442   1.284465  -1.960              0.06567 .  
## B5_R20_KAT.x15  -2.462408   0.928195  -2.653              0.01619 *  
## B5_R20_KAT.x16 -16.361735   0.828911 -19.739    0.000000000000121 ***
## B5_R20_KAT.x17  -2.216041   0.727662  -3.045              0.00696 ** 
## B5_R6.x1       -16.457042   0.462164 -35.609 < 0.0000000000000002 ***
## B5_R6.x2         0.659328   0.712363   0.926              0.36692    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9405483)
## 
## Number of Fisher Scoring iterations: 16
## 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1   2
##          0 189   4  15
##          1  11   2   7
##          2  12   1  58
## 
## Overall Statistics
##                                           
##                Accuracy : 0.8328          
##                  95% CI : (0.7856, 0.8733)
##     No Information Rate : 0.709           
##     P-Value [Acc > NIR] : 0.0000005053    
##                                           
##                   Kappa : 0.6214          
##                                           
##  Mcnemar's Test P-Value : 0.04399         
## 
## Statistics by Class:
## 
##                      Class: 0 Class: 1 Class: 2
## Sensitivity            0.8915 0.285714   0.7250
## Specificity            0.7816 0.938356   0.9406
## Pos Pred Value         0.9087 0.100000   0.8169
## Neg Pred Value         0.7473 0.982079   0.9035
## Prevalence             0.7090 0.023411   0.2676
## Detection Rate         0.6321 0.006689   0.1940
## Detection Prevalence   0.6957 0.066890   0.2375
## Balanced Accuracy      0.8366 0.612035   0.8328
##    0    1    2 
## 5124  518 2271 
##    0    1    2 
## 5375  157 2381
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1", "0"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##15. Pemodelan Variabel Aktif Mencari Pekerjaan Seminggu yang Lalu

fit.logit1 <- svyglm(B5_R12A.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                     +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                     +B5_R4D.x+B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x
                     +B5_R5A4.x+B5_R5B.x+B5_R12A.x+B5_R20_KAT.x+B5_R5A1.y+B5_R5B.y,
                     design=des,family=binomial)
summary(fit.logit1)

predict = predict(fit.logit1, newdata = testing, type = "response")

predict <- factor(ifelse(predict > 0.5, "2","1"))
log_conf <- confusionMatrix(predict, testing$B5_R12A.y, positive = "2")
log_conf

B5_R12A = predict(fit.logit1, newdata = df_predict, type = "response")
B5_R12A = as.data.frame(B5_R12A)
B5_R12A = B5_R12A$response
df_predict['B5_R12A.y'] <- factor(ifelse(B5_R12A > 0.5, "2","1"))
summary(df_predict$B5_R12A.y)
summary(df_predict$B5_R12A.x)
## 
## Call:
## svyglm(formula = B5_R12A.y ~ B2_R1.x + B2_R2.x + B4_K3.x + B4_K6.x + 
##     B4_K8.x + B4_K9.x + B4_K10.x + B5_R4A.x + B5_R4B.x + B5_R4C.x + 
##     B5_R4D.x + B5_R4E.x + B5_R5A1.x + B5_R5A2.x + B5_R5A3.x + 
##     B5_R5A4.x + B5_R5B.x + B5_R12A.x + B5_R20_KAT.x + B5_R5A1.y + 
##     B5_R5B.y, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu.y + ssu.y, strata = ~strata.y, weights = ~FINAL_WEIG.y, 
##     data = training)
## 
## Coefficients:
##                 Estimate Std. Error t value          Pr(>|t|)    
## (Intercept)    -18.71471    3.29673  -5.677 0.000057151461614 ***
## B2_R1.x         -0.03415    0.59180  -0.058           0.95480    
## B2_R2.x          0.19846    0.67186   0.295           0.77203    
## B4_K3.x          0.23453    0.12806   1.831           0.08841 .  
## B4_K6.x2         0.18631    0.66096   0.282           0.78217    
## B4_K8.x          0.06968    0.02577   2.704           0.01711 *  
## B4_K9.x2         1.55424    1.74242   0.892           0.38747    
## B4_K9.x3       -19.01386    1.54526 -12.305 0.000000006775027 ***
## B4_K10.x2        2.11050    0.73683   2.864           0.01249 *  
## B4_K10.x3       19.34853    1.11595  17.338 0.000000000073831 ***
## B4_K10.x4       18.11882    1.83792   9.858 0.000000111436339 ***
## B5_R4A.x2       -1.66850    0.73417  -2.273           0.03934 *  
## B5_R4A.x3        2.59078    1.83360   1.413           0.17952    
## B5_R4B.x5       15.88181    1.31856  12.045 0.000000008915781 ***
## B5_R4B.x6       -4.78051    2.14719  -2.226           0.04292 *  
## B5_R4C.x2       17.27382    0.97605  17.698 0.000000000056043 ***
## B5_R4C.x3       18.29902    1.42101  12.877 0.000000003761404 ***
## B5_R4D.x5        0.11879    1.47121   0.081           0.93679    
## B5_R4D.x6        0.17834    1.57985   0.113           0.91172    
## B5_R4E.x2       15.35583    1.24065  12.377 0.000000006280237 ***
## B5_R4E.x3       18.38214    1.27606  14.405 0.000000000868069 ***
## B5_R5A1.x2      15.36659    1.51901  10.116 0.000000080947010 ***
## B5_R5A2.x4      19.93713    1.31802  15.127 0.000000000455385 ***
## B5_R5A3.x2       0.01391    0.72609   0.019           0.98498    
## B5_R5A4.x4       0.21077    0.49618   0.425           0.67745    
## B5_R5B.x2        3.73577    1.46038   2.558           0.02276 *  
## B5_R5B.x3        1.78136    0.81658   2.181           0.04669 *  
## B5_R5B.x4        0.04877    1.21460   0.040           0.96854    
## B5_R12A.x2       0.13032    0.74477   0.175           0.86361    
## B5_R20_KAT.x1   33.17442    1.37933  24.051 0.000000000000871 ***
## B5_R20_KAT.x2   33.41862    1.60398  20.835 0.000000000006173 ***
## B5_R20_KAT.x3   17.88054    1.44712  12.356 0.000000006421497 ***
## B5_R20_KAT.x4   -6.89634    1.68230  -4.099           0.00108 ** 
## B5_R20_KAT.x5   32.67077    1.66505  19.622 0.000000000013930 ***
## B5_R20_KAT.x6   15.76498    1.37649  11.453 0.000000016982758 ***
## B5_R20_KAT.x7   18.44226    1.66205  11.096 0.000000025386188 ***
## B5_R20_KAT.x8   16.25088    1.44716  11.230 0.000000021817713 ***
## B5_R20_KAT.x9   34.46976    1.33995  25.725 0.000000000000346 ***
## B5_R20_KAT.x10  16.97669    1.49067  11.389 0.000000018246951 ***
## B5_R20_KAT.x11  16.45471    1.72788   9.523 0.000000170526920 ***
## B5_R20_KAT.x12  32.29017    2.03719  15.850 0.000000000244857 ***
## B5_R20_KAT.x13  15.27022    2.10307   7.261 0.000004152935378 ***
## B5_R20_KAT.x14  15.37999    1.11828  13.753 0.000000001595192 ***
## B5_R20_KAT.x15  15.98219    1.71375   9.326 0.000000220173786 ***
## B5_R20_KAT.x16  16.61525    1.75576   9.463 0.000000184180801 ***
## B5_R20_KAT.x17  17.16553    1.48524  11.557 0.000000015128758 ***
## B5_R5A1.y2       0.87078    0.97316   0.895           0.38602    
## B5_R5B.y2       -0.92220    1.18703  -0.777           0.45015    
## B5_R5B.y3       -3.11938    0.84457  -3.693           0.00241 ** 
## B5_R5B.y4       -4.46382    1.34798  -3.311           0.00514 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.5262438)
## 
## Number of Fisher Scoring iterations: 20
## 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1   1   1
##          2   6 291
##                                           
##                Accuracy : 0.9766          
##                  95% CI : (0.9524, 0.9905)
##     No Information Rate : 0.9766          
##     P-Value [Acc > NIR] : 0.5987          
##                                           
##                   Kappa : 0.214           
##                                           
##  Mcnemar's Test P-Value : 0.1306          
##                                           
##             Sensitivity : 0.9966          
##             Specificity : 0.1429          
##          Pos Pred Value : 0.9798          
##          Neg Pred Value : 0.5000          
##              Prevalence : 0.9766          
##          Detection Rate : 0.9732          
##    Detection Prevalence : 0.9933          
##       Balanced Accuracy : 0.5697          
##                                           
##        'Positive' Class : 2               
##                                           
##    1    2 
##  166 7747 
##    1    2 
##  235 7678
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##16. Pemodelan Variabel Aktif Mempersiapkan Usaha Semingu yang Lalu

fit.logit2<-svyglm(B5_R12B.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                   +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                   +B5_R4D.x+B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x
                   +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x+B5_R12B.x+B5_R5A1.y+B5_R5B.y,
                   design=des,family=binomial)
summary(fit.logit2)

predict = predict(fit.logit2, newdata = testing, type = "response")
summary(predict)

predict <- factor(ifelse(predict > 0.5, "2","1"))
log_conf <- confusionMatrix(predict, testing$B5_R12B.y, positive = "2")
log_conf

B5_R12B = predict(fit.logit2, newdata = df_predict, type = "response")
B5_R12B = as.data.frame(B5_R12B)
B5_R12B = B5_R12B$response
df_predict['B5_R12B.y'] <- factor(ifelse(B5_R12B > 0.5, "2","1"))
summary(df_predict$B5_R12B.y)
summary(df_predict$B5_R12B.x)
## 
## Call:
## svyglm(formula = B5_R12B.y ~ B2_R1.x + B2_R2.x + B4_K3.x + B4_K6.x + 
##     B4_K8.x + B4_K9.x + B4_K10.x + B5_R4A.x + B5_R4B.x + B5_R4C.x + 
##     B5_R4D.x + B5_R4E.x + B5_R5A1.x + B5_R5A2.x + B5_R5A3.x + 
##     B5_R5A4.x + B5_R5B.x + B5_R20_KAT.x + B5_R12B.x + B5_R5A1.y + 
##     B5_R5B.y, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu.y + ssu.y, strata = ~strata.y, weights = ~FINAL_WEIG.y, 
##     data = training)
## 
## Coefficients:
##                  Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)     169.62294    8.11966  20.890 0.00000000000595338 ***
## B2_R1.x          -2.51915    1.03191  -2.441            0.028520 *  
## B2_R2.x          -0.09588    0.92840  -0.103            0.919211    
## B4_K3.x           8.11481    2.54758   3.185            0.006611 ** 
## B4_K6.x2        -24.29313    2.81332  -8.635 0.00000055669830113 ***
## B4_K8.x           0.10410    0.05224   1.993            0.066150 .  
## B4_K9.x2        -40.11529    5.86952  -6.835 0.00000813346023951 ***
## B4_K9.x3        -40.42488    3.34231 -12.095 0.00000000845340265 ***
## B4_K10.x2       -32.87033    1.92014 -17.119 0.00000000008758027 ***
## B4_K10.x3       -14.72036    2.08555  -7.058 0.00000569891232253 ***
## B4_K10.x4         8.25676    3.65209   2.261            0.040223 *  
## B5_R4A.x2        12.79040    2.26916   5.637 0.00006135104655639 ***
## B5_R4A.x3       -76.76414    4.21434 -18.215 0.00000000003803728 ***
## B5_R4B.x5        17.99581    2.02063   8.906 0.00000038450166088 ***
## B5_R4B.x6       -91.29760    4.77092 -19.136 0.00000000001954723 ***
## B5_R4C.x2        15.40751    2.43970   6.315 0.00001905748828536 ***
## B5_R4C.x3         7.70741    4.01331   1.920            0.075405 .  
## B5_R4D.x5       -22.18439    6.39505  -3.469            0.003760 ** 
## B5_R4D.x6        44.09515    4.28284  10.296 0.00000006502796010 ***
## B5_R4E.x2        13.26197    1.53441   8.643 0.00000055058881632 ***
## B5_R4E.x3       -17.36052   10.58926  -1.639            0.123389    
## B5_R5A1.x2      -45.58190    1.96750 -23.167 0.00000000000145325 ***
## B5_R5A2.x4      -26.80521    2.84331  -9.427 0.00000019291431254 ***
## B5_R5A3.x2      -21.45654    2.86103  -7.500 0.00000288062820813 ***
## B5_R5A4.x4       20.30496    0.85303  23.803 0.00000000000100345 ***
## B5_R5B.x2       -10.31166    2.85953  -3.606            0.002864 ** 
## B5_R5B.x3        -1.99587    1.40638  -1.419            0.177735    
## B5_R5B.x4        23.46446    1.95967  11.974 0.00000000962043546 ***
## B5_R20_KAT.x1   -30.89092    2.08802 -14.794 0.00000000061084089 ***
## B5_R20_KAT.x2   -69.74085    3.93649 -17.716 0.00000000005525202 ***
## B5_R20_KAT.x3    14.83223    1.64648   9.008 0.00000033501164430 ***
## B5_R20_KAT.x4  -143.64355    6.81143 -21.089 0.00000000000523611 ***
## B5_R20_KAT.x5   -89.16604    2.53361 -35.193 0.00000000000000459 ***
## B5_R20_KAT.x6   -29.64093    2.51730 -11.775 0.00000001192234368 ***
## B5_R20_KAT.x7   -27.27166    2.40817 -11.325 0.00000001960095768 ***
## B5_R20_KAT.x8   -53.59961    1.96581 -27.266 0.00000000000015566 ***
## B5_R20_KAT.x9   -30.82733    2.03964 -15.114 0.00000000046036666 ***
## B5_R20_KAT.x10  -96.01467    5.24787 -18.296 0.00000000003583198 ***
## B5_R20_KAT.x11  -73.42817    2.79827 -26.241 0.00000000000026366 ***
## B5_R20_KAT.x12  -72.74025    3.29529 -22.074 0.00000000000281155 ***
## B5_R20_KAT.x13  -74.09373    4.15793 -17.820 0.00000000005109493 ***
## B5_R20_KAT.x14  -54.06549    5.16252 -10.473 0.00000005256167559 ***
## B5_R20_KAT.x15  -40.29851    2.65491 -15.179 0.00000000043502741 ***
## B5_R20_KAT.x16  -50.61957    9.51046  -5.323            0.000108 ***
## B5_R20_KAT.x17  -42.88653    2.87335 -14.926 0.00000000054354029 ***
## B5_R12B.x2       48.94153    3.13478  15.612 0.00000000029939035 ***
## B5_R5A1.y2      -52.01227    3.21801 -16.163 0.00000000018878272 ***
## B5_R5B.y2       -12.60246    5.90887  -2.133            0.051127 .  
## B5_R5B.y3         2.85165    4.12323   0.692            0.500494    
## B5_R5B.y4       -21.41217    5.33215  -4.016            0.001276 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.01304022)
## 
## Number of Fisher Scoring iterations: 25
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   0.982   1.000   1.000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1   0   6
##          2   3 290
##                                           
##                Accuracy : 0.9699          
##                  95% CI : (0.9436, 0.9861)
##     No Information Rate : 0.99            
##     P-Value [Acc > NIR] : 0.999           
##                                           
##                   Kappa : -0.0136         
##                                           
##  Mcnemar's Test P-Value : 0.505           
##                                           
##             Sensitivity : 0.9797          
##             Specificity : 0.0000          
##          Pos Pred Value : 0.9898          
##          Neg Pred Value : 0.0000          
##              Prevalence : 0.9900          
##          Detection Rate : 0.9699          
##    Detection Prevalence : 0.9799          
##       Balanced Accuracy : 0.4899          
##                                           
##        'Positive' Class : 2               
##                                           
##    1    2 
##  597 7316 
##    1    2 
##   43 7870
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##17. Pemodelan Variabel Alasan Tidak Aktif Mencari Pekerjaan dan Tidak Aktif Mempersiapkan Usaha Semingu yang Lalu

fit.logit3<-svyglm(B5_R17A.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                   +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                   +B5_R4D.x+B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x
                   +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x+B5_R17A.x
                   +B5_R12A.y+B5_R12B.y, design=des,family=binomial)
summary(fit.logit3)

predict = predict(fit.logit3, newdata = testing, type = "response")
summary(predict)

predict <- cut(predict, breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1), labels = c(0, 1, 2, 3, 4), right = TRUE)
log_conf <- confusionMatrix(predict, testing$B5_R17A.y)
log_conf 

B5_R17A = predict(fit.logit3, newdata = df_predict, type = "response")
df_predict['B5_R17A.y'] <- cut(B5_R17A, breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1), labels = c(0, 1, 2, 3, 4), right = TRUE)
summary(df_predict$B5_R17A.y)
summary(df_predict$B5_R17A.x)
## 
## Call:
## svyglm(formula = B5_R17A.y ~ B2_R1.x + B2_R2.x + B4_K3.x + B4_K6.x + 
##     B4_K8.x + B4_K9.x + B4_K10.x + B5_R4A.x + B5_R4B.x + B5_R4C.x + 
##     B5_R4D.x + B5_R4E.x + B5_R5A1.x + B5_R5A2.x + B5_R5A3.x + 
##     B5_R5A4.x + B5_R5B.x + B5_R20_KAT.x + B5_R17A.x + B5_R12A.y + 
##     B5_R12B.y, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu.y + ssu.y, strata = ~strata.y, weights = ~FINAL_WEIG.y, 
##     data = training)
## 
## Coefficients:
##                  Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)    -78.592983   0.928638 -84.633 <0.0000000000000002 ***
## B2_R1.x         -0.005396   0.087904  -0.061               0.952    
## B2_R2.x         -0.003431   0.091497  -0.038               0.971    
## B4_K3.x          0.002755   0.018793   0.147               0.886    
## B4_K6.x2        -0.049238   0.071840  -0.685               0.505    
## B4_K8.x         -0.001373   0.003414  -0.402               0.694    
## B4_K9.x2        -0.057033   0.435933  -0.131               0.898    
## B4_K9.x3        -0.019198   0.216053  -0.089               0.931    
## B4_K10.x2        0.034907   0.149699   0.233               0.819    
## B4_K10.x3        0.002171   0.250281   0.009               0.993    
## B4_K10.x4        0.049367   0.229162   0.215               0.833    
## B5_R4A.x2       -0.009845   0.225055  -0.044               0.966    
## B5_R4A.x3       -0.011345   0.914176  -0.012               0.990    
## B5_R4B.x5        0.007140   0.290512   0.025               0.981    
## B5_R4B.x6       -0.075707   0.467693  -0.162               0.874    
## B5_R4C.x2        0.006637   0.282636   0.023               0.982    
## B5_R4C.x3       -0.058607   0.796807  -0.074               0.942    
## B5_R4D.x5        0.030100   0.475954   0.063               0.951    
## B5_R4D.x6        0.028851   1.157075   0.025               0.980    
## B5_R4E.x2        0.025054   0.423022   0.059               0.954    
## B5_R4E.x3       -0.131790   0.361014  -0.365               0.721    
## B5_R5A1.x2      -0.073286   0.218514  -0.335               0.743    
## B5_R5A2.x4      -0.030073   0.436523  -0.069               0.946    
## B5_R5A3.x2      -0.027618   0.149512  -0.185               0.856    
## B5_R5A4.x4       0.011620   0.198523   0.059               0.954    
## B5_R5B.x2       -0.027897   0.317052  -0.088               0.931    
## B5_R5B.x3        0.003230   0.180616   0.018               0.986    
## B5_R5B.x4        0.008245   0.235928   0.035               0.973    
## B5_R20_KAT.x1   -0.124928   0.209222  -0.597               0.561    
## B5_R20_KAT.x2   -0.112191   0.540023  -0.208               0.839    
## B5_R20_KAT.x3   -0.085838   0.236920  -0.362               0.723    
## B5_R20_KAT.x4   -0.264746   1.012077  -0.262               0.798    
## B5_R20_KAT.x5   -0.056371   0.972931  -0.058               0.955    
## B5_R20_KAT.x6   -0.111736   0.219556  -0.509               0.619    
## B5_R20_KAT.x7   -0.085962   0.207744  -0.414               0.686    
## B5_R20_KAT.x8   -0.088303   0.272642  -0.324               0.751    
## B5_R20_KAT.x9   -0.063123   0.246384  -0.256               0.802    
## B5_R20_KAT.x10  -0.125410   0.396579  -0.316               0.757    
## B5_R20_KAT.x11  -0.085488   0.354624  -0.241               0.813    
## B5_R20_KAT.x12  -0.050996   0.786104  -0.065               0.949    
## B5_R20_KAT.x13  -0.135043   0.391772  -0.345               0.736    
## B5_R20_KAT.x14  -0.102958   0.228511  -0.451               0.660    
## B5_R20_KAT.x15  -0.081037   0.237712  -0.341               0.739    
## B5_R20_KAT.x16  -0.046225   0.389280  -0.119               0.907    
## B5_R20_KAT.x17  -0.059695   0.247575  -0.241               0.813    
## B5_R17A.x1      -0.061919   0.997907  -0.062               0.951    
## B5_R17A.x2      -0.098091   0.656535  -0.149               0.884    
## B5_R17A.x3      -0.020288   0.766225  -0.026               0.979    
## B5_R17A.x4      -0.050574   0.208115  -0.243               0.812    
## B5_R12A.y2      53.124422   0.216742 245.104 <0.0000000000000002 ***
## B5_R12B.y2      52.320100   0.568543  92.025 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.0000000000003942534)
## 
## Number of Fisher Scoring iterations: 25
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  1.0000  1.0000  0.9666  1.0000  1.0000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1   2   3   4
##          0  10   0   0   0   0
##          1   0   0   0   0   0
##          2   0   0   0   0   0
##          3   0   0   0   0   0
##          4   0   0   0   1 288
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9967          
##                  95% CI : (0.9815, 0.9999)
##     No Information Rate : 0.9632          
##     P-Value [Acc > NIR] : 0.0001686       
##                                           
##                   Kappa : 0.9507          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: 0 Class: 1 Class: 2 Class: 3 Class: 4
## Sensitivity           1.00000       NA       NA 0.000000   1.0000
## Specificity           1.00000        1        1 1.000000   0.9091
## Pos Pred Value        1.00000       NA       NA      NaN   0.9965
## Neg Pred Value        1.00000       NA       NA 0.996656   1.0000
## Prevalence            0.03344        0        0 0.003344   0.9632
## Detection Rate        0.03344        0        0 0.000000   0.9632
## Detection Prevalence  0.03344        0        0 0.000000   0.9666
## Balanced Accuracy     1.00000       NA       NA 0.500000   0.9545
##    0    1    2    3    4 
##  743    0    0    0 7170 
##    0    1    2    3    4 
##  263    6    4   17 7623
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("4", "3", "2", "1", "0"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##18. Pemodelan Variabel Jenis Kegiatan Seminggu yang Lalu

fit.logit4 <- svyglm(jk.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                   +B4_K9.x+B4_K10.x+jk.x+B5_R12A.y+B5_R12B.y,
                     design=des,family=binomial)
summary(fit.logit4)

predict = predict(fit.logit4, newdata = testing, type = "response")

predict <- cut(predict, breaks = c(0, 0.20, 0.40, 0.60, 0.80, 1), labels = c(1, 2, 4, 5, 6), right = TRUE)
log_conf <- confusionMatrix(predict, testing$jk.y)
log_conf

jk = predict(fit.logit4, newdata = df_predict, type = "response")
jk = as.data.frame(jk)
jk = jk$response
df_predict['jk.y'] <- cut(jk, breaks = c(0, 0.20, 0.40, 0.60, 0.80, 1), labels = c(1, 2, 4, 5, 6), right = TRUE)
summary(df_predict$jk.y)
summary(df_predict$jk.x)
## 
## Call:
## svyglm(formula = jk.y ~ B2_R1.x + B2_R2.x + B4_K3.x + B4_K6.x + 
##     B4_K8.x + B4_K9.x + B4_K10.x + jk.x + B5_R12A.y + B5_R12B.y, 
##     design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu.y + ssu.y, strata = ~strata.y, weights = ~FINAL_WEIG.y, 
##     data = training)
## 
## Coefficients:
##               Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  15.326883   1.483482  10.332    0.000000000000111 ***
## B2_R1.x       0.258119   0.257708   1.002             0.321669    
## B2_R2.x      -0.436769   0.243137  -1.796             0.078861 .  
## B4_K3.x       0.176258   0.072793   2.421             0.019376 *  
## B4_K6.x2      0.558374   0.236992   2.356             0.022690 *  
## B4_K8.x       0.009507   0.009521   0.999             0.323138    
## B4_K9.x2      0.378984   0.799873   0.474             0.637832    
## B4_K9.x3     -1.327759   0.642481  -2.067             0.044305 *  
## B4_K10.x2    -0.160093   0.421645  -0.380             0.705889    
## B4_K10.x3    -0.923976   0.868838  -1.063             0.293006    
## B4_K10.x4    -0.566032   0.602007  -0.940             0.351901    
## jk.x2         1.812475   0.488692   3.709             0.000549 ***
## jk.x4         3.796383   0.640315   5.929    0.000000344750304 ***
## jk.x5         3.970057   0.261283  15.194 < 0.0000000000000002 ***
## jk.x6         4.482830   0.728994   6.149    0.000000159894893 ***
## B5_R12A.y2   -1.616982   0.530593  -3.048             0.003780 ** 
## B5_R12B.y2  -15.527451   0.944064 -16.447 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.036735)
## 
## Number of Fisher Scoring iterations: 14
## 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2   4   5   6
##          1 187   1   1  11   5
##          2  16   1   2   0   0
##          4   3   0   1   0   0
##          5   2   1   0   6   3
##          6  11   0  24  17   7
## 
## Overall Statistics
##                                           
##                Accuracy : 0.6756          
##                  95% CI : (0.6193, 0.7283)
##     No Information Rate : 0.7324          
##     P-Value [Acc > NIR] : 0.9877          
##                                           
##                   Kappa : 0.3262          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: 1 Class: 2 Class: 4 Class: 5 Class: 6
## Sensitivity            0.8539 0.333333 0.035714  0.17647  0.46667
## Specificity            0.7750 0.939189 0.988930  0.97736  0.81690
## Pos Pred Value         0.9122 0.052632 0.250000  0.50000  0.11864
## Neg Pred Value         0.6596 0.992857 0.908475  0.90244  0.96667
## Prevalence             0.7324 0.010033 0.093645  0.11371  0.05017
## Detection Rate         0.6254 0.003344 0.003344  0.02007  0.02341
## Detection Prevalence   0.6856 0.063545 0.013378  0.04013  0.19732
## Balanced Accuracy      0.8144 0.636261 0.512322  0.57691  0.64178
##    1    2    4    5    6 
## 5246  267   45  336 2019 
##    1    2    4    5    6 
## 5532  174  688 1225  294
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("6","5", "4", "2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##19. Filter Status Berusaha Sendiri/Pekerja Bebas dan Setting Desain Survei

sakernas2020_diy.28b=filter(df_intersect2020, B5_R24A %in% c("1", "5", "6"))
df_predict.28b=filter(df_predict, B5_R24A %in% c("1", "5", "6"))
df1=select(df_predict.28b, id_unik, FINAL_WEIG)
sak.28b = merge(x=df_intersect2019 , y =sakernas2020_diy.28b, by = "id_unik")
dim(sak.28b)
## [1] 419 208

##20. Pemodelan Variabel Hari Kerja Sebulan Status Berusaha Sendiri/Pekerja Bebas

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 84, savePredictions = TRUE)

mod_fit1 <- train(B5_R28A1.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                  +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                  +B5_R4D.x+B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x
                  +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x+B5_R28A1.x+B5_R24A.x,
                  data=sak.28b, method="knn", trControl = ctrl, 
                  tuneLength = 10, weights =FINAL_WEIG.y)

View(mod_fit1$pred)
print(mod_fit1)

df_predict.28b['B5_R28A1.y'] = predict(mod_fit1, newdata = df_predict.28b)
summary(df_predict.28b$B5_R28A1.y)
summary(sakernas2020_diy.28b$B5_R28A1)
## k-Nearest Neighbors 
## 
## 419 samples
##  20 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (84 fold, repeated 1 times) 
## Summary of sample sizes: 414, 413, 413, 413, 414, 414, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  10.92512  0.3862427  9.075605
##    7  10.80849  0.3865846  9.220774
##    9  10.91681  0.3835839  9.397788
##   11  10.91877  0.3883956  9.499416
##   13  11.06436  0.3833920  9.722389
##   15  11.05829  0.3881514  9.732989
##   17  11.08920  0.3867155  9.824306
##   19  11.08754  0.4003846  9.832504
##   21  11.12917  0.3973609  9.858167
##   23  11.12137  0.3975984  9.833281
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 7.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.8571 15.4286 19.6250 18.8979 22.5714 30.0000 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00    0.00   15.00   13.96   26.00   31.00

##21. Pemodelan Variabel Pendapatan Uang Sebulan Status Berusaha Sendiri/Pekerja Bebas

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 84, savePredictions = TRUE)

mod_fit1 <- train(B5_R28B1.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                  +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                  +B5_R4D.x+B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x
                  +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x+B5_R28B1.x+B5_R24A.x
                  +B5_R28A1.y,data=sak.28b, method="knn", 
                  trControl = ctrl, tuneLength = 10, weights =FINAL_WEIG.y)

View(mod_fit1$pred)
print(mod_fit1)

df_predict.28b['B5_R28B1.y'] = predict(mod_fit1, newdata = df_predict.28b)
summary(df_predict.28b$B5_R28B1.y)
summary(sakernas2020_diy.28b$B5_R28B1)
## k-Nearest Neighbors 
## 
## 419 samples
##  21 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (84 fold, repeated 1 times) 
## Summary of sample sizes: 414, 413, 414, 414, 415, 414, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE       Rsquared   MAE     
##    5  1017043.3  0.5577883  622246.3
##    7   946336.3  0.5736349  587217.7
##    9   914613.0  0.5644867  573839.6
##   11   907853.9  0.5708105  575816.8
##   13   889079.6  0.5799281  565002.1
##   15   854481.9  0.6064512  546121.3
##   17   849446.0  0.6068670  546391.6
##   19   848423.5  0.6176234  545731.1
##   21   840625.6  0.6279711  540012.8
##   23   836514.0  0.6251435  536773.9
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 23.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0  771902 1308485 1379441 1811111 2840870 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##        0        0   400000   859439  1200000 25000000

##22. Pemodelan Variabel Pendapatan Barang Sebulan Status Berusaha Sendiri/Pekerja Bebas

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 84, savePredictions = TRUE)

mod_fit1 <- train(B5_R28B2.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                  +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x
                  +B5_R4D.x+B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x
                  +B5_R5A4.x+B5_R5B.x+B5_R20_KAT.x+B5_R28B2.x+B5_R24A.x
                  +B5_R28A1.y, data=sak.28b, method="knn", 
                  trControl = ctrl, tuneLength = 1, weights =FINAL_WEIG.y)

View(mod_fit1$pred)
print(mod_fit1)

df_predict.28b['B5_R28B2.y'] = predict(mod_fit1, newdata = df_predict.28b)
summary(df_predict.28b$B5_R28B2.y)
summary(sakernas2020_diy.28b$B5_R28B2)
## k-Nearest Neighbors 
## 
## 419 samples
##  21 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (84 fold, repeated 1 times) 
## Summary of sample sizes: 414, 414, 414, 414, 414, 414, ... 
## Resampling results:
## 
##   RMSE      Rsquared   MAE     
##   112087.8  0.6174902  60389.04
## 
## Tuning parameter 'k' was held constant at a value of 5
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0   40000   79268   85600  720000 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0   40081       0 2900000

##23. Filter Status Buruh/Karyawan/Pegawai dan Setting Desain Survei

sakernas2020_diy.28c=filter(df_intersect2020, B5_R24A %in% c("4"))
#sakernas2019_diy.28c=filter(df_intersect2019, B5_R24A %in% c("4"))
df_predict.28c=filter(df_predict, B5_R24A %in% c("4"))
df2=select(df_predict.28c, id_unik)
sak.28c = merge(x=df_intersect2019 , y =sakernas2020_diy.28c, by = "id_unik")
dim(sak.28c)
## [1] 445 208

##24. Pemodelan Variabel Upah Uang Sebulan Status Buruh/Karyawan/Pegawai

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 89, savePredictions = TRUE)

mod_fit1 <- train(B5_R28C1.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x+B4_K9.x
                  +B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x+B5_R4D.x+B5_R4E.x
                  +B5_R5A1.x+B5_R5A2.x+B5_R5A3.x+B5_R5A4.x+B5_R5B.x
                  +B5_R20_KAT.x+B5_R28C1.x+B5_R24A.x,  
                  data=sak.28c, method="knn", trControl = ctrl, 
                  tuneLength = 10, weights =FINAL_WEIG.y)

print(mod_fit1)

df_predict.28c['B5_R28C1.y'] = predict(mod_fit1, newdata = df_predict.28c)
summary(df_predict.28c$B5_R28C1.y)
summary(sakernas2020_diy.28c$B5_R28C1)
## k-Nearest Neighbors 
## 
## 445 samples
##  20 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (89 fold, repeated 1 times) 
## Summary of sample sizes: 439, 441, 440, 440, 441, 439, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE       Rsquared   MAE     
##    5  1016105.2  0.7486570  722924.6
##    7  1000495.5  0.7639502  708938.7
##    9   995508.3  0.7578837  705954.4
##   11   979361.0  0.7648500  694318.1
##   13   972938.0  0.7737228  691621.7
##   15   958229.1  0.7854831  680514.3
##   17   959570.7  0.7751031  683902.0
##   19   961759.3  0.7728342  684414.7
##   21   958359.3  0.7721862  683676.3
##   23   960118.2  0.7717976  682593.5
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 15.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  568125 1311333 1774200 2317760 2411529 8340367 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##        0  1200000  1800000  2260857  2400000 20000000

##25. Pemodelan Variabel Upah Barang Sebulan Status Buruh/Karyawan/Pegawai

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 89, savePredictions = TRUE)

mod_fit1 <- train(B5_R28C2.y~B2_R1.x+B2_R2.x+B4_K3.x+B4_K6.x+B4_K8.x
                  +B4_K9.x+B4_K10.x+B5_R4A.x+B5_R4B.x+B5_R4C.x+B5_R4D.x
                  +B5_R4E.x+B5_R5A1.x+B5_R5A2.x+B5_R5A3.x+B5_R5A4.x
                  +B5_R5B.x+B5_R20_KAT.x+B5_R28C2.x+B5_R24A.x,  
                  data=sak.28c, method="knn", trControl = ctrl, 
                  tuneLength = 10, weights =FINAL_WEIG.y)

print(mod_fit1)

df_predict.28c['B5_R28C2.y'] = predict(mod_fit1, newdata = df_predict.28c)
summary(df_predict.28c$B5_R28C2.y)
summary(sakernas2020_diy.28c$B5_R28C2)
## k-Nearest Neighbors 
## 
## 445 samples
##  20 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (89 fold, repeated 1 times) 
## Summary of sample sizes: 440, 440, 440, 440, 440, 440, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE      
##    5  148803.5  0.3424534  101049.67
##    7  145800.1  0.3774275  100560.07
##    9  144826.0  0.3451199  101497.34
##   11  141626.1  0.3498559   99569.18
##   13  141126.7  0.3581952   99632.56
##   15  141907.4  0.3572102  101389.93
##   17  141799.9  0.3463531  102370.27
##   19  140517.6  0.3717658  102322.84
##   21  139857.7  0.3462524  102042.52
##   23  139913.2  0.3485657  102476.49
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 21.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0   34091   52083   65678   82083  293333 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0   67369       0 1000000

#Tujuan 2

Memprediksi nilai variabel yang tidak diobservasi di Susenas menggunakan nilai variabel yang diobservasi di Sakernas dan sebaliknya menggunakan Mass Imputation.

##1. Import Library

library(survey)
library(readxl)
library(caret)
library(dplyr)
library(stringr)

##2. Load Data

sakernas_diy <- read_excel("sakernas_new2.xlsx")
sus1 <- read_excel("susenas 2020.xlsx", sheet = "RT")
sus2 <- read_excel("susenas 2020.xlsx", sheet = "Indo")
susenas_diy = merge(x = sus1, y = sus2, all.y = TRUE)

##3. Membuat Variabel PSU, SSU, Strata

sakernas_diy['KODE_KAB']=str_pad(sakernas_diy$KODE_KAB, width = 2, side = 'left', pad = '0')
sakernas_diy['NO_DSRT']=str_pad(sakernas_diy$NO_DSRT, width = 2, side = 'left', pad = '0')

susenas_diy['R102']=str_pad(susenas_diy$R102, width = 2, side = 'left', pad = '0')

sakernas_diy["psu"]=paste(sakernas_diy$KODE_PROV, sakernas_diy$KODE_KAB, sakernas_diy$nks_ok, sep = "")
sakernas_diy["ssu"]=paste(sakernas_diy$KODE_PROV, sakernas_diy$KODE_KAB, sakernas_diy$nks_ok, sakernas_diy$NO_DSRT, sep = "")
sakernas_diy["strata"]=paste(sakernas_diy$KODE_PROV, sakernas_diy$KODE_KAB, sakernas_diy$KLASIFIKAS, sep = "")
susenas_diy['KODE_KAB']=str_pad(susenas_diy$KODE_KAB, width = 2, side = 'left', pad = '0')

##4. Mengubah Tipe Data Variabel Sakernas

sakernas_diy$B4_K3=as.factor(sakernas_diy$B4_K3)
sakernas_diy$B4_K6=as.factor(sakernas_diy$B4_K6)
sakernas_diy$B4_K9=as.factor(sakernas_diy$B4_K9)
sakernas_diy$B4_K10=as.factor(sakernas_diy$B4_K10)
sakernas_diy$B5_R1A=as.factor(sakernas_diy$B5_R1A)
sakernas_diy$B5_R4A=as.factor(sakernas_diy$B5_R4A)
sakernas_diy$B5_R4B=as.factor(sakernas_diy$B5_R4B)
sakernas_diy$B5_R4C=as.factor(sakernas_diy$B5_R4C)
sakernas_diy$B5_R4D=as.factor(sakernas_diy$B5_R4D)
sakernas_diy$B5_R4E=as.factor(sakernas_diy$B5_R4E)
sakernas_diy$B5_R5A1=as.factor(sakernas_diy$B5_R5A1)
sakernas_diy$B5_R5A2=as.factor(sakernas_diy$B5_R5A2)
sakernas_diy$B5_R5A3=as.factor(sakernas_diy$B5_R5A3)
sakernas_diy$B5_R5A4=as.factor(sakernas_diy$B5_R5A4)
sakernas_diy$B5_R5B=as.factor(sakernas_diy$B5_R5B)
sakernas_diy$B5_R20_KAT=as.factor(sakernas_diy$B5_R20_KAT)
sakernas_diy$B5_R24A=as.factor(sakernas_diy$B5_R24A)
sakernas_diy$B5_R6=as.factor(sakernas_diy$B5_R6)
sakernas_diy$B5_R12A=as.factor(sakernas_diy$B5_R12A)
sakernas_diy$B5_R12B=as.factor(sakernas_diy$B5_R12B)
sakernas_diy$B5_R17A=as.factor(sakernas_diy$B5_R17A)
sakernas_diy$KLASIFIKAS=as.factor(sakernas_diy$KLASIFIKAS)
sakernas_diy$KODE_KAB=as.factor(sakernas_diy$KODE_KAB)
sakernas_diy$jk=as.factor(sakernas_diy$jk)

##5. Mengubah Tipe Data Variabel Susenas

susenas_diy$B2_R1=susenas_diy$R301
susenas_diy$B2_R2=susenas_diy$R303
susenas_diy$B4_K3=as.factor(susenas_diy$R403)
susenas_diy$B4_K6=as.factor(susenas_diy$R405)
susenas_diy$B4_K9=as.factor(susenas_diy$R612)
susenas_diy$B4_K8=susenas_diy$R407
susenas_diy$B4_K10=as.factor(susenas_diy$R404)
susenas_diy$B5_R1A=as.factor(susenas_diy$R615)
susenas_diy$B5_R4A=as.factor(susenas_diy$R1002)
susenas_diy$B5_R4B=as.factor(susenas_diy$R1003)
susenas_diy$B5_R4C=as.factor(susenas_diy$R1004)
susenas_diy$B5_R4D=as.factor(susenas_diy$R1005)
susenas_diy$B5_R4E=as.factor(susenas_diy$R1008)
susenas_diy$B5_R5A1=as.factor(susenas_diy$R702_A)
susenas_diy$B5_R5A2=as.factor(susenas_diy$R702_B)
susenas_diy$B5_R5A3=as.factor(susenas_diy$R702_C)
susenas_diy$B5_R5A4=as.factor(susenas_diy$R702_D)
susenas_diy$B5_R5B=as.factor(susenas_diy$R703)
susenas_diy$B5_R6=as.factor(susenas_diy$R704)
susenas_diy$B5_R24A=as.factor(susenas_diy$R706)
susenas_diy$B5_R20_KAT=as.factor(susenas_diy$R705)
susenas_diy$KLASIFIKAS=as.factor(susenas_diy$R105)
susenas_diy$KODE_KAB=as.factor(susenas_diy$R102)
susenas_diy$STATUS=as.factor(susenas_diy$STATUS)

##6. Filter Sampel Susenas yang Termasuk Penduduk Usia Kerja

susenas_diy.15 <- subset(susenas_diy, R407>14)

##7. Split Data dan Setting Desain Survei

Train <- createDataPartition(sakernas_diy$B5_R12A, p=0.8, list=FALSE)
training <- sakernas_diy[Train, ]
testing <- sakernas_diy[-Train, ]

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = training)

##8. Pemodelan Variabel Aktif Mencari Pekerjaan Seminggu yang Lalu

fit.logit1 <- svyglm(B5_R12A~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9
                     +B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                     +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B+B5_R1A
                     +B5_R24A+KLASIFIKAS+KODE_KAB,design=des,family=binomial)
summary(fit.logit1)

predict = predict(fit.logit1, newdata = testing, type = "response")

predict <- factor(ifelse(predict > 0.5, "2","1"))
log_conf <- confusionMatrix(predict, testing$B5_R12A, positive = "2")
log_conf

B5_R12A.p = predict(fit.logit1, newdata = sakernas_diy, type = "response")
sakernas_diy['B5_R12A.p'] <- factor(ifelse(B5_R12A.p > 0.5, "2","1"))

B5_R12A = predict(fit.logit1, newdata = susenas_diy.15, type = "response")
susenas_diy.15['B5_R12A'] <- factor(ifelse(B5_R12A > 0.5, "2","1"))
summary(susenas_diy.15$B5_R12A)
## 
## Call:
## svyglm(formula = B5_R12A ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B + B5_R1A + 
##     B5_R24A + KLASIFIKAS + KODE_KAB, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu + ssu, strata = ~strata, weights = ~w.adj2_20, 
##     data = training)
## 
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  17.93289    1.66984  10.739 < 0.0000000000000002 ***
## B2_R1        -0.16055    0.27651  -0.581             0.561925    
## B2_R2         0.26697    0.30959   0.862             0.389180    
## B4_K32        1.31135    0.51352   2.554             0.011143 *  
## B4_K33       -0.13509    0.42412  -0.319             0.750298    
## B4_K34       -1.74049    0.69125  -2.518             0.012314 *  
## B4_K35        0.21677    0.75548   0.287             0.774354    
## B4_K36       -0.02615    0.90124  -0.029             0.976870    
## B4_K37       14.23099    0.71960  19.776 < 0.0000000000000002 ***
## B4_K38       16.22786    0.65699  24.700 < 0.0000000000000002 ***
## B4_K39        0.76792    0.64733   1.186             0.236427    
## B4_K62        0.46826    0.25065   1.868             0.062689 .  
## B4_K8         0.04276    0.01125   3.802             0.000173 ***
## B4_K92        3.32376    1.04078   3.194             0.001551 ** 
## B4_K93        0.88947    0.34010   2.615             0.009354 ** 
## B4_K102       1.31395    0.41965   3.131             0.001909 ** 
## B4_K103       2.08722    1.07221   1.947             0.052488 .  
## B4_K104       2.04831    1.37075   1.494             0.136125    
## B5_R4A2      -1.58691    0.62081  -2.556             0.011064 *  
## B5_R4A3      14.80955    0.80997  18.284 < 0.0000000000000002 ***
## B5_R4B5      15.04364    0.66140  22.745 < 0.0000000000000002 ***
## B5_R4B6      10.07199    1.25061   8.054   0.0000000000000179 ***
## B5_R4C2      -0.82691    1.77467  -0.466             0.641579    
## B5_R4C3      15.84582    0.79699  19.882 < 0.0000000000000002 ***
## B5_R4D5      17.28543    1.64940  10.480 < 0.0000000000000002 ***
## B5_R4D6      15.28360    1.71175   8.929 < 0.0000000000000002 ***
## B5_R4E2      16.46550    0.66304  24.833 < 0.0000000000000002 ***
## B5_R4E3      15.99290    0.79134  20.210 < 0.0000000000000002 ***
## B5_R5A12     -0.56861    0.69083  -0.823             0.411094    
## B5_R5A24     -0.72406    1.16341  -0.622             0.534165    
## B5_R5A32     -0.63064    0.29297  -2.153             0.032130 *  
## B5_R5A44     -0.10694    0.29061  -0.368             0.713130    
## B5_R5B2      -0.44867    0.93610  -0.479             0.632064    
## B5_R5B3      -2.67000    0.68951  -3.872             0.000132 ***
## B5_R5B4      -1.09082    0.74268  -1.469             0.142921    
## B5_R1A10    -16.44633    0.34152 -48.157 < 0.0000000000000002 ***
## B5_R1A11    -15.78972    0.33032 -47.801 < 0.0000000000000002 ***
## B5_R1A12    -17.00643    0.97682 -17.410 < 0.0000000000000002 ***
## B5_R1A13    -15.88448    0.61394 -25.873 < 0.0000000000000002 ***
## B5_R1A14    -17.12267    0.43093 -39.734 < 0.0000000000000002 ***
## B5_R1A15    -17.20248    0.93729 -18.353 < 0.0000000000000002 ***
## B5_R1A16     -1.36021    0.71704  -1.897             0.058768 .  
## B5_R1A2      -0.20741    0.47791  -0.434             0.664592    
## B5_R1A3     -14.29585    2.07661  -6.884   0.0000000000328132 ***
## B5_R1A4     -15.65221    0.43504 -35.978 < 0.0000000000000002 ***
## B5_R1A5       1.71666    0.72038   2.383             0.017780 *  
## B5_R1A6      -2.01596    1.03652  -1.945             0.052697 .  
## B5_R1A7     -15.81669    0.42907 -36.862 < 0.0000000000000002 ***
## B5_R1A8     -16.69972    0.93021 -17.953 < 0.0000000000000002 ***
## B5_R1A9       1.73313    0.92997   1.864             0.063326 .  
## B5_R24A1     -0.19053    0.57374  -0.332             0.740058    
## B5_R24A2     -0.24732    0.81337  -0.304             0.761279    
## B5_R24A3      1.75343    1.13471   1.545             0.123312    
## B5_R24A4      0.17230    0.58878   0.293             0.769994    
## B5_R24A5     -1.28061    0.65340  -1.960             0.050908 .  
## B5_R24A6     15.72936    0.50888  30.910 < 0.0000000000000002 ***
## KLASIFIKAS2  -0.03092    0.50484  -0.061             0.951195    
## KODE_KAB02   -0.04911    0.49173  -0.100             0.920513    
## KODE_KAB03    0.28865    0.47007   0.614             0.539628    
## KODE_KAB04    0.33403    0.55614   0.601             0.548533    
## KODE_KAB71   -0.10208    0.53472  -0.191             0.848726    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9852)
## 
## Number of Fisher Scoring iterations: 20
## 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    1    2
##          1    1    1
##          2   25 2030
##                                           
##                Accuracy : 0.9874          
##                  95% CI : (0.9815, 0.9917)
##     No Information Rate : 0.9874          
##     P-Value [Acc > NIR] : 0.5519          
##                                           
##                   Kappa : 0.0697          
##                                           
##  Mcnemar's Test P-Value : 0.000006462     
##                                           
##             Sensitivity : 0.99951         
##             Specificity : 0.03846         
##          Pos Pred Value : 0.98783         
##          Neg Pred Value : 0.50000         
##              Prevalence : 0.98736         
##          Detection Rate : 0.98687         
##    Detection Prevalence : 0.99903         
##       Balanced Accuracy : 0.51898         
##                                           
##        'Positive' Class : 2               
##                                           
##    1    2 
##   40 9939
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##9. Pemodelan Variabel Aktif Mempersiapkan Usaha Seminggu yang Lalu

fit.logit2<-svyglm(B5_R12B~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9
                   +B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                   +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B+B5_R24A
                   +B5_R1A+KLASIFIKAS+KODE_KAB,design=des,family=binomial)
summary(fit.logit2)

predict = predict(fit.logit2, newdata = testing, type = "response")
summary(predict)

predict <- factor(ifelse(predict > 0.5, "2","1"))
log_conf <- confusionMatrix(predict, testing$B5_R12B, positive = "2")
log_conf

B5_R12B.p = predict(fit.logit1, newdata = sakernas_diy, type = "response")
sakernas_diy['B5_R12B.p'] <- factor(ifelse(B5_R12B.p > 0.5, "2","1"))

B5_R12B = predict(fit.logit2, newdata = susenas_diy.15, type = "response")
susenas_diy.15['B5_R12B'] <- factor(ifelse(B5_R12B > 0.5, "2","1"))
summary(susenas_diy.15$B5_R12B)
## 
## Call:
## svyglm(formula = B5_R12B ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B + B5_R24A + 
##     B5_R1A + KLASIFIKAS + KODE_KAB, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu + ssu, strata = ~strata, weights = ~w.adj2_20, 
##     data = training)
## 
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  10.23234    3.20228   3.195             0.001542 ** 
## B2_R1        -0.33011    0.44755  -0.738             0.461331    
## B2_R2        -0.02017    0.46402  -0.043             0.965364    
## B4_K32        3.57011    1.85923   1.920             0.055758 .  
## B4_K33        3.70750    2.38413   1.555             0.120958    
## B4_K34       19.45686    1.11607  17.433 < 0.0000000000000002 ***
## B4_K35        3.18345    2.59763   1.226             0.221318    
## B4_K36       19.30206    1.76369  10.944 < 0.0000000000000002 ***
## B4_K37       17.05535    2.08182   8.193  0.00000000000000698 ***
## B4_K38       20.67942    2.55946   8.080  0.00000000000001503 ***
## B4_K39        0.69513    2.30755   0.301             0.763435    
## B4_K62       -1.67868    2.02724  -0.828             0.408281    
## B4_K8         0.05713    0.02830   2.018             0.044416 *  
## B4_K92        0.72391    3.55797   0.203             0.838910    
## B4_K93      -16.35393    3.09188  -5.289  0.00000023379657001 ***
## B4_K102      -1.53806    1.58749  -0.969             0.333374    
## B4_K103      16.81401    1.27350  13.203 < 0.0000000000000002 ***
## B4_K104      16.22258    1.17701  13.783 < 0.0000000000000002 ***
## B5_R4A2      -3.13545    0.72707  -4.312  0.00002178744684861 ***
## B5_R4A3      -8.54614    1.51820  -5.629  0.00000004087561480 ***
## B5_R4B5      14.47382    0.83870  17.257 < 0.0000000000000002 ***
## B5_R4B6      -9.39342    1.63769  -5.736  0.00000002324820705 ***
## B5_R4C2      15.66195    0.77966  20.088 < 0.0000000000000002 ***
## B5_R4C3      15.68051    1.61354   9.718 < 0.0000000000000002 ***
## B5_R4D5      12.39044    2.01660   6.144  0.00000000248955611 ***
## B5_R4D6      13.27373    1.73167   7.665  0.00000000000023648 ***
## B5_R4E2      19.87304    2.25279   8.822 < 0.0000000000000002 ***
## B5_R4E3      -0.15689    1.14095  -0.138             0.890721    
## B5_R5A12      0.63727    1.47398   0.432             0.665792    
## B5_R5A24     16.11785    0.80149  20.110 < 0.0000000000000002 ***
## B5_R5A32      0.31702    0.88039   0.360             0.719026    
## B5_R5A44      0.09215    0.79646   0.116             0.907965    
## B5_R5B2      -1.18715    1.39506  -0.851             0.395451    
## B5_R5B3      -2.61833    1.49172  -1.755             0.080216 .  
## B5_R5B4       0.06488    1.68408   0.039             0.969292    
## B5_R24A1      3.82746    2.23499   1.713             0.087811 .  
## B5_R24A2      0.50941    0.88450   0.576             0.565085    
## B5_R24A3      0.37848    1.40222   0.270             0.787407    
## B5_R24A4      1.26685    1.04727   1.210             0.227334    
## B5_R24A5      0.27674    1.37252   0.202             0.840341    
## B5_R24A6     17.45604    0.90452  19.299 < 0.0000000000000002 ***
## B5_R1A10     -3.31336    2.57905  -1.285             0.199858    
## B5_R1A11     -3.07678    2.68039  -1.148             0.251908    
## B5_R1A12     -5.70728    2.92394  -1.952             0.051857 .  
## B5_R1A13     -3.98530    2.75045  -1.449             0.148368    
## B5_R1A14     -2.52701    2.55256  -0.990             0.322957    
## B5_R1A15     -4.35624    2.81305  -1.549             0.122512    
## B5_R1A16     13.79879    2.85556   4.832  0.00000213573141763 ***
## B5_R1A2      12.77348    3.05174   4.186  0.00003717772096481 ***
## B5_R1A3      -1.47111    3.96709  -0.371             0.711022    
## B5_R1A4      -3.33531    2.48308  -1.343             0.180194    
## B5_R1A5      14.67751    1.97044   7.449  0.00000000000096108 ***
## B5_R1A6      -6.42399    2.08438  -3.082             0.002243 ** 
## B5_R1A7      -3.40792    2.60259  -1.309             0.191367    
## B5_R1A8      15.17645    3.86302   3.929             0.000106 ***
## B5_R1A9      17.41068    4.31833   4.032  0.00006987980509906 ***
## KLASIFIKAS2  -0.53772    0.85937  -0.626             0.531970    
## KODE_KAB02   -1.31067    1.22913  -1.066             0.287108    
## KODE_KAB03   -0.43606    1.37520  -0.317             0.751390    
## KODE_KAB04   -2.20553    1.27088  -1.735             0.083666 .  
## KODE_KAB71   -1.73681    1.35977  -1.277             0.202467    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.5339679)
## 
## Number of Fisher Scoring iterations: 22
## 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.004794 0.999024 0.999880 0.996633 1.000000 1.000000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    1    2
##          1    0    3
##          2    5 2049
##                                           
##                Accuracy : 0.9961          
##                  95% CI : (0.9924, 0.9983)
##     No Information Rate : 0.9976          
##     P-Value [Acc > NIR] : 0.9321          
##                                           
##                   Kappa : -0.0018         
##                                           
##  Mcnemar's Test P-Value : 0.7237          
##                                           
##             Sensitivity : 0.9985          
##             Specificity : 0.0000          
##          Pos Pred Value : 0.9976          
##          Neg Pred Value : 0.0000          
##              Prevalence : 0.9976          
##          Detection Rate : 0.9961          
##    Detection Prevalence : 0.9985          
##       Balanced Accuracy : 0.4993          
##                                           
##        'Positive' Class : 2               
##                                           
##    1    2 
##   20 9959
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("4", "3", "2", "1", "0"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##10. Pemodelan Variabel Alasan Tidak Aktif Mencari Pekerjaan dan Tidak Aktif Mempersiapkan Usaha Seminggu yang Lalu

fit.logit3<-svyglm(B5_R17A~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10
                   +B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E+B5_R5A1+B5_R5A2
                   +B5_R5A3+B5_R5A4+B5_R5B+B5_R24A+B5_R12A+B5_R12B+B5_R1A
                   +KLASIFIKAS+KODE_KAB,design=des,family=binomial)
summary(fit.logit3)

predict = predict(fit.logit3, newdata = testing, type = "response")
summary(predict)

predict <- cut(predict, breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1), labels = c(0, 1, 2, 3, 4), right = TRUE)
log_conf <- confusionMatrix(predict, testing$B5_R17A)
log_conf 

B5_R17A.p = predict(fit.logit3, newdata = sakernas_diy, type = "response")
sakernas_diy['B5_R17A.p'] <- cut(B5_R17A.p, breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1), labels = c(0, 1, 2, 3, 4), right = TRUE)

B5_R17A = predict(fit.logit3, newdata = susenas_diy.15, type = "response")
susenas_diy.15['B5_R17A'] <- cut(B5_R17A, breaks = c(0, 0.2, 0.4, 0.6, 0.8, 1), labels = c(0, 1, 2, 3, 4), right = TRUE)
summary(susenas_diy.15$B5_R17A)
## 
## Call:
## svyglm(formula = B5_R17A ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B + B5_R24A + 
##     B5_R12A + B5_R12B + B5_R1A + KLASIFIKAS + KODE_KAB, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu + ssu, strata = ~strata, weights = ~w.adj2_20, 
##     data = training)
## 
## Coefficients:
##               Estimate Std. Error  t value             Pr(>|t|)    
## (Intercept) -79.416921   0.421614 -188.364 < 0.0000000000000002 ***
## B2_R1         0.012860   0.043775    0.294              0.76913    
## B2_R2        -0.020598   0.046934   -0.439              0.66106    
## B4_K32       -0.013252   0.039654   -0.334              0.73846    
## B4_K33        0.013515   0.063790    0.212              0.83236    
## B4_K34       -0.007904   0.250078   -0.032              0.97481    
## B4_K35        0.014444   0.075802    0.191              0.84901    
## B4_K36        0.028482   0.134965    0.211              0.83300    
## B4_K37        0.029088   0.084783    0.343              0.73177    
## B4_K38       -0.071295   0.306961   -0.232              0.81649    
## B4_K39        0.021516   0.098577    0.218              0.82737    
## B4_K62       -0.011118   0.038222   -0.291              0.77135    
## B4_K8        -0.002314   0.001859   -1.245              0.21426    
## B4_K92       -0.034889   0.190294   -0.183              0.85465    
## B4_K93       -0.002542   0.105654   -0.024              0.98082    
## B4_K102       0.032229   0.059412    0.542              0.58789    
## B4_K103       0.031815   0.098891    0.322              0.74789    
## B4_K104       0.031661   0.083676    0.378              0.70541    
## B5_R4A2       0.004718   0.093527    0.050              0.95980    
## B5_R4A3      -0.054589   0.223529   -0.244              0.80723    
## B5_R4B5       0.020757   0.090540    0.229              0.81883    
## B5_R4B6       0.001644   0.185501    0.009              0.99294    
## B5_R4C2      -0.005880   0.093459   -0.063              0.94988    
## B5_R4C3       0.020605   0.202431    0.102              0.91899    
## B5_R4D5       0.011557   0.144276    0.080              0.93621    
## B5_R4D6       0.042562   0.295422    0.144              0.88554    
## B5_R4E2      -0.002143   0.125918   -0.017              0.98643    
## B5_R4E3      -0.024376   0.204624   -0.119              0.90525    
## B5_R5A12     -0.018968   0.132586   -0.143              0.88634    
## B5_R5A24      0.017078   0.168512    0.101              0.91934    
## B5_R5A32      0.001301   0.064772    0.020              0.98398    
## B5_R5A44     -0.001018   0.066901   -0.015              0.98787    
## B5_R5B2      -0.002421   0.076462   -0.032              0.97477    
## B5_R5B3       0.043025   0.101667    0.423              0.67245    
## B5_R5B4      -0.003742   0.122226   -0.031              0.97560    
## B5_R24A1     -0.011683   0.092397   -0.126              0.89947    
## B5_R24A2     -0.020406   0.094704   -0.215              0.82955    
## B5_R24A3     -0.002942   0.113347   -0.026              0.97931    
## B5_R24A4     -0.011997   0.092503   -0.130              0.89689    
## B5_R24A5     -0.017874   0.102257   -0.175              0.86136    
## B5_R24A6     -0.036340   0.098814   -0.368              0.71331    
## B5_R12A2     53.167693   0.147546  360.347 < 0.0000000000000002 ***
## B5_R12B2     52.849334   0.265504  199.053 < 0.0000000000000002 ***
## B5_R1A10     -0.026733   0.084386   -0.317              0.75162    
## B5_R1A11     -0.028306   0.082688   -0.342              0.73235    
## B5_R1A12      0.061644   0.159767    0.386              0.69989    
## B5_R1A13     -0.030987   0.109988   -0.282              0.77834    
## B5_R1A14     -0.020086   0.099497   -0.202              0.84014    
## B5_R1A15     -0.030756   0.165868   -0.185              0.85302    
## B5_R1A16      0.029021   0.503415    0.058              0.95407    
## B5_R1A2      -0.041471   0.219507   -0.189              0.85028    
## B5_R1A3      -0.037440   0.585773   -0.064              0.94908    
## B5_R1A4      -0.023460   0.068585   -0.342              0.73254    
## B5_R1A5       0.001421   0.278196    0.005              0.99593    
## B5_R1A6      -0.050603   0.372633   -0.136              0.89207    
## B5_R1A7      -0.019355   0.074785   -0.259              0.79596    
## B5_R1A8       0.013852   0.180896    0.077              0.93901    
## B5_R1A9       0.062912   0.404722    0.155              0.87657    
## KLASIFIKAS2  -0.006721   0.069523   -0.097              0.92305    
## KODE_KAB02    0.170198   0.087277    1.950              0.05208 .  
## KODE_KAB03    0.075535   0.063344    1.192              0.23400    
## KODE_KAB04    0.246515   0.093593    2.634              0.00887 ** 
## KODE_KAB71    0.049061   0.107687    0.456              0.64901    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.0000000000001989066)
## 
## Number of Fisher Scoring iterations: 25
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  1.0000  1.0000  0.9854  1.0000  1.0000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    0    1    2    3    4
##          0   30    0    0    0    0
##          1    0    0    0    0    0
##          2    0    0    0    0    0
##          3    0    0    0    0    0
##          4    0    0    0    0 2027
## 
## Overall Statistics
##                                              
##                Accuracy : 1                  
##                  95% CI : (0.9982, 1)        
##     No Information Rate : 0.9854             
##     P-Value [Acc > NIR] : 0.00000000000007503
##                                              
##                   Kappa : 1                  
##                                              
##  Mcnemar's Test P-Value : NA                 
## 
## Statistics by Class:
## 
##                      Class: 0 Class: 1 Class: 2 Class: 3 Class: 4
## Sensitivity           1.00000       NA       NA       NA   1.0000
## Specificity           1.00000        1        1        1   1.0000
## Pos Pred Value        1.00000       NA       NA       NA   1.0000
## Neg Pred Value        1.00000       NA       NA       NA   1.0000
## Prevalence            0.01458        0        0        0   0.9854
## Detection Rate        0.01458        0        0        0   0.9854
## Detection Prevalence  0.01458        0        0        0   0.9854
## Balanced Accuracy     1.00000       NA       NA       NA   1.0000
##    0    1    2    3    4 
##   60    0    0    0 9919
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("4", "3", "2", "1", "0"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##11. Pemodelan Variabel Jenis Kegiatan Seminggu yang Lalu

fit.logit4 <- svyglm(jk~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9
                     +B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                     +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B+B5_R1A+B5_R6+B5_R12A+B5_R12B
                     +KLASIFIKAS+KODE_KAB,design=des,family=binomial)
summary(fit.logit4)
predict = predict(fit.logit4, newdata = testing, type = "response")

predict <- cut(predict, breaks = c(0, 0.20, 0.40, 0.60, 0.80, 1), labels = c(1, 2, 4, 5, 6), right = TRUE)
log_conf <- confusionMatrix(predict, testing$jk)
log_conf

jk.p = predict(fit.logit4, newdata = sakernas_diy, type = "response")
sakernas_diy['jk.p'] <- cut(jk.p, breaks = c(0, 0.20, 0.40, 0.60, 0.80, 1), labels = c(1, 2, 4, 5, 6), right = TRUE)
sakernas_diy$jk.p = as.factor(sakernas_diy$jk.p)

jk = predict(fit.logit4, newdata = susenas_diy.15, type = "response")
susenas_diy.15['jk'] <- cut(jk, breaks = c(0, 0.20, 0.40, 0.60, 0.80, 1), labels = c(1, 2, 4, 5, 6), right = TRUE)
susenas_diy.15$jk = as.factor(susenas_diy.15$jk)
summary(susenas_diy.15$jk)
## 
## Call:
## svyglm(formula = jk ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B + B5_R1A + 
##     B5_R6 + B5_R12A + B5_R12B + KLASIFIKAS + KODE_KAB, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~psu + ssu, strata = ~strata, weights = ~w.adj2_20, 
##     data = training)
## 
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  0.466739   1.286381   0.363             0.716979    
## B2_R1        0.189818   0.146938   1.292             0.197383    
## B2_R2       -0.366513   0.172209  -2.128             0.034103 *  
## B4_K32      -0.068706   0.353391  -0.194             0.845976    
## B4_K33       0.287751   0.400057   0.719             0.472515    
## B4_K34      -1.558970   0.589386  -2.645             0.008585 ** 
## B4_K35      -0.556936   0.393419  -1.416             0.157890    
## B4_K36       1.597328   0.524607   3.045             0.002529 ** 
## B4_K37       0.521003   0.492015   1.059             0.290465    
## B4_K38       2.657149   0.786194   3.380             0.000819 ***
## B4_K39       0.829558   0.624818   1.328             0.185264    
## B4_K62       0.948107   0.283266   3.347             0.000918 ***
## B4_K8        0.019978   0.007713   2.590             0.010050 *  
## B4_K92       2.319836   0.632403   3.668             0.000287 ***
## B4_K93      -3.080862   0.328024  -9.392 < 0.0000000000000002 ***
## B4_K102     -0.494654   0.392842  -1.259             0.208920    
## B4_K103     -1.973400   0.560883  -3.518             0.000499 ***
## B4_K104     -0.236634   0.432851  -0.547             0.584989    
## B5_R4A2      1.671855   0.260547   6.417       0.000000000523 ***
## B5_R4A3      0.763919   4.658766   0.164             0.869858    
## B5_R4B5     -0.770814   0.480788  -1.603             0.109905    
## B5_R4B6     -0.391725   1.259048  -0.311             0.755913    
## B5_R4C2     -1.857584   0.596535  -3.114             0.002019 ** 
## B5_R4C3     -2.097289   1.380084  -1.520             0.129613    
## B5_R4D5     -2.193276   0.801328  -2.737             0.006558 ** 
## B5_R4D6      2.187277   0.754664   2.898             0.004020 ** 
## B5_R4E2      0.110890   0.523555   0.212             0.832402    
## B5_R4E3      1.546048   0.882662   1.752             0.080839 .  
## B5_R5A12     1.623345   0.750367   2.163             0.031277 *  
## B5_R5A24     2.071189   0.700159   2.958             0.003334 ** 
## B5_R5A32     0.660686   0.239252   2.761             0.006099 ** 
## B5_R5A44     0.250351   0.199079   1.258             0.209506    
## B5_R5B2     -1.082212   0.488140  -2.217             0.027350 *  
## B5_R5B3     -1.410907   0.620142  -2.275             0.023583 *  
## B5_R5B4     -0.979260   0.761645  -1.286             0.199505    
## B5_R1A10     0.746801   0.302204   2.471             0.014006 *  
## B5_R1A11     0.040072   0.325854   0.123             0.902206    
## B5_R1A12     0.902654   0.698362   1.293             0.197140    
## B5_R1A13     0.172722   0.384098   0.450             0.653255    
## B5_R1A14     0.507861   0.364399   1.394             0.164411    
## B5_R1A15     1.264028   0.538988   2.345             0.019650 *  
## B5_R1A16    -9.876439   0.619309 -15.948 < 0.0000000000000002 ***
## B5_R1A2     -0.883427   0.445983  -1.981             0.048494 *  
## B5_R1A3     -1.066625   1.023969  -1.042             0.298385    
## B5_R1A4      0.147058   0.264517   0.556             0.578647    
## B5_R1A5     -0.740454   0.649407  -1.140             0.255086    
## B5_R1A6      2.841248   1.220155   2.329             0.020525 *  
## B5_R1A7      0.007809   0.343013   0.023             0.981851    
## B5_R1A8     -0.365893   0.398168  -0.919             0.358844    
## B5_R1A9     -0.126815   0.765325  -0.166             0.868501    
## B5_R61       3.621198   0.376165   9.627 < 0.0000000000000002 ***
## B5_R62       8.715622   0.570058  15.289 < 0.0000000000000002 ***
## B5_R12A2    -2.844355   0.522416  -5.445       0.000000105993 ***
## B5_R12B2    -2.852302   0.638590  -4.467       0.000011161987 ***
## KLASIFIKAS2  0.707699   0.205200   3.449             0.000641 ***
## KODE_KAB02   0.211516   0.263229   0.804             0.422279    
## KODE_KAB03   0.256666   0.251565   1.020             0.308395    
## KODE_KAB04   0.998973   0.292097   3.420             0.000710 ***
## KODE_KAB71   0.519869   0.340911   1.525             0.128296    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1.971898)
## 
## Number of Fisher Scoring iterations: 13
## 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    1    2    4    5    6
##          1 1317    6    4    6    6
##          2   22   10    1    5    9
##          4   11    2    0    4    4
##          5    6    3    0    1    6
##          6    7   42   59  129  397
## 
## Overall Statistics
##                                                
##                Accuracy : 0.8386               
##                  95% CI : (0.822, 0.8543)      
##     No Information Rate : 0.6626               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.6797               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
## 
## Statistics by Class:
## 
##                      Class: 1 Class: 2 Class: 4  Class: 5 Class: 6
## Sensitivity            0.9663 0.158730  0.00000 0.0068966   0.9408
## Specificity            0.9683 0.981444  0.98946 0.9921548   0.8550
## Pos Pred Value         0.9836 0.212766  0.00000 0.0625000   0.6262
## Neg Pred Value         0.9359 0.973632  0.96857 0.9294463   0.9824
## Prevalence             0.6626 0.030627  0.03111 0.0704910   0.2052
## Detection Rate         0.6403 0.004861  0.00000 0.0004861   0.1930
## Detection Prevalence   0.6509 0.022849  0.01021 0.0077783   0.3082
## Balanced Accuracy      0.9673 0.570087  0.49473 0.4995257   0.8979
##    1    2    4    5    6 
## 6438  192  115   85 3149
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("6", "5", "4", "2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##12. Filter dan SPlit Data Kabupaten Kulonprogo

susenas_diy01=filter(susenas_diy.15, KODE_KAB == "01")
sakernas_diy01=filter(sakernas_diy, KODE_KAB == "01")

set.seed(123)
Train <- createDataPartition(susenas_diy01$STATUS, p=0.8, list=FALSE)
training <- susenas_diy01[Train, ]
testing <- susenas_diy01[-Train, ]

#label <- sample(x=2,size=nrow(susenas_diy),replace=T,prob=c(0.8,0.2))
#training <- susenas_diy[label==1,]
#testing <- susenas_diy[label==2,]

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = training)

##13. Pemodelan Variabel Status Penduduk Miskin

fit.logit4<-svyglm(STATUS~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                     +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B,design=des, family=binomial)
summary(fit.logit4)

predict = predict(fit.logit4, newdata = testing, type = "response")
summary(predict)

predict <- cut(predict, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
log_conf <- confusionMatrix(predict, testing$STATUS)
log_conf 

STATUS.p = predict(fit.logit4, newdata = susenas_diy01, type = "response")
susenas_diy01['STATUS.p'] <- cut(STATUS.p, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(susenas_diy01$STATUS.p)

STATUS = predict(fit.logit4, newdata = sakernas_diy01, type = "response")
sakernas_diy01['STATUS'] <- cut(STATUS, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(sakernas_diy01$STATUS)
## 
## Call:
## svyglm(formula = STATUS ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~PSU + SSU, strata = ~STRATA, weights = ~FWT, 
##     data = training)
## 
## Coefficients:
##               Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)   3.024523   1.350300   2.240               0.0315 *  
## B2_R1        -0.348629   0.267627  -1.303               0.2012    
## B2_R2         0.360835   0.288776   1.250               0.2198    
## B4_K32        0.254807   0.294533   0.865               0.3929    
## B4_K33       -0.148436   0.528618  -0.281               0.7805    
## B4_K34       -1.827440   1.370488  -1.333               0.1910    
## B4_K35       -0.137231   0.564266  -0.243               0.8093    
## B4_K36        1.128191   0.993494   1.136               0.2638    
## B4_K37       -0.567590   0.588398  -0.965               0.3413    
## B4_K38       15.308438   1.288205  11.884   0.0000000000000771 ***
## B4_K39       -1.033104   0.714002  -1.447               0.1568    
## B4_K62        0.015573   0.282097   0.055               0.9563    
## B4_K8        -0.012380   0.013835  -0.895               0.3770    
## B4_K92       15.540570   0.673096  23.088 < 0.0000000000000002 ***
## B4_K93        0.456768   0.601824   0.759               0.4529    
## B4_K102       0.340135   0.364983   0.932               0.3578    
## B4_K103      -0.173653   0.614838  -0.282               0.7793    
## B4_K104       0.498836   0.559587   0.891               0.3788    
## B5_R4A2      -0.002697   0.691392  -0.004               0.9969    
## B5_R4A3      14.760253   0.979843  15.064 < 0.0000000000000002 ***
## B5_R4B5       1.732770   0.893597   1.939               0.0606 .  
## B5_R4B6       1.952187   0.993076   1.966               0.0573 .  
## B5_R4C2      -0.408989   0.637092  -0.642               0.5251    
## B5_R4C3       0.935532   1.136914   0.823               0.4162    
## B5_R4D5      -1.565931   0.692545  -2.261               0.0301 *  
## B5_R4D6       0.273050   1.846469   0.148               0.8833    
## B5_R4E2       0.006529   0.778760   0.008               0.9934    
## B5_R4E3       0.436154   1.536661   0.284               0.7782    
## B5_R5A12     -0.688042   0.374547  -1.837               0.0747 .  
## B5_R5A24     -0.463514   0.676210  -0.685               0.4976    
## B5_R5A32     -0.409551   0.380211  -1.077               0.2888    
## B5_R5A44     -0.068508   0.317971  -0.215               0.8307    
## B5_R5B2     -14.211760   0.804933 -17.656 < 0.0000000000000002 ***
## B5_R5B3      -0.133001   0.344084  -0.387               0.7014    
## B5_R5B4       0.375338   0.774884   0.484               0.6311    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9881595)
## 
## Number of Fisher Scoring iterations: 16
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.6507  0.9048  0.9338  0.9191  0.9501  1.0000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1   0   0
##          2  34 363
##                                         
##                Accuracy : 0.9144        
##                  95% CI : (0.8824, 0.94)
##     No Information Rate : 0.9144        
##     P-Value [Acc > NIR] : 0.5455        
##                                         
##                   Kappa : 0             
##                                         
##  Mcnemar's Test P-Value : 0.00000001519 
##                                         
##             Sensitivity : 0.00000       
##             Specificity : 1.00000       
##          Pos Pred Value :     NaN       
##          Neg Pred Value : 0.91436       
##              Prevalence : 0.08564       
##          Detection Rate : 0.00000       
##    Detection Prevalence : 0.00000       
##       Balanced Accuracy : 0.50000       
##                                         
##        'Positive' Class : 1             
##                                         
##    1    2 
##    3 1986 
##    1    2 
##   85 1815
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##14. Filter dan SPlit Data Kabupaten Bantul

susenas_diy02=filter(susenas_diy.15, KODE_KAB == "02")
sakernas_diy02=filter(sakernas_diy, KODE_KAB == "02")

set.seed(123)
Train <- createDataPartition(susenas_diy02$STATUS, p=0.8, list=FALSE)
training <- susenas_diy02[Train, ]
testing <- susenas_diy02[-Train, ]

#label <- sample(x=2,size=nrow(susenas_diy),replace=T,prob=c(0.8,0.2))
#training <- susenas_diy[label==1,]
#testing <- susenas_diy[label==2,]

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = training)

##15. Pemodelan Variabel Status Penduduk Miskin

fit.logit4<-svyglm(STATUS~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                     +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B,design=des, family=binomial)
summary(fit.logit4)

predict = predict(fit.logit4, newdata = testing, type = "response")
summary(predict)

predict <- cut(predict, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
log_conf <- confusionMatrix(predict, testing$STATUS)
log_conf 

STATUS.p = predict(fit.logit4, newdata = susenas_diy02, type = "response")
susenas_diy02['STATUS.p'] <- cut(STATUS.p, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(susenas_diy02$STATUS.p)

STATUS = predict(fit.logit4, newdata = sakernas_diy02, type = "response")
sakernas_diy02['STATUS'] <- cut(STATUS, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(sakernas_diy02$STATUS)
## 
## Call:
## svyglm(formula = STATUS ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~PSU + SSU, strata = ~STRATA, weights = ~FWT, 
##     data = training)
## 
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  18.88765    1.36888  13.798 < 0.0000000000000002 ***
## B2_R1        -0.68058    0.34742  -1.959               0.0557 .  
## B2_R2         0.37891    0.42264   0.897               0.3743    
## B4_K32       -0.26927    0.27906  -0.965               0.3392    
## B4_K33       -1.30057    0.55691  -2.335               0.0236 *  
## B4_K34       11.14164    0.97265  11.455  0.00000000000000137 ***
## B4_K35       -0.95578    0.60854  -1.571               0.1226    
## B4_K36       -2.27573    1.23121  -1.848               0.0705 .  
## B4_K37       -0.33547    0.87949  -0.381               0.7045    
## B4_K38       11.90338    1.18961  10.006  0.00000000000015752 ***
## B4_K39       -1.18180    0.80852  -1.462               0.1501    
## B4_K62        0.33483    0.27012   1.240               0.2209    
## B4_K8        -0.03609    0.01657  -2.178               0.0342 *  
## B4_K92        0.62435    0.90206   0.692               0.4921    
## B4_K93        0.44963    0.63006   0.714               0.4788    
## B4_K102      -0.09124    0.48268  -0.189               0.8508    
## B4_K103      -0.04707    0.53809  -0.087               0.9306    
## B4_K104       0.34077    1.06364   0.320               0.7500    
## B5_R4A2      -0.08107    0.69736  -0.116               0.9079    
## B5_R4A3      -1.85807    0.94620  -1.964               0.0551 .  
## B5_R4B5      -0.47512    0.66559  -0.714               0.4787    
## B5_R4B6      -1.43807    1.37774  -1.044               0.3016    
## B5_R4C2       0.17802    0.52016   0.342               0.7336    
## B5_R4C3      -1.27276    0.87091  -1.461               0.1502    
## B5_R4D5       2.33967    1.68701   1.387               0.1716    
## B5_R4D6      17.81568    1.85108   9.625  0.00000000000057346 ***
## B5_R4E2       1.23255    1.00546   1.226               0.2260    
## B5_R4E3      -0.23408    1.47997  -0.158               0.8750    
## B5_R5A12      0.31721    0.40150   0.790               0.4332    
## B5_R5A24    -12.44549    0.80421 -15.475 < 0.0000000000000002 ***
## B5_R5A32      0.01089    0.44238   0.025               0.9805    
## B5_R5A44     -0.57964    0.35302  -1.642               0.1069    
## B5_R5B2     -12.56265    0.80562 -15.594 < 0.0000000000000002 ***
## B5_R5B3      -1.24023    0.49539  -2.504               0.0156 *  
## B5_R5B4      -0.14529    0.67288  -0.216               0.8299    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9835945)
## 
## Number of Fisher Scoring iterations: 15
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.4237  0.9470  0.9713  0.9502  0.9824  1.0000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1   1   1
##          2  26 402
##                                         
##                Accuracy : 0.9372        
##                  95% CI : (0.91, 0.9582)
##     No Information Rate : 0.9372        
##     P-Value [Acc > NIR] : 0.551         
##                                         
##                   Kappa : 0.0608        
##                                         
##  Mcnemar's Test P-Value : 0.00000386    
##                                         
##             Sensitivity : 0.037037      
##             Specificity : 0.997519      
##          Pos Pred Value : 0.500000      
##          Neg Pred Value : 0.939252      
##              Prevalence : 0.062791      
##          Detection Rate : 0.002326      
##    Detection Prevalence : 0.004651      
##       Balanced Accuracy : 0.517278      
##                                         
##        'Positive' Class : 1             
##                                         
##    1    2 
##    7 2148 
##    1    2 
##   73 2162
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##16. Filter dan SPlit Data Kabupaten Gunung Kidul

susenas_diy03=filter(susenas_diy.15, KODE_KAB == "03")
sakernas_diy03=filter(sakernas_diy, KODE_KAB == "03")

set.seed(123)
Train <- createDataPartition(susenas_diy03$STATUS, p=0.8, list=FALSE)
training <- susenas_diy03[Train, ]
testing <- susenas_diy03[-Train, ]

#label <- sample(x=2,size=nrow(susenas_diy),replace=T,prob=c(0.8,0.2))
#training <- susenas_diy[label==1,]
#testing <- susenas_diy[label==2,]

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = training)

##17. Pemodelan Variabel Status Penduduk Miskin

fit.logit4<-svyglm(STATUS~B2_R1+B2_R2+B4_K6+B4_K8+B4_K9+B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                     +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B
                     ,design=des, family=binomial)
summary(fit.logit4)

predict = predict(fit.logit4, newdata = testing, type = "response")
summary(predict)

predict <- cut(predict, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
log_conf <- confusionMatrix(predict, testing$STATUS)
log_conf 

STATUS.p = predict(fit.logit4, newdata = susenas_diy03, type = "response")
susenas_diy03['STATUS.p'] <- cut(STATUS.p, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(susenas_diy03$STATUS.p)

STATUS = predict(fit.logit4, newdata = sakernas_diy03, type = "response")
sakernas_diy03['STATUS'] <- cut(STATUS, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(sakernas_diy03$STATUS)
## 
## Call:
## svyglm(formula = STATUS ~ B2_R1 + B2_R2 + B4_K6 + B4_K8 + B4_K9 + 
##     B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + B5_R5A1 + 
##     B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B, design = des, family = binomial)
## 
## Survey design:
## svydesign(ids = ~PSU + SSU, strata = ~STRATA, weights = ~FWT, 
##     data = training)
## 
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)   5.54482    1.46511   3.785             0.000382 ***
## B2_R1        -0.72250    0.43267  -1.670             0.100623    
## B2_R2         0.53267    0.48722   1.093             0.279033    
## B4_K62       -0.43422    0.33650  -1.290             0.202316    
## B4_K8        -0.01658    0.01054  -1.573             0.121381    
## B4_K92       13.83511    0.62090  22.282 < 0.0000000000000002 ***
## B4_K93        0.60178    0.46257   1.301             0.198700    
## B4_K102       0.79341    0.59268   1.339             0.186184    
## B4_K103       3.05822    1.22728   2.492             0.015751 *  
## B4_K104       2.50686    0.98805   2.537             0.014041 *  
## B5_R4A2      -0.64114    0.71963  -0.891             0.376852    
## B5_R4A3      -0.91312    0.67357  -1.356             0.180756    
## B5_R4B5      -0.60305    0.52887  -1.140             0.259120    
## B5_R4B6       0.07325    0.94821   0.077             0.938708    
## B5_R4C2      -1.56896    0.61474  -2.552             0.013510 *  
## B5_R4C3       0.10504    1.24025   0.085             0.932812    
## B5_R4D5      -0.70789    1.30123  -0.544             0.588629    
## B5_R4D6      15.29335    1.56277   9.786     0.00000000000012 ***
## B5_R4E2       0.80367    0.95994   0.837             0.406097    
## B5_R4E3      -2.24040    1.04215  -2.150             0.035987 *  
## B5_R5A12      0.19771    0.85606   0.231             0.818206    
## B5_R5A24     -1.50508    1.22549  -1.228             0.224622    
## B5_R5A32     -0.61242    0.48736  -1.257             0.214202    
## B5_R5A44     -0.10092    0.51745  -0.195             0.846089    
## B5_R5B2     -13.96894    1.73475  -8.052     0.00000000007165 ***
## B5_R5B3       0.16279    0.84324   0.193             0.847630    
## B5_R5B4       0.86584    0.85429   1.014             0.315249    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9213262)
## 
## Number of Fisher Scoring iterations: 15
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.4286  0.9513  0.9710  0.9588  0.9811  1.0000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1   0   1
##          2  19 421
##                                           
##                Accuracy : 0.9546          
##                  95% CI : (0.9308, 0.9721)
##     No Information Rate : 0.9569          
##     P-Value [Acc > NIR] : 0.6491157       
##                                           
##                   Kappa : -0.0043         
##                                           
##  Mcnemar's Test P-Value : 0.0001439       
##                                           
##             Sensitivity : 0.000000        
##             Specificity : 0.997630        
##          Pos Pred Value : 0.000000        
##          Neg Pred Value : 0.956818        
##              Prevalence : 0.043084        
##          Detection Rate : 0.000000        
##    Detection Prevalence : 0.002268        
##       Balanced Accuracy : 0.498815        
##                                           
##        'Positive' Class : 1               
##                                           
##    1    2 
##    4 2207 
##    1    2 
##   65 2132
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##18. Filter dan SPlit Data Kabupaten Sleman

susenas_diy04=filter(susenas_diy.15, KODE_KAB == "04")
sakernas_diy04=filter(sakernas_diy, KODE_KAB == "04")

set.seed(123)
Train <- createDataPartition(susenas_diy04$STATUS, p=0.8, list=FALSE)
training <- susenas_diy04[Train, ]
testing <- susenas_diy04[-Train, ]

#label <- sample(x=2,size=nrow(susenas_diy),replace=T,prob=c(0.8,0.2))
#training <- susenas_diy[label==1,]
#testing <- susenas_diy[label==2,]

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = training)

##19. Pemodelan Variabel Status Penduduk Miskin

fit.logit4<-svyglm(STATUS~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                     +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B
                     ,design=des, family=binomial)
summary(fit.logit4)

predict = predict(fit.logit4, newdata = testing, type = "response")
summary(predict)

predict <- cut(predict, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
log_conf <- confusionMatrix(predict, testing$STATUS)
log_conf 

STATUS.p = predict(fit.logit4, newdata = susenas_diy04, type = "response")
susenas_diy04['STATUS.p'] <- cut(STATUS.p, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(susenas_diy04$STATUS.p)

STATUS = predict(fit.logit4, newdata = sakernas_diy04, type = "response")
sakernas_diy04['STATUS'] <- cut(STATUS, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(sakernas_diy04$STATUS)
## 
## Call:
## svyglm(formula = STATUS ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~PSU + SSU, strata = ~STRATA, weights = ~FWT, 
##     data = training)
## 
## Coefficients:
##               Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  4.7769842  1.3084985   3.651             0.000550 ***
## B2_R1       -0.8113788  0.4175579  -1.943             0.056694 .  
## B2_R2        0.7436532  0.4767158   1.560             0.124031    
## B4_K32      -0.4542802  0.3316196  -1.370             0.175828    
## B4_K33      -1.1206910  0.4255303  -2.634             0.010729 *  
## B4_K34      16.5195696  1.0756764  15.357 < 0.0000000000000002 ***
## B4_K35       0.1192907  0.6350161   0.188             0.851625    
## B4_K36      -4.2036082  1.0962685  -3.834             0.000304 ***
## B4_K37       6.2526699  1.6578504   3.772             0.000373 ***
## B4_K38      16.2612202  0.9907702  16.413 < 0.0000000000000002 ***
## B4_K39      -1.5562025  1.7443496  -0.892             0.375882    
## B4_K62      -0.0637732  0.4161012  -0.153             0.878705    
## B4_K8        0.0007675  0.0191491   0.040             0.968161    
## B4_K92      17.7958523  0.9118728  19.516 < 0.0000000000000002 ***
## B4_K93       1.7554862  0.6642727   2.643             0.010475 *  
## B4_K102     -2.0137557  1.4792026  -1.361             0.178485    
## B4_K103     -2.9869919  1.0958672  -2.726             0.008398 ** 
## B4_K104     -2.4493117  1.5173654  -1.614             0.111734    
## B5_R4A2      0.2201079  0.6042394   0.364             0.716935    
## B5_R4A3      6.8827890  2.1914412   3.141             0.002616 ** 
## B5_R4B5     -2.8619907  1.1716715  -2.443             0.017541 *  
## B5_R4B6     16.5341033  1.2382728  13.353 < 0.0000000000000002 ***
## B5_R4C2      0.1223507  1.2902081   0.095             0.924766    
## B5_R4C3     19.4243681  1.8439164  10.534  0.00000000000000287 ***
## B5_R4D5     -1.4333447  1.7306448  -0.828             0.410832    
## B5_R4D6     16.7167993  2.5736833   6.495  0.00000001803630847 ***
## B5_R4E2     17.2914880  0.9456747  18.285 < 0.0000000000000002 ***
## B5_R4E3     -1.4762294  1.2001828  -1.230             0.223497    
## B5_R5A12    -0.8306769  1.1402710  -0.728             0.469147    
## B5_R5A24     0.3207312  1.0906374   0.294             0.769714    
## B5_R5A32     0.4259493  0.6827545   0.624             0.535079    
## B5_R5A44    -0.7189553  0.5095255  -1.411             0.163400    
## B5_R5B2      0.9576947  1.6101502   0.595             0.554223    
## B5_R5B3      0.5309798  1.2020164   0.442             0.660265    
## B5_R5B4      0.7507790  1.7608059   0.426             0.671354    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.8326204)
## 
## Number of Fisher Scoring iterations: 19
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.7596  0.9791  0.9899  0.9805  0.9978  1.0000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1   0   0
##          2  11 417
##                                           
##                Accuracy : 0.9743          
##                  95% CI : (0.9545, 0.9871)
##     No Information Rate : 0.9743          
##     P-Value [Acc > NIR] : 0.579274        
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 0.002569        
##                                           
##             Sensitivity : 0.0000          
##             Specificity : 1.0000          
##          Pos Pred Value :    NaN          
##          Neg Pred Value : 0.9743          
##              Prevalence : 0.0257          
##          Detection Rate : 0.0000          
##    Detection Prevalence : 0.0000          
##       Balanced Accuracy : 0.5000          
##                                           
##        'Positive' Class : 1               
##                                           
##    1    2 
##    7 2135 
##    1    2 
##   11 2313
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

##20. Filter dan SPlit Data Kota Yogyakarta

susenas_diy05=filter(susenas_diy.15, KODE_KAB == "71")
sakernas_diy05=filter(sakernas_diy, KODE_KAB == "71")

set.seed(123)
Train <- createDataPartition(susenas_diy05$STATUS, p=0.8, list=FALSE)
training <- susenas_diy05[Train, ]
testing <- susenas_diy05[-Train, ]

#label <- sample(x=2,size=nrow(susenas_diy),replace=T,prob=c(0.8,0.2))
#training <- susenas_diy[label==1,]
#testing <- susenas_diy[label==2,]

options(survey.lonely.psu = "adjust")
des<-svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = training)

##21. Pemodelan Variabel Status Penduduk Miskin

fit.logit4<-svyglm(STATUS~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10+B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E
                     +B5_R5A1+B5_R5A2+B5_R5A3+B5_R5A4+B5_R5B
                     ,design=des, family=binomial)
summary(fit.logit4)

predict = predict(fit.logit4, newdata = testing, type = "response")
summary(predict)

predict <- cut(predict, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
log_conf <- confusionMatrix(predict, testing$STATUS)
log_conf 

STATUS.p = predict(fit.logit4, newdata = susenas_diy05, type = "response")
susenas_diy05['STATUS.p'] <- cut(STATUS.p, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(susenas_diy05$STATUS.p)

STATUS = predict(fit.logit4, newdata = sakernas_diy05, type = "response")
sakernas_diy05['STATUS'] <- cut(STATUS, breaks = c(0, 0.5, 1), labels = c(1, 2), right = TRUE)
summary(sakernas_diy05$STATUS)
## 
## Call:
## svyglm(formula = STATUS ~ B2_R1 + B2_R2 + B4_K3 + B4_K6 + B4_K8 + 
##     B4_K9 + B4_K10 + B5_R4A + B5_R4B + B5_R4C + B5_R4D + B5_R4E + 
##     B5_R5A1 + B5_R5A2 + B5_R5A3 + B5_R5A4 + B5_R5B, design = des, 
##     family = binomial)
## 
## Survey design:
## svydesign(ids = ~PSU + SSU, strata = ~STRATA, weights = ~FWT, 
##     data = training)
## 
## Coefficients:
##              Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  17.23673    1.32655  12.994 0.000000000000000612 ***
## B2_R1         0.12456    0.44132   0.282               0.7792    
## B2_R2        -0.49797    0.46251  -1.077               0.2881    
## B4_K32       -0.21261    0.29985  -0.709               0.4824    
## B4_K33        0.47870    0.37127   1.289               0.2047    
## B4_K34       16.28720    1.09584  14.863 < 0.0000000000000002 ***
## B4_K35        0.46123    0.59625   0.774               0.4437    
## B4_K36       -0.10663    1.06396  -0.100               0.9207    
## B4_K37       15.42686    1.51250  10.200 0.000000000001088999 ***
## B4_K38       15.26017    0.80899  18.863 < 0.0000000000000002 ***
## B4_K39       -0.03295    0.87758  -0.038               0.9702    
## B4_K62        0.40672    0.31441   1.294               0.2032    
## B4_K8         0.01685    0.01412   1.194               0.2397    
## B4_K92      -14.14264    1.19180 -11.867 0.000000000000011119 ***
## B4_K93      -14.20607    0.88579 -16.038 < 0.0000000000000002 ***
## B4_K102       0.01372    0.43913   0.031               0.9752    
## B4_K103      -0.68766    0.58803  -1.169               0.2492    
## B4_K104       0.06561    0.61605   0.107               0.9157    
## B5_R4A2      -0.06192    0.80014  -0.077               0.9387    
## B5_R4A3      13.45763    1.11241  12.098 0.000000000000006057 ***
## B5_R4B5      -1.08706    0.95469  -1.139               0.2616    
## B5_R4B6      -1.34231    1.31483  -1.021               0.3134    
## B5_R4C2       1.56745    1.13716   1.378               0.1757    
## B5_R4C3       1.44623    2.30510   0.627               0.5340    
## B5_R4D5      -2.67940    1.34666  -1.990               0.0535 .  
## B5_R4D6      -3.25052    1.28104  -2.537               0.0152 *  
## B5_R4E2      14.94326    1.16901  12.783 0.000000000000001041 ***
## B5_R4E3       1.09534    1.85013   0.592               0.5572    
## B5_R5A12      0.64087    0.45208   1.418               0.1640    
## B5_R5A24     -0.35035    0.99448  -0.352               0.7265    
## B5_R5A32      0.14127    0.57212   0.247               0.8062    
## B5_R5A44     -0.48043    0.37725  -1.274               0.2102    
## B5_R5B2       0.32611    1.08255   0.301               0.7648    
## B5_R5B3      -0.91855    0.48301  -1.902               0.0644 .  
## B5_R5B4      -0.73461    0.94967  -0.774               0.4438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 0.9509052)
## 
## Number of Fisher Scoring iterations: 16
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.5639  0.8692  0.9168  0.9068  0.9561  1.0000 
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   1   2
##          1   0   0
##          2  26 269
##                                           
##                Accuracy : 0.9119          
##                  95% CI : (0.8735, 0.9416)
##     No Information Rate : 0.9119          
##     P-Value [Acc > NIR] : 0.552           
##                                           
##                   Kappa : 0               
##                                           
##  Mcnemar's Test P-Value : 0.0000009443    
##                                           
##             Sensitivity : 0.00000         
##             Specificity : 1.00000         
##          Pos Pred Value :     NaN         
##          Neg Pred Value : 0.91186         
##              Prevalence : 0.08814         
##          Detection Rate : 0.00000         
##    Detection Prevalence : 0.00000         
##       Balanced Accuracy : 0.50000         
##                                           
##        'Positive' Class : 1               
##                                           
##    1    2 
##    4 1478 
##    1    2 
##    5 1629
log_conf$table %>%
  data.frame() %>% 
  mutate(Prediction = factor(Prediction, levels = c("2", "1"))) %>%
  group_by(Reference) %>% 
  mutate(total = sum(Freq)) %>% 
  ungroup() %>% 
  ggplot(aes(Reference, Prediction, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), size = 5) +
  scale_fill_gradient(low = "#ea4434", high = "#badb33") +
  scale_x_discrete(position = "top") +
  geom_tile(color = "black", fill = "black", alpha = 0)

sakernas_diy=rbind(sakernas_diy01, sakernas_diy02, sakernas_diy03, sakernas_diy04, sakernas_diy05)
susenas_diy.15=rbind(susenas_diy01, susenas_diy02, susenas_diy03, susenas_diy04, susenas_diy05)

##22. Pemodelan Variabel Pengeluaran Rata-rata Perkapita

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 2000, savePredictions = TRUE)

mod_fit1 <- train(KAPITA~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10
                  +B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E+B5_R5A1+B5_R5A2
                  +B5_R5A3+B5_R5A4+B5_R5B+B5_R1A+B5_R20_KAT+B5_R24A
                  +KLASIFIKAS+KODE_KAB,
                  data=susenas_diy.15, method="knn", 
                  trControl = ctrl, tuneLength = 10, weights=FWT)

print(mod_fit1)

susenas_diy.15['KAPITA.p'] = predict(mod_fit1, newdata = susenas_diy.15)

sakernas_diy['KAPITA'] = predict(mod_fit1, newdata = sakernas_diy)
summary(sakernas_diy$KAPITA)
summary(susenas_diy.15$KAPITA)

h<-hist(sakernas_diy$KAPITA, breaks=20, xlab="Upah Barang Sebulan Status Buruh/Karyawan/Pegawai", main="Sakernas")
x<-sakernas_diy$KAPITA
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm


h<-hist(susenas_diy.15$KAPITA, breaks=20, xlab="Upah Barang Sebulan Status Buruh/Karyawan/Pegawai", main="Susenas")
x<-susenas_diy.15$KAPITA
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm
## k-Nearest Neighbors 
## 
## 9979 samples
##   22 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (2000 fold, repeated 1 times) 
## Summary of sample sizes: 9974, 9973, 9974, 9974, 9975, 9974, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE       Rsquared   MAE     
##    5  1032734.2  0.4464682  751667.9
##    7  1012935.6  0.4496893  742324.9
##    9  1001842.5  0.4551220  737178.9
##   11   997137.2  0.4532972  735985.1
##   13   994231.8  0.4518401  735552.8
##   15   993463.6  0.4552187  736972.1
##   17   993315.6  0.4519457  738122.0
##   19   992301.4  0.4519719  738988.1
##   21   989721.4  0.4539326  737819.4
##   23   989635.9  0.4568148  738174.6
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 23.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  518671  943493 1202664 1364300 1565526 5213752 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##   158071   563358   905111  1386516  1603787 40199452

##23. Filter Sampel Susenas yang Termasuk Status Pekerja Bebas/Berusaha Sendiri

susenas_diy.156=filter(susenas_diy.15, B5_R24A %in% c("1", "5"))
sakernas_diy.156=filter(sakernas_diy, B5_R24A %in% c("1", "5"))

##24. Pemodelan Variabel Hari Kerja Sebulan Status Pekerja Bebas/Berusaha Sendiri

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 400, savePredictions = TRUE)

mod_fit1 <- train(B5_R28A1~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10
                  +B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E+B5_R5A1+B5_R5A2
                  +B5_R5A3+B5_R5A4+B5_R5B+B5_R1A+B5_R20_KAT+B5_R24A
                  +KLASIFIKAS+KODE_KAB, data=sakernas_diy.156, 
                  method="knn", trControl = ctrl, tuneLength = 10, 
                  weights =w.adj2_20)

print(mod_fit1)

sakernas_diy.156['B5_R28A1.p'] = predict(mod_fit1, newdata = sakernas_diy.156)

susenas_diy.156['B5_R28A1'] = predict(mod_fit1, newdata = susenas_diy.156)
summary(susenas_diy.156$B5_R28A1)

h<-hist(sakernas_diy.156$B5_R28A1, breaks=20, xlab="Hari Kerja Sebulan Status Buruh/Karyawan/Pegawai", main="Sakernas")
x<-sakernas_diy.156$B5_R28A1
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm


h<-hist(susenas_diy.156$B5_R28A1, breaks=20, xlab="Hari Kerja Sebulan Status Buruh/Karyawan/Pegawai", main="Susenas")
x<-susenas_diy.156$B5_R28A1
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm
## k-Nearest Neighbors 
## 
## 2082 samples
##   22 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (400 fold, repeated 1 times) 
## Summary of sample sizes: 2076, 2078, 2076, 2076, 2077, 2077, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  7.410215  0.3703408  6.031850
##    7  7.298348  0.3915439  5.948300
##    9  7.300453  0.3905857  5.943369
##   11  7.319454  0.3805453  5.971379
##   13  7.331573  0.3779763  5.974851
##   15  7.344956  0.3783406  5.996985
##   17  7.375754  0.3760303  6.016069
##   19  7.396402  0.3785482  6.035629
##   21  7.401049  0.3775085  6.036468
##   23  7.390309  0.3823423  6.021591
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 7.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.196  16.683  19.000  18.566  20.982  27.832

##25. Pemodelan Variabel Pendapatan Uang Sebulan Status Pekerja Bebas/Berusaha Sendiri

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 400, savePredictions = TRUE)

mod_fit1 <- train(B5_R28B1~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10
                  +B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E+B5_R5A1+B5_R5A2
                  +B5_R5A3+B5_R5A4+B5_R5B+B5_R1A+B5_R20_KAT+B5_R24A+KLASIFIKAS
                  +B5_R28A1+KODE_KAB, data=sakernas_diy.156, 
                  method="knn", trControl = ctrl, tuneLength = 10, 
                  weights =w.adj2_20)

print(mod_fit1)

sakernas_diy.156['B5_R28B1.p'] = predict(mod_fit1, newdata = sakernas_diy.156)

susenas_diy.156['B5_R28B1'] = predict(mod_fit1, newdata = susenas_diy.156)
summary(susenas_diy.156$B5_R28B1)

h<-hist(sakernas_diy.156$B5_R28B1, breaks=20, xlab="Pendapatan Uang Sebulan Status Buruh/Karyawan/Pegawai", main="Sakernas")
x<-sakernas_diy.156$B5_R28B1
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm


h<-hist(susenas_diy.156$B5_R28B1, breaks=20, xlab="Pendapatan Uang Sebulan Status Buruh/Karyawan/Pegawai", main="Susenas")
x<-susenas_diy.156$B5_R28B1
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm
## k-Nearest Neighbors 
## 
## 2082 samples
##   23 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (400 fold, repeated 1 times) 
## Summary of sample sizes: 2077, 2078, 2077, 2076, 2077, 2077, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  765781.9  0.4586417  582920.9
##    7  755807.1  0.4627992  576939.2
##    9  748113.9  0.4695051  572273.6
##   11  741112.1  0.4646979  566174.3
##   13  734925.9  0.4638033  562103.3
##   15  731796.1  0.4652545  560264.6
##   17  726728.1  0.4713041  557993.5
##   19  724029.6  0.4721085  557738.8
##   21  721664.9  0.4721334  556806.2
##   23  722016.9  0.4755045  557585.9
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 21.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0 1242784 1479048 1454553 1685952 2430952

##26. Pemodelan Variabel Pendapatan Barang Sebulan Status Pekerja Bebas/Berusaha Sendiri Uang

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 400, savePredictions = TRUE)

mod_fit1 <- train(B5_R28B2~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10
                  +B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E+B5_R5A1+B5_R5A2
                  +B5_R5A3+B5_R5A4+B5_R5B+B5_R1A+B5_R20_KAT+KLASIFIKAS
                  +B5_R24A+B5_R28A1+KODE_KAB, data=sakernas_diy.156, 
                  method="knn", trControl = ctrl, tuneLength = 10, 
                  weights =w.adj2_20)

print(mod_fit1)

sakernas_diy.156['B5_R28B2.p'] = predict(mod_fit1, newdata = sakernas_diy.156)

susenas_diy.156['B5_R28B2'] = predict(mod_fit1, newdata = susenas_diy.156)
summary(susenas_diy.156$B5_R28B2)

h<-hist(sakernas_diy.156$B5_R28B2, breaks=20, xlab="Pendapatan Barang Sebulan Status Buruh/Karyawan/Pegawai", main="Sakernas")
x<-sakernas_diy.156$B5_R28B2
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm


h<-hist(susenas_diy.156$B5_R28B2, breaks=20, xlab="Pendapatan Barang Sebulan Status Buruh/Karyawan/Pegawai", main="Susenas")
x<-susenas_diy.156$B5_R28B2
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm
## k-Nearest Neighbors 
## 
## 2082 samples
##   23 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (400 fold, repeated 1 times) 
## Summary of sample sizes: 2076, 2077, 2077, 2077, 2077, 2076, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  92029.90  0.6413008  52678.59
##    7  91310.00  0.6315607  52631.21
##    9  89722.81  0.6375341  52687.83
##   11  88098.63  0.6384388  52135.22
##   13  88484.10  0.6337841  52651.68
##   15  88997.09  0.6284319  53401.61
##   17  90391.51  0.6182283  54448.28
##   19  90015.37  0.6119754  54331.86
##   21  90212.60  0.6120098  54595.34
##   23  90802.05  0.6135864  55239.80
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 11.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0   13409   47273   88589   91989  903636

##27. Filter Sampel Susenas yang Termasuk Status Buruh/Karyawan/Pegawai

susenas_diy.buruh=filter(susenas_diy, B5_R24A %in% c("4"))
sakernas_diy.buruh=filter(sakernas_diy, B5_R24A %in% c("4"))

##28. Pemodelan Variabel Upah Uang Sebulan Status Buruh/Karyawan/Pegawai

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 600, savePredictions = TRUE)

mod_fit1 <- train(B5_R28C1~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10
                  +B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E+B5_R5A1+B5_R5A2
                  +B5_R5A3+B5_R5A4+B5_R5B+B5_R1A+B5_R20_KAT+KLASIFIKAS
                  +B5_R24A+KODE_KAB,
                  data=sakernas_diy.buruh, method="knn", trControl = ctrl, 
                  tuneLength = 10, weights =w.adj2_20)

print(mod_fit1)

sakernas_diy.buruh['B5_R28C1.p'] = predict(mod_fit1, newdata = sakernas_diy.buruh)

susenas_diy.buruh['B5_R28C1'] = predict(mod_fit1, newdata = susenas_diy.buruh)
summary(susenas_diy.buruh$B5_R28C1)

h<-hist(sakernas_diy.buruh$B5_R28C1, breaks=20, xlab="Upah Uang Sebulan Status Buruh/Karyawan/Pegawai", main="Sakernas")
x<-sakernas_diy.buruh$B5_R28C1
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm


h<-hist(susenas_diy.buruh$B5_R28C1, breaks=20, xlab="Upah Uang Sebulan Status Buruh/Karyawan/Pegawai", main="Susenas")
x<-susenas_diy.buruh$B5_R28C1
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm
## k-Nearest Neighbors 
## 
## 2946 samples
##   22 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (600 fold, repeated 1 times) 
## Summary of sample sizes: 2941, 2941, 2941, 2941, 2942, 2942, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE     Rsquared   MAE    
##    5  1390163  0.4393604  1039661
##    7  1373021  0.4399563  1034928
##    9  1369122  0.4377308  1037116
##   11  1380698  0.4250464  1045119
##   13  1384955  0.4081539  1049740
##   15  1390874  0.4043965  1052737
##   17  1391795  0.4027399  1055353
##   19  1390908  0.3998507  1056628
##   21  1397975  0.3955964  1062292
##   23  1399682  0.3915694  1064100
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 9.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  951000 1744667 2159474 2374006 2743029 7766667

##29. Pemodelan Variabel Upah Barang Sebulan Status Buruh/Karyawan/Pegawai

set.seed(123)
ctrl <- trainControl(method = "repeatedcv", number = 600, savePredictions = TRUE)

mod_fit1 <- train(B5_R28C2~B2_R1+B2_R2+B4_K3+B4_K6+B4_K8+B4_K9+B4_K10
                  +B5_R4A+B5_R4B+B5_R4C+B5_R4D+B5_R4E+B5_R5A1+B5_R5A2
                  +B5_R5A3+B5_R5A4+B5_R5B+B5_R1A+B5_R20_KAT+KLASIFIKAS
                  +B5_R24A+KODE_KAB,
                  data=sakernas_diy.buruh, method="knn", trControl = ctrl, 
                  tuneLength = 10, weights =w.adj2_20)

print(mod_fit1)

sakernas_diy.buruh['B5_R28C2.p'] = predict(mod_fit1, newdata = sakernas_diy.buruh)

susenas_diy.buruh['B5_R28C2'] = predict(mod_fit1, newdata = susenas_diy.buruh)
summary(susenas_diy.buruh$B5_R28C2)

h<-hist(sakernas_diy.buruh$B5_R28C2, breaks=20, xlab="Upah Barang Sebulan Status Buruh/Karyawan/Pegawai", main="Sakernas")
x<-sakernas_diy.buruh$B5_R28C2
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm


h<-hist(susenas_diy.buruh$B5_R28C2, breaks=20, xlab="Upah Barang Sebulan Status Buruh/Karyawan/Pegawai", main="Susenas")
x<-susenas_diy.buruh$B5_R28C2
xfit<-seq(min(x),max(x),length=40) # parameter sumbu x
yfit<-dnorm(xfit,mean=mean(x),sd=sd(x)) # parameter sumbu y
yfit <- yfit*diff(h$mids[1:2])*length(x) 
lines(xfit, yfit, col="blue", lwd=2) # menambahkan garis kurva norm
## k-Nearest Neighbors 
## 
## 2946 samples
##   22 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (600 fold, repeated 1 times) 
## Summary of sample sizes: 2941, 2941, 2941, 2941, 2941, 2941, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE       Rsquared   MAE     
##    5  102992.84  0.3830682  67512.04
##    7   99816.23  0.3894454  66198.49
##    9   97942.59  0.3925047  65261.00
##   11   97371.94  0.4007439  64919.69
##   13   96409.84  0.3966741  64607.95
##   15   95582.68  0.3912917  64294.00
##   17   95049.93  0.3922184  63981.48
##   19   95090.40  0.3949255  63935.69
##   21   95002.48  0.3943672  63950.54
##   23   95048.69  0.3970204  64053.90
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 21.
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    2917   41497   58781   71128   81231  422381

#TUJUAN 3

Memperbaiki presisi dari hasil estimasi dengan cara menggabungkan estimasi dari dua survei yaitu Susenas dan Sakernas dengan metode Generalized Least Square.

##Variabel Susenas yang tidak dikumpulkan di Sakernas

##1. Varibel Pengeluaran Rata-rata Perkapita

options(survey.lonely.psu = "adjust")
des1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy)
svymean(~KAPITA, des1)

options(survey.lonely.psu = "adjust")
des2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.15)
svymean(~KAPITA.p, des2)
svymean(~KAPITA, des2)
##           mean    SE
## KAPITA 1394555 12761
##             mean    SE
## KAPITA.p 1406226 14230
##           mean    SE
## KAPITA 1476320 42204
mns = svymean(~KAPITA+KAPITA.p, des2)
vcov(mns)
##              KAPITA  KAPITA.p
## KAPITA   1781195124 372687722
## KAPITA.p  372687722 202497609
var_xA = 12761^2
var_xB = 14230^2
myu_xA = 1394555
myu_xB = 1406226

myu_B = 1476320
var_B = 42204^2

cov = 372687722

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~KAPITA, des2), level = 0.95)
## [1] 0.5542648
## [1] 1399757
## [1] 1464414
## [1] 37429.8
## [1] 0.02555958
## [1] 42204
## [1] 0.0285873
## [1] 1391052
## [1] 1537777
##          2.5 %  97.5 %
## KAPITA 1393602 1559039

##1.1 Kabupaten Kulonprogo

sakernas_diy01=filter(sakernas_diy, KODE_KAB == "01")
susenas_diy01=filter(susenas_diy.15, KODE_KAB == "01")

options(survey.lonely.psu = "adjust")
des1.1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy01)
svymean(~KAPITA, des1.1)

options(survey.lonely.psu = "adjust")
des2.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy01)
svymean(~KAPITA.p, des2.1)
svymean(~KAPITA, des2.1)
##           mean    SE
## KAPITA 1179587 19874
##             mean    SE
## KAPITA.p 1155682 19223
##          mean    SE
## KAPITA 972560 56462
mns = svymean(~KAPITA+KAPITA.p, des2.1)
vcov(mns)
##              KAPITA  KAPITA.p
## KAPITA   3187935754 798238260
## KAPITA.p  798238260 369524484
var_xA = 19874^2
var_xB = 19223^2
myu_xA = 1179587
myu_xB = 1155682

myu_B = 972560
var_B = 56462^2

cov = 798238260

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~KAPITA, des2.1), level = 0.95)
## [1] 0.4833537
## [1] 1167237
## [1] 997520
## [1] 48523.1
## [1] 0.04864374
## [1] 56462
## [1] 0.05805503
## [1] 902414.7
## [1] 1092625
##           2.5 %  97.5 %
## KAPITA 861897.1 1083223

##1.2 Kabupaten Bantul

sakernas_diy02=filter(sakernas_diy, KODE_KAB == "02")
susenas_diy02=filter(susenas_diy.15, KODE_KAB == "02")

options(survey.lonely.psu = "adjust")
des1.2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy02)
svymean(~KAPITA, des1.2)

options(survey.lonely.psu = "adjust")
des2.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy02)
svymean(~KAPITA.p, des2.2)
svymean(~KAPITA, des2.2)
##           mean    SE
## KAPITA 1357166 19353
##             mean    SE
## KAPITA.p 1372957 20988
##           mean    SE
## KAPITA 1407380 75401
mns = svymean(~KAPITA+KAPITA.p, des2.2)
vcov(mns)
##              KAPITA   KAPITA.p
## KAPITA   5685239383 1189085529
## KAPITA.p 1189085529  440510012
var_xA = 19353^2
var_xB = 20988^2
myu_xA = 1357166
myu_xB = 1372957

myu_B = 1407380
var_B = 75401^2

cov = 1189085529

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~KAPITA, des2.2), level = 0.95)
## [1] 0.540463
## [1] 1364423
## [1] 1384342
## [1] 62853.07
## [1] 0.04540285
## [1] 75401
## [1] 0.05357544
## [1] 1261150
## [1] 1507534
##          2.5 %  97.5 %
## KAPITA 1259597 1555162

##1.3 Kabupaten Gunung Kidul

sakernas_diy03=filter(sakernas_diy, KODE_KAB == "03")
susenas_diy03=filter(susenas_diy.15, KODE_KAB == "03")

options(survey.lonely.psu = "adjust")
des1.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy03)
svymean(~KAPITA, des1.3)

options(survey.lonely.psu = "adjust")
des2.3 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy03)
svymean(~KAPITA.p, des2.3)
svymean(~KAPITA, des2.3)
##          mean    SE
## KAPITA 987420 13296
##            mean    SE
## KAPITA.p 962599 13100
##          mean    SE
## KAPITA 893632 44251
mns = svymean(~KAPITA+KAPITA.p, des2.3)
vcov(mns)
##              KAPITA  KAPITA.p
## KAPITA   1958139444 318590922
## KAPITA.p  318590922 171615868
var_xA = 13296^2
var_xB = 13100^2
myu_xA = 987420
myu_xB = 962599

myu_B = 893632
var_B = 44251^2

cov = 318590922

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~KAPITA, des2.3), level = 0.95)
## [1] 0.492575
## [1] 974825.2
## [1] 916329.7
## [1] 40826.63
## [1] 0.04455451
## [1] 44251
## [1] 0.04951815
## [1] 836309.5
## [1] 996349.9
##           2.5 %   97.5 %
## KAPITA 806901.5 980361.8

##1.4 Kabupaten Sleman

sakernas_diy04=filter(sakernas_diy, KODE_KAB == "04")
susenas_diy04=filter(susenas_diy.15, KODE_KAB == "04")

options(survey.lonely.psu = "adjust")
des1.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy04)
svymean(~KAPITA, des1.4)

options(survey.lonely.psu = "adjust")
des2.4 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy04)
svymean(~KAPITA.p, des2.4)
svymean(~KAPITA, des2.4)
##           mean    SE
## KAPITA 1637740 35738
##             mean    SE
## KAPITA.p 1681517 43500
##           mean     SE
## KAPITA 1882128 107899
mns = svymean(~KAPITA+KAPITA.p, des2.4)
vcov(mns)
##               KAPITA   KAPITA.p
## KAPITA   11642195420 2941050945
## KAPITA.p  2941050945 1892238451
var_xA = 35738^2
var_xB = 43500^2
myu_xA = 1637740
myu_xB = 1681517

myu_B = 1882128
var_B = 107899^2

cov = 2941050945

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~KAPITA, des2.4), level = 0.95)
## [1] 0.597027
## [1] 1655381
## [1] 1841506
## [1] 94409.15
## [1] 0.05126737
## [1] 107899
## [1] 0.05732819
## [1] 1656464
## [1] 2026548
##          2.5 %  97.5 %
## KAPITA 1670650 2093606

##1.5 Kota Yogyakarta

sakernas_diy71=filter(sakernas_diy, KODE_KAB == "71")
susenas_diy71=filter(susenas_diy.15, KODE_KAB == "71")

options(survey.lonely.psu = "adjust")
des1.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy71)
svymean(~KAPITA, des1.5)

options(survey.lonely.psu = "adjust")
des2.5 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy71)
svymean(~KAPITA.p, des2.5)
svymean(~KAPITA, des2.5)
##           mean    SE
## KAPITA 1707144 43604
##             mean    SE
## KAPITA.p 1712189 40658
##           mean     SE
## KAPITA 1981858 115799
mns = svymean(~KAPITA+KAPITA.p, des2.5)
vcov(mns)
##               KAPITA   KAPITA.p
## KAPITA   13409484396 2721311998
## KAPITA.p  2721311998 1653057945
var_xA = 43604^2
var_xB = 40658^2
myu_xA = 1707144
myu_xB = 1712189

myu_B = 1981858
var_B = 115799^2

cov = 2721311998

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~KAPITA, des2.5), level = 0.95)
## [1] 0.4650803
## [1] 1709843
## [1] 1977995
## [1] 106423.3
## [1] 0.0538036
## [1] 115799
## [1] 0.05842951
## [1] 1769406
## [1] 2186585
##          2.5 %  97.5 %
## KAPITA 1754896 2208821

##2. Variabel Status Penduduk Miskin (Miskin)

options(survey.lonely.psu = "adjust")
des3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy)
svymean(~factor(STATUS), des3)

options(survey.lonely.psu = "adjust")
des4 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.15)
svymean(~factor(STATUS.p), des4)
svymean(~factor(STATUS), des4)
##                     mean     SE
## factor(STATUS)1 0.020059 0.0018
## factor(STATUS)2 0.979941 0.0018
##                        mean     SE
## factor(STATUS.p)1 0.0025571 0.0007
## factor(STATUS.p)2 0.9974429 0.0007
##                    mean     SE
## factor(STATUS)1 0.05026 0.0051
## factor(STATUS)2 0.94974 0.0051
mns1 = svymean(~STATUS+ STATUS.p, des4)
vcov(mns1)
##                   STATUS1         STATUS2        STATUS.p1        STATUS.p2
## STATUS1    0.000025928260 -0.000025928260  0.0000014793991 -0.0000014793991
## STATUS2   -0.000025928260  0.000025928260 -0.0000014793991  0.0000014793991
## STATUS.p1  0.000001479399 -0.000001479399  0.0000005399095 -0.0000005399095
## STATUS.p2 -0.000001479399  0.000001479399 -0.0000005399095  0.0000005399095

##Kategori Miskin

var_xA = 0.0018^2
var_xB = 7e-04^2
myu_xA = 0.020059
myu_xB = 0.0025571

myu_B = 0.05026
var_B = 0.0051^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1.479399e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4), level = 0.95)
## [1] 0.1313673
## [1] 0.004856277
## [1] 0.05720163
## [1] 0.005042146
## [1] 0.08814689
## [1] 0.0051
## [1] 0.1014723
## [1] 0.04731903
## [1] 0.06708424
##                      2.5 %     97.5 %
## factor(STATUS)1 0.04027963 0.06023982
## factor(STATUS)2 0.93976018 0.95972037

##kategori Tidak Miskin

var_xA = 0.0018^2
var_xB = 7e-04^2
myu_xA = 0.979941
myu_xB = 0.9974429

myu_B = 0.94974
var_B = 0.0051^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1.479399e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4), level = 0.95)
## [1] 0.1313673
## [1] 0.9951437
## [1] 0.9427984
## [1] 0.005042146
## [1] 0.005348064
## [1] 0.0051
## [1] 0.005369891
## [1] 0.9329158
## [1] 0.952681
##                      2.5 %     97.5 %
## factor(STATUS)1 0.04027963 0.06023982
## factor(STATUS)2 0.93976018 0.95972037

##2.1 Kabupaten Kulonprogo

options(survey.lonely.psu = "adjust")
des3.1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy01)
svymean(~factor(STATUS), des3.1)

options(survey.lonely.psu = "adjust")
des4.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy01)
svymean(~factor(STATUS.p), des4.1)
svymean(~factor(STATUS), des4.1)
##                    mean     SE
## factor(STATUS)1 0.04109 0.0074
## factor(STATUS)2 0.95891 0.0074
##                        mean     SE
## factor(STATUS.p)1 0.0011573 0.0007
## factor(STATUS.p)2 0.9988427 0.0007
##                     mean    SE
## factor(STATUS)1 0.083258 0.012
## factor(STATUS)2 0.916742 0.012
mns1 = svymean(~STATUS+ STATUS.p, des4.1)
vcov(mns1)
##                   STATUS1         STATUS2        STATUS.p1        STATUS.p2
## STATUS1    0.000144690780 -0.000144690780  0.0000026468255 -0.0000026468255
## STATUS2   -0.000144690780  0.000144690780 -0.0000026468255  0.0000026468255
## STATUS.p1  0.000002646825 -0.000002646825  0.0000005558921 -0.0000005558921
## STATUS.p2 -0.000002646825  0.000002646825 -0.0000005558921  0.0000005558921

##Kategori Miskin

var_xA = 0.0074^2
var_xB = 7e-04^2
myu_xA = 0.04109
myu_xB = 0.0011573

myu_B = 0.083258
var_B = 0.012^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2.646825e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.1), level = 0.95)
## [1] 0.008868778
## [1] 0.001511454
## [1] 0.08517103
## [1] 0.01199472
## [1] 0.1408309
## [1] 0.012
## [1] 0.1441303
## [1] 0.06166139
## [1] 0.1086807
##                      2.5 %    97.5 %
## factor(STATUS)1 0.05968193 0.1068338
## factor(STATUS)2 0.89316624 0.9403181

##Kategori Tidak Miskin

var_xA = 0.0074^2
var_xB = 7e-04^2
myu_xA = 0.95891
myu_xB = 0.9988427

myu_B = 0.916742
var_B = 0.012^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2.646825e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.1), level = 0.95)
## [1] 0.008868778
## [1] 0.9984885
## [1] 0.914829
## [1] 0.01199472
## [1] 0.01311143
## [1] 0.012
## [1] 0.01308983
## [1] 0.8913193
## [1] 0.9383386
##                      2.5 %    97.5 %
## factor(STATUS)1 0.05968193 0.1068338
## factor(STATUS)2 0.89316624 0.9403181

##2.2 Kabupaten Bantul

options(survey.lonely.psu = "adjust")
des3.2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy02)
svymean(~factor(STATUS), des3.2)

options(survey.lonely.psu = "adjust")
des4.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy02)
svymean(~factor(STATUS.p), des4.2)
svymean(~factor(STATUS), des4.2)
##                     mean     SE
## factor(STATUS)1 0.030388 0.0043
## factor(STATUS)2 0.969612 0.0043
##                        mean     SE
## factor(STATUS.p)1 0.0036819 0.0017
## factor(STATUS.p)2 0.9963181 0.0017
##                   mean     SE
## factor(STATUS)1 0.0563 0.0103
## factor(STATUS)2 0.9437 0.0103
mns1 = svymean(~STATUS+ STATUS.p, des4.2)
vcov(mns1)
##                   STATUS1         STATUS2       STATUS.p1       STATUS.p2
## STATUS1    0.000106169883 -0.000106169883  0.000006797216 -0.000006797216
## STATUS2   -0.000106169883  0.000106169883 -0.000006797216  0.000006797216
## STATUS.p1  0.000006797216 -0.000006797216  0.000003010557 -0.000003010557
## STATUS.p2 -0.000006797216  0.000006797216 -0.000003010557  0.000003010557

##Kategori Miskin

var_xA = 0.0043^2
var_xB = 0.0017^2
myu_xA = 0.030388
myu_xB = 0.0036819

myu_B = 0.0563
var_B = 0.0103^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 6.797216e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.2), level = 0.95)
## [1] 0.1351731
## [1] 0.007291845
## [1] 0.06479051
## [1] 0.01019456
## [1] 0.1573465
## [1] 0.0103
## [1] 0.1829485
## [1] 0.04480918
## [1] 0.08477184
##                      2.5 %     97.5 %
## factor(STATUS)1 0.03610498 0.07649544
## factor(STATUS)2 0.92350456 0.96389502

##Kategori Tidak Miskin

var_xA = 0.0043^2
var_xB = 0.0017^2
myu_xA = 0.969612
myu_xB = 0.9963181

myu_B = 0.9437
var_B = 0.0103^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 6.797216e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.2), level = 0.95)
## [1] 0.1351731
## [1] 0.9927082
## [1] 0.9352095
## [1] 0.01019456
## [1] 0.01090083
## [1] 0.0103
## [1] 0.01091449
## [1] 0.9152282
## [1] 0.9551908
##                      2.5 %     97.5 %
## factor(STATUS)1 0.03610498 0.07649544
## factor(STATUS)2 0.92350456 0.96389502

##2.3 Kabupaten Gunung Kidul

options(survey.lonely.psu = "adjust")
des3.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy03)
svymean(~factor(STATUS), des3.3)

options(survey.lonely.psu = "adjust")
des4.3 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy03)
svymean(~factor(STATUS.p), des4.3)
svymean(~factor(STATUS), des4.3)
##                     mean    SE
## factor(STATUS)1 0.028575 0.005
## factor(STATUS)2 0.971425 0.005
##                        mean     SE
## factor(STATUS.p)1 0.0014432 0.0011
## factor(STATUS.p)2 0.9985568 0.0011
##                     mean     SE
## factor(STATUS)1 0.042956 0.0126
## factor(STATUS)2 0.957044 0.0126
mns1 = svymean(~STATUS+ STATUS.p, des4.3)
vcov(mns1)
##                   STATUS1         STATUS2       STATUS.p1       STATUS.p2
## STATUS1    0.000158104978 -0.000158104978  0.000003258177 -0.000003258177
## STATUS2   -0.000158104978  0.000158104978 -0.000003258177  0.000003258177
## STATUS.p1  0.000003258177 -0.000003258177  0.000001194933 -0.000001194933
## STATUS.p2 -0.000003258177  0.000003258177 -0.000001194933  0.000001194933

##Kategori Miskin

var_xA = 0.005^2
var_xB = 0.0011^2
myu_xA = 0.028575
myu_xB = 0.0014432

myu_B = 0.042956
var_B = 0.0126^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3.258177e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.3), level = 0.95)
## [1] 0.04616559
## [1] 0.002695755
## [1] 0.04632877
## [1] 0.01258392
## [1] 0.2716221
## [1] 0.0126
## [1] 0.2933234
## [1] 0.02166429
## [1] 0.07099324
##                      2.5 %     97.5 %
## factor(STATUS)1 0.01831113 0.06760023
## factor(STATUS)2 0.93239977 0.98168887

##Kategori Tidak Miskin

var_xA = 0.005^2
var_xB = 0.0011^2
myu_xA = 0.971425
myu_xB = 0.9985568

myu_B = 0.957044
var_B = 0.0126^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3.258177e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.3), level = 0.95)
## [1] 0.04616559
## [1] 0.9973042
## [1] 0.9536712
## [1] 0.01258392
## [1] 0.01319524
## [1] 0.0126
## [1] 0.01316554
## [1] 0.9290068
## [1] 0.9783357
##                      2.5 %     97.5 %
## factor(STATUS)1 0.01831113 0.06760023
## factor(STATUS)2 0.93239977 0.98168887

##2.4 Kabupaten Sleman

options(survey.lonely.psu = "adjust")
des3.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy04)
svymean(~factor(STATUS), des3.4)

options(survey.lonely.psu = "adjust")
des4.4 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy04)
svymean(~factor(STATUS.p), des4.4)
svymean(~factor(STATUS), des4.4)
##                      mean     SE
## factor(STATUS)1 0.0044512 0.0017
## factor(STATUS)2 0.9955488 0.0017
##                        mean     SE
## factor(STATUS.p)1 0.0029378 0.0016
## factor(STATUS.p)2 0.9970622 0.0016
##                     mean     SE
## factor(STATUS)1 0.022013 0.0078
## factor(STATUS)2 0.977987 0.0078
mns1 = svymean(~STATUS+ STATUS.p, des4.4)
vcov(mns1)
##                   STATUS1         STATUS2       STATUS.p1       STATUS.p2
## STATUS1    0.000060744130 -0.000060744130  0.000008492901 -0.000008492901
## STATUS2   -0.000060744130  0.000060744130 -0.000008492901  0.000008492901
## STATUS.p1  0.000008492901 -0.000008492901  0.000002601663 -0.000002601663
## STATUS.p2 -0.000008492901  0.000008492901 -0.000002601663  0.000002601663

##Kategori Miskin

var_xA = 0.0017^2
var_xB = 0.0016^2
myu_xA = 0.0044512
myu_xB = 0.0029378

myu_B = 0.022013
var_B = 0.0078^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 8.492901e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.4), level = 0.95)
## [1] 0.4697248
## [1] 0.003648681
## [1] 0.02437138
## [1] 0.006899656
## [1] 0.2831049
## [1] 0.0078
## [1] 0.3543361
## [1] 0.01084805
## [1] 0.0378947
##                       2.5 %     97.5 %
## factor(STATUS)1 0.006736898 0.03728824
## factor(STATUS)2 0.962711764 0.99326310

##Kategori Tidak Miskin

var_xA = 0.0017^2
var_xB = 0.0016^2
myu_xA = 0.9955488
myu_xB = 0.9970622

myu_B = 0.977987
var_B = 0.0078^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 8.492901e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.4), level = 0.95)
## [1] 0.4697248
## [1] 0.9963513
## [1] 0.9756286
## [1] 0.006899656
## [1] 0.007072011
## [1] 0.0078
## [1] 0.007975566
## [1] 0.9621053
## [1] 0.9891519
##                       2.5 %     97.5 %
## factor(STATUS)1 0.006736898 0.03728824
## factor(STATUS)2 0.962711764 0.99326310

##2.5 Kota Yogyakarta

options(survey.lonely.psu = "adjust")
des3.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy05)
svymean(~factor(STATUS), des3.5)

options(survey.lonely.psu = "adjust")
des4.5 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy05)
svymean(~factor(STATUS.p), des4.5)
svymean(~factor(STATUS), des4.5)
##                     mean     SE
## factor(STATUS)1 0.003343 0.0018
## factor(STATUS)2 0.996657 0.0018
##                        mean     SE
## factor(STATUS.p)1 0.0021575 0.0011
## factor(STATUS.p)2 0.9978425 0.0011
##                     mean     SE
## factor(STATUS)1 0.094743 0.0188
## factor(STATUS)2 0.905257 0.0188
mns1 = svymean(~STATUS+ STATUS.p, des4.5)
vcov(mns1)
##                    STATUS1          STATUS2        STATUS.p1        STATUS.p2
## STATUS1    0.0003516090597 -0.0003516090597  0.0000004941671 -0.0000004941671
## STATUS2   -0.0003516090597  0.0003516090597 -0.0000004941671  0.0000004941671
## STATUS.p1  0.0000004941671 -0.0000004941671  0.0000013079821 -0.0000013079821
## STATUS.p2 -0.0000004941671  0.0000004941671 -0.0000013079821  0.0000013079821

##Kategori Miskin

var_xA = 0.0018^2
var_xB = 0.0011^2
myu_xA = 0.003343
myu_xB = 0.0021575

myu_B = 0.094743
var_B = 0.0188^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 4.941671e-07

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.5), level = 0.95)
## [1] 0.2719101
## [1] 0.002479849
## [1] 0.09487465
## [1] 0.01879854
## [1] 0.1981408
## [1] 0.0188
## [1] 0.1984315
## [1] 0.05802951
## [1] 0.1317198
##                      2.5 %    97.5 %
## factor(STATUS)1 0.05799095 0.1314945
## factor(STATUS)2 0.86850553 0.9420090

##Kategori Tidak Miskin

var_xA = 0.0018^2
var_xB = 0.0011^2
myu_xA = 0.996657
myu_xB = 0.9978425

myu_B = 0.905257
var_B = 0.0188^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 4.941671e-07

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~factor(STATUS), des4.5), level = 0.95)
## [1] 0.2719101
## [1] 0.9975202
## [1] 0.9051254
## [1] 0.01879854
## [1] 0.02076899
## [1] 0.0188
## [1] 0.02076758
## [1] 0.8682802
## [1] 0.9419705
##                      2.5 %    97.5 %
## factor(STATUS)1 0.05799095 0.1314945
## factor(STATUS)2 0.86850553 0.9420090

##Variabel Sakernas yang Tidak Dikumpulkan di Susenas

##4. Skenario 1(Berdasarkan Hasil Prediksi Variabel Pembentuk Angka Pengangguran)

#Filter buat TPAK
susenas_diy.15$bekerja <- ifelse(susenas_diy.15$B5_R5A1 == "1" | susenas_diy.15$B5_R6=="1", 1, 0)

susenas_diy.15$pengangguran <- ifelse(susenas_diy.15$B5_R5A1=="2" & 
                                          susenas_diy.15$B5_R6=="2" & 
                                          susenas_diy.15$B5_R12A=="1" | 
                                          susenas_diy.15$B5_R5A1=="2" & 
                                          susenas_diy.15$B5_R6=="2" & 
                                          susenas_diy.15$B5_R12A=="2" & 
                                          susenas_diy.15$B5_R12B=="1" | 
                                          susenas_diy.15$B5_R5A1=="2" & 
                                          susenas_diy.15$B5_R6=="2" & 
                                          susenas_diy.15$B5_R12A=="2" & 
                                          susenas_diy.15$B5_R12B=="2" &
                                          between(susenas_diy.15$B5_R17A, 0, 4), 1, 0)

susenas_diy.15$TPAK = ifelse(susenas_diy.15$pengangguran==1| susenas_diy.15$bekerja==1, 1, 0)

#Filter buat TPT
susenas.tpt = susenas_diy.15 %>% filter(bekerja==1 | pengangguran==1) 
susenas.tpt$TPT[susenas.tpt$pengangguran==1]=1
susenas.tpt$TPT[susenas.tpt$bekerja==1]=0
des7.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas.tpt)
svytotal(~bekerja, des7.1)
svytotal(~pengangguran, des7.1)
svytotal(~TPT, des7.1)
svymean(~TPT, des7.1)


des7.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.15)
svymean(~TPAK, des7.2)
svytotal(~TPAK, des7.2)
##           total    SE
## bekerja 2131665 53283
##              total   SE
## pengangguran 14924 2846
##     total   SE
## TPT 14924 2846
##          mean     SE
## TPT 0.0069522 0.0013
##         mean     SE
## TPAK 0.70354 0.0065
##        total    SE
## TPAK 2146589 53116
#Filter buat TPAK
#Data Pencacahan
sakernas_diy$bekerja <- ifelse(sakernas_diy$B5_R5A1 == "1" | sakernas_diy$B5_R6=="1", 1, 0)

sakernas_diy$pengangguran <- ifelse(sakernas_diy$B5_R5A1=="2" & 
                                          sakernas_diy$B5_R6=="2" & 
                                          sakernas_diy$B5_R12A=="1" | 
                                          sakernas_diy$B5_R5A1=="2" & 
                                          sakernas_diy$B5_R6=="2" & 
                                          sakernas_diy$B5_R12A=="2" & 
                                          sakernas_diy$B5_R12B=="1" | 
                                          sakernas_diy$B5_R5A1=="2" & 
                                          sakernas_diy$B5_R6=="2" & 
                                          sakernas_diy$B5_R12A=="2" & 
                                          sakernas_diy$B5_R12B=="2" &
                                          between(sakernas_diy$B5_R17A, 0, 4), 1, 0)


#Hasil Prediksi
sakernas_diy$bekerja.p <- ifelse(sakernas_diy$B5_R5A1 == "1" | sakernas_diy$B5_R6=="1", 1, 0)

sakernas_diy$pengangguran.p <- ifelse(sakernas_diy$B5_R5A1=="2" & 
                                          sakernas_diy$B5_R6=="2" & 
                                          sakernas_diy$B5_R12A.p=="1" | 
                                          sakernas_diy$B5_R5A1=="2" & 
                                          sakernas_diy$B5_R6=="2" & 
                                          sakernas_diy$B5_R12A.p=="2" & 
                                          sakernas_diy$B5_R12B.p=="1" | 
                                          sakernas_diy$B5_R5A1=="2" & 
                                          sakernas_diy$B5_R6=="2" & 
                                          sakernas_diy$B5_R12A.p=="2" & 
                                          sakernas_diy$B5_R12B.p=="2" &
                                          between(sakernas_diy$B5_R17A.p, 0, 4), 1, 0)

sakernas_diy$TPAK = ifelse(sakernas_diy$pengangguran=="1"| sakernas_diy$bekerja=="1", 1, 0)
sakernas_diy$TPAK.p = ifelse(sakernas_diy$pengangguran.p=="1"| sakernas_diy$bekerja.p=="1", 1, 0)

#Filter buat TPT
#Data Pencacahan
sakernas2 = sakernas_diy %>% filter(pengangguran=="1" | bekerja=="1")
sakernas2$TPT[sakernas2$pengangguran=="1"]=1
sakernas2$TPT[sakernas2$bekerja=="1"]=0

#Hasil Prediksi
sakernas3 = sakernas_diy %>% filter(pengangguran.p=="1" | bekerja.p=="1")
sakernas3$TPT.p[sakernas3$pengangguran.p=="1"]=1
sakernas3$TPT.p[sakernas3$bekerja.p=="1"]=0

sakernas.tpt <- sakernas2[(sakernas2$id_unik %in% sakernas3$id_unik), ]

sakernas.tpt$TPT.p[sakernas.tpt$pengangguran.p=="1"]=1
sakernas.tpt$TPT.p[sakernas.tpt$bekerja.p=="1"]=0
des7.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt)
des7.3.1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas2)
des7.3.2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas3)
des7.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy)

svytotal(~bekerja, des7.4)
svytotal(~TPT, des7.3.1)
svymean(~TPT, des7.3.1)

svytotal(~bekerja.p, des7.4)
svytotal(~TPT.p, des7.3.2)
svymean(~TPT.p, des7.3.2)

svymean(~TPAK, des7.4)
svytotal(~TPAK, des7.4)
svymean(~TPAK.p, des7.4)
svytotal(~TPAK.p, des7.4)
##           total    SE
## bekerja 2202541 50266
##     total     SE
## TPT 23610 3659.3
##         mean     SE
## TPT 0.010606 0.0016
##             total    SE
## bekerja.p 2202541 50266
##       total   SE
## TPT.p 23305 3545
##          mean     SE
## TPT.p 0.01047 0.0015
##         mean    SE
## TPAK 0.71467 0.006
##        total    SE
## TPAK 2226152 51447
##           mean    SE
## TPAK.p 0.71458 0.006
##          total    SE
## TPAK.p 2225846 51460
  1. Variabel Bekerja Skenario 1
mns3.1 = svytotal(~bekerja+bekerja.p, des7.4)
vcov(mns3.1)
##              bekerja  bekerja.p
## bekerja   2526657817 2526657817
## bekerja.p 2526657817 2526657817
var_xA = 53283^2
var_xB = 50266^2
myu_xA = 2131665
myu_xB = 2202541

myu_B = 2202541
var_B = 50266^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2526657817

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~bekerja, des7.4), level = 0.95)
## [1] 0.4708887
## [1] 2169166
## [1] 2169166
## [1] 36563.67
## [1] 0.01685609
## [1] 2097502
## [1] 2240831
##           2.5 %  97.5 %
## bekerja 2104022 2301061
  1. Variabel Pengangguran Skenario 1
mns3.2 = svytotal(~TPT+TPT.p, des7.3)
vcov(mns3.2)
#table(sakernas.tpt$pengangguran, sakernas.tpt$pengangguran.p)
##            TPT    TPT.p
## TPT   12045461 12045461
## TPT.p 12045461 12045461
var_xA = 2846^2
var_xB = 3545^2
myu_xA = 14924
myu_xB = 23305

myu_B = 23610
var_B = 3659.3^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 12045461 

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPT, des7.3), level = 0.95)
## [1] 0.6080797
## [1] 18208.68
## [1] 18725.19
## [1] 2523.859
## [1] 0.1347841
## [1] 13778.43
## [1] 23671.96
##        2.5 %   97.5 %
## TPT 15885.82 29490.55
  1. Variabel Angkatan Kerja Skenario 1
mns3.3 = svytotal(~TPAK+TPAK.p, des7.4)
vcov(mns3.3)
##              TPAK     TPAK.p
## TPAK   2646838138 2647177550
## TPAK.p 2647177550 2648139781
var_xA = 53116^2
var_xB = 51460^2
myu_xA = 2146589
myu_xB = 2225846

myu_B = 2226152
var_B = 51447^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2647177550

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPAK, des7.4), level = 0.95)
## [1] 0.4841686
## [1] 2187472
## [1] 2187792
## [1] 36953.69
## [1] 0.01689086
## [1] 2115363
## [1] 2260221
##        2.5 %  97.5 %
## TPAK 2125317 2326987
  1. Variabel TPAK Skenario 1
mns3.5 = svymean(~TPAK+TPAK.p, des7.4)
vcov(mns3.5)
##                 TPAK        TPAK.p
## TPAK   0.00003566489 0.00003563725
## TPAK.p 0.00003563725 0.00003567382
var_xA = 0.0065^2
var_xB = 0.006^2
myu_xA = 0.70354
myu_xB = 0.71458

myu_B = 0.71467
var_B = 0.006^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3.563725e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPAK, des7.4), level = 0.95)
## [1] 0.4600639
## [1] 0.7095009
## [1] 0.7096421
## [1] 0.004446324
## [1] 0.006265586
## [1] 0.7009273
## [1] 0.7183569
##          2.5 %    97.5 %
## TPAK 0.7029696 0.7263794
  1. Variabel TPT Skenario 1
mns3.4 = svymean(~TPT+TPT.p, des7.3)
vcov(mns3.4)
##                  TPT          TPT.p
## TPT   0.000002227262 0.000002227262
## TPT.p 0.000002227262 0.000002227262
var_xA = 0.0013^2
var_xB = 0.0015^2
myu_xA = 0.0069522
myu_xB = 0.01047

myu_B = 0.010606
var_B = 0.0016^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2.227262e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPT, des7.3), level = 0.95)
## [1] 0.571066
## [1] 0.008461104
## [1] 0.008617406
## [1] 0.001140588
## [1] 0.1323586
## [1] 0.006381854
## [1] 0.01085296
##           2.5 %     97.5 %
## TPT 0.007270833 0.01312094

##4.1. Kabupaten Kulonprogo

susenas.tpt.01=filter(susenas.tpt, KODE_KAB == "01")
susenas_diy.01=filter(susenas_diy.15, KODE_KAB == "01")
des7.1.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas.tpt.01)
svytotal(~bekerja, des7.1.1)
svytotal(~pengangguran, des7.1.1)
svytotal(~TPT, des7.1.1)
svymean(~TPT, des7.1.1)

des7.2.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.01)
svymean(~TPAK, des7.2.1)
svytotal(~TPAK, des7.2.1)
##          total     SE
## bekerja 244796 9420.8
##               total     SE
## pengangguran 823.92 325.98
##      total     SE
## TPT 823.92 325.98
##          mean     SE
## TPT 0.0033545 0.0013
##         mean     SE
## TPAK 0.72814 0.0137
##       total     SE
## TPAK 245620 9440.6
sakernas.tpt.01=filter(sakernas.tpt, KODE_KAB == "01")
sakernas2.01=filter(sakernas2, KODE_KAB == "01")
sakernas3.01=filter(sakernas3, KODE_KAB == "01")
sakernas_diy.01=filter(sakernas_diy, KODE_KAB == "01")

des7.3_1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt.01)
des7.3.1_1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas2.01)
des7.3.2_1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas3.01)
des7.4_1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.01)

svytotal(~bekerja, des7.4_1)
svytotal(~TPT, des7.3.1_1)
svymean(~TPT, des7.3.1_1)

svytotal(~bekerja.p, des7.4_1)
svytotal(~TPT.p, des7.3.2_1)
svymean(~TPT.p, des7.3.2_1)

svymean(~TPAK, des7.4_1)
svytotal(~TPAK, des7.4_1)
svymean(~TPAK.p, des7.4_1)
svytotal(~TPAK.p, des7.4_1)
##          total    SE
## bekerja 292756 16900
##      total     SE
## TPT 1836.4 742.98
##          mean     SE
## TPT 0.0062338 0.0023
##            total    SE
## bekerja.p 292756 16900
##        total     SE
## TPT.p 2172.1 922.91
##           mean     SE
## TPT.p 0.007365 0.0029
##         mean    SE
## TPAK 0.76451 0.013
##       total    SE
## TPAK 294592 17345
##           mean     SE
## TPAK.p 0.76538 0.0129
##         total    SE
## TPAK.p 294928 17507
  1. Variabel Bekerja Skenario 1
mns3.1.1 = svytotal(~bekerja+bekerja.p, des7.4_1)
vcov(mns3.1.1)
##             bekerja bekerja.p
## bekerja   285617650 285617650
## bekerja.p 285617650 285617650
  1. Variabel bekerja skenario 1
var_xA = 9420.8^2
var_xB = 16900^2
myu_xA = 244796
myu_xB = 292756

myu_B = 292756
var_B = 16900^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 285617650

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~bekerja, des7.4_1), level = 0.95)
## [1] 0.7629257
## [1] 256166.1
## [1] 256165.1
## [1] 8227.947
## [1] 0.0321197
## [1] 240038.3
## [1] 272291.9
##            2.5 %   97.5 %
## bekerja 259632.2 325879.8
  1. Variabel Pengangguran Skenario 1
mns3.2.1 = svytotal(~TPT+TPT.p, des7.3_1)
vcov(mns3.2.1)
##            TPT    TPT.p
## TPT   552022.5 552022.5
## TPT.p 552022.5 552022.5
var_xA = 325.98^2
var_xB = 922.91^2
myu_xA = 823.92
myu_xB = 2172.1

myu_B = 1836.4
var_B = 742.98^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 552022.5 

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPT, des7.3_1), level = 0.95)
## [1] 0.8890813
## [1] 973.4583
## [1] 1059.567
## [1] 483.6727
## [1] 0.4564813
## [1] 111.5689
## [1] 2007.566
##        2.5 %   97.5 %
## TPT 380.2049 3292.642
  1. Variabel Angkatan Kerja Skenario 1
mns3.3.1 = svytotal(~TPAK+TPAK.p, des7.4_1)
vcov(mns3.3.1)
##             TPAK    TPAK.p
## TPAK   300860351 303620684
## TPAK.p 303620684 306493723
var_xA = 9440.6^2
var_xB = 17507^2
myu_xA = 245620
myu_xB = 294928

myu_B = 294592
var_B = 17345^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 303620684

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPAK, des7.4_1), level = 0.95)
## [1] 0.7747209
## [1] 256728.1
## [1] 256750.3
## [1] 8236.121
## [1] 0.03207833
## [1] 240607.5
## [1] 272893.1
##         2.5 %   97.5 %
## TPAK 260596.2 328588.6
  1. Variabel TPAK Skenario 1
mns3.5.1 = svymean(~TPAK+TPAK.p, des7.4_1)
vcov(mns3.5.1)
##                TPAK       TPAK.p
## TPAK   0.0001684726 0.0001675456
## TPAK.p 0.0001675456 0.0001673356
var_xA = 0.0137^2
var_xB = 0.0129^2
myu_xA = 0.72814
myu_xB = 0.76538

myu_B = 0.76451
var_B = 0.013^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0001675456

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPAK, des7.4_1), level = 0.95)
## [1] 0.469952
## [1] 0.747879
## [1] 0.7468896
## [1] 0.009472291
## [1] 0.01268232
## [1] 0.7283239
## [1] 0.7654552
##          2.5 %    97.5 %
## TPAK 0.7390694 0.7899489
  1. Variabel TPT Skenario 1
mns3.4.1 = svymean(~TPT+TPT.p, des7.3_1)
vcov(mns3.4.1)
##                  TPT          TPT.p
## TPT   0.000005361005 0.000005361005
## TPT.p 0.000005361005 0.000005361005
var_xA = 0.0013^2
var_xB = 0.0029^2
myu_xA = 0.0033545
myu_xB = 0.007365

myu_B = 0.0062338
var_B = 0.0023^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 5.361005e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPT, des7.3_1), level = 0.95)
## [1] 0.8326733
## [1] 0.004025564
## [1] 0.004105056
## [1] 0.001563464
## [1] 0.3808629
## [1] 0.001040668
## [1] 0.007169445
##           2.5 %     97.5 %
## TPT 0.001695706 0.01077185

##4.2. Kabupaten Bantul

susenas.tpt.02=filter(susenas.tpt, KODE_KAB == "02")
susenas_diy.02=filter(susenas_diy.15, KODE_KAB == "02")
des7.1.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas.tpt.02)
svytotal(~bekerja, des7.1.2)
svytotal(~pengangguran, des7.1.2)
svytotal(~TPT, des7.1.2)
svymean(~TPT, des7.1.2)

des7.2.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.02)
svymean(~TPAK, des7.2.2)
svytotal(~TPAK, des7.2.2)
##          total    SE
## bekerja 559231 23685
##               total     SE
## pengangguran 7932.8 2338.8
##      total     SE
## TPT 7932.8 2338.8
##         mean     SE
## TPT 0.013987 0.0042
##         mean     SE
## TPAK 0.70574 0.0109
##       total    SE
## TPAK 567164 23495
sakernas.tpt.02=filter(sakernas.tpt, KODE_KAB == "02")
sakernas2.02=filter(sakernas2, KODE_KAB == "02")
sakernas3.02=filter(sakernas3, KODE_KAB == "02")
sakernas_diy.02=filter(sakernas_diy, KODE_KAB == "02")

des7.3_2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt.02)
des7.3.1_2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas2.02)
des7.3.2_2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas3.02)
des7.4_2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.02)

svytotal(~bekerja, des7.4_2)
svytotal(~TPT, des7.3.1_2)
svymean(~TPT, des7.3.1_2)

svytotal(~bekerja.p, des7.4_2)
svytotal(~TPT.p, des7.3.2_2)
svymean(~TPT.p, des7.3.2_2)

svymean(~TPAK, des7.4_2)
svytotal(~TPAK, des7.4_2)
svymean(~TPAK.p, des7.4_2)
svytotal(~TPAK.p, des7.4_2)
##          total    SE
## bekerja 564360 24064
##      total     SE
## TPT 7476.4 2107.1
##         mean     SE
## TPT 0.013074 0.0035
##            total    SE
## bekerja.p 564360 24064
##        total     SE
## TPT.p 7476.4 2107.1
##           mean     SE
## TPT.p 0.013074 0.0035
##         mean     SE
## TPAK 0.71919 0.0139
##       total    SE
## TPAK 571837 24712
##           mean     SE
## TPAK.p 0.71919 0.0139
##         total    SE
## TPAK.p 571837 24712
  1. Variabel Bekerja Skenario 1
mns3.1.2 = svytotal(~bekerja+bekerja.p, des7.4_2)
vcov(mns3.1.2)
##             bekerja bekerja.p
## bekerja   579061549 579061549
## bekerja.p 579061549 579061549
var_xA = 23685^2
var_xB = 24064^2
myu_xA = 559231
myu_xB = 564360

myu_B = 564360
var_B = 24064^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 579061549

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~bekerja, des7.4_2), level = 0.95)
## [1] 0.5079368
## [1] 561754.8
## [1] 561754.9
## [1] 16880.66
## [1] 0.03004988
## [1] 528668.8
## [1] 594841
##            2.5 %   97.5 %
## bekerja 517196.2 611524.1
  1. Variabel Pengangguran Skenario 1
mns3.2.2 = svytotal(~TPT+TPT.p, des7.3_2)
vcov(mns3.2.2)
##           TPT   TPT.p
## TPT   4439702 4439702
## TPT.p 4439702 4439702
var_xA = 2338.8^2
var_xB = 2107.1^2
myu_xA = 7932.8
myu_xB = 7476.4

myu_B = 7476.4
var_B = 2107.1^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 4439702 

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPT, des7.3_2), level = 0.95)
## [1] 0.4480257
## [1] 7680.879
## [1] 7680.871
## [1] 1565.518
## [1] 0.2038203
## [1] 4612.457
## [1] 10749.29
##        2.5 %   97.5 %
## TPT 3346.688 11606.21
  1. Variabel Angkatan Kerja Skenario 1
mns3.3.2 = svytotal(~TPAK+TPAK.p, des7.4_2)
vcov(mns3.3.2)
##             TPAK    TPAK.p
## TPAK   610691160 610691160
## TPAK.p 610691160 610691160
var_xA = 23495^2
var_xB = 24712^2
myu_xA = 567164
myu_xB = 571837

myu_B = 571837
var_B = 24712^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 610691160

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPAK, des7.4_2), level = 0.95)
## [1] 0.5252292
## [1] 569382.6
## [1] 569382.6
## [1] 17027.21
## [1] 0.02990469
## [1] 536009.2
## [1] 602755.9
##         2.5 %   97.5 %
## TPAK 523401.6 620271.6
  1. Variabel TPAK Skenario 1
mns3.5.2 = svymean(~TPAK+TPAK.p, des7.4_2)
vcov(mns3.5.2)
##                TPAK       TPAK.p
## TPAK   0.0001943775 0.0001943775
## TPAK.p 0.0001943775 0.0001943775
var_xA = 0.0109^2
var_xB = 0.0139^2
myu_xA = 0.70574
myu_xB = 0.71919

myu_B = 0.71919
var_B = 0.0139^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0001943775

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPAK, des7.4_2), level = 0.95)
## [1] 0.6192231
## [1] 0.7108614
## [1] 0.7108111
## [1] 0.008492329
## [1] 0.01194738
## [1] 0.6941662
## [1] 0.7274561
##          2.5 %    97.5 %
## TPAK 0.6918673 0.7465186
  1. Variabel TPT Skenario 1
mns3.4.2 = svymean(~TPT+TPT.p, des7.3_2)
vcov(mns3.4.2)
##                 TPT         TPT.p
## TPT   0.00001245426 0.00001245426
## TPT.p 0.00001245426 0.00001245426
var_xA = 0.0042^2
var_xB = 0.0035^2
myu_xA = 0.013987
myu_xB = 0.013074

myu_B = 0.013074
var_B = 0.0035^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1.245426e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPT, des7.3_2), level = 0.95)
## [1] 0.4098361
## [1] 0.01344818
## [1] 0.01345442
## [1] 0.002657195
## [1] 0.1974961
## [1] 0.008246317
## [1] 0.01866252
##           2.5 %     97.5 %
## TPT 0.006157622 0.01999128

##4.3. Kabupaten Gunung Kidul

susenas.tpt.03=filter(susenas.tpt, KODE_KAB == "03")
susenas_diy.03=filter(susenas_diy.15, KODE_KAB == "03")
des7.1.3 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas.tpt.03)
svytotal(~bekerja, des7.1.3)
svytotal(~pengangguran, des7.1.3)
svytotal(~TPT, des7.1.3)
svymean(~TPT, des7.1.3)

des7.2.3 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.03)
svymean(~TPAK, des7.2.3)
svytotal(~TPAK, des7.2.3)
##          total    SE
## bekerja 456758 15909
##               total     SE
## pengangguran 1275.8 641.24
##      total     SE
## TPT 1275.8 641.24
##          mean     SE
## TPT 0.0027853 0.0014
##         mean     SE
## TPAK 0.77408 0.0109
##       total    SE
## TPAK 458034 15955
sakernas.tpt.03=filter(sakernas.tpt, KODE_KAB == "03")
sakernas2.03=filter(sakernas2, KODE_KAB == "03")
sakernas3.03=filter(sakernas3, KODE_KAB == "03")
sakernas_diy.03=filter(sakernas_diy, KODE_KAB == "03")

des7.3_3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt.03)
des7.3.1_3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas2.03)
des7.3.2_3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas3.03)
des7.4_3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.03)

svytotal(~bekerja, des7.4_3)
svytotal(~TPT, des7.3.1_3)
svymean(~TPT, des7.3.1_3)

svytotal(~bekerja.p, des7.4_3)
svytotal(~TPT.p, des7.3.2_3)
svymean(~TPT.p, des7.3.2_3)

svymean(~TPAK, des7.4_3)
svytotal(~TPAK, des7.4_3)
svymean(~TPAK.p, des7.4_3)
svytotal(~TPAK.p, des7.4_3)
##          total    SE
## bekerja 445957 15151
##      total     SE
## TPT 2570.7 888.63
##          mean     SE
## TPT 0.0057313 0.0019
##            total    SE
## bekerja.p 445957 15151
##        total     SE
## TPT.p 2851.6 1005.6
##            mean     SE
## TPT.p 0.0063538 0.0021
##         mean     SE
## TPAK 0.75505 0.0098
##       total    SE
## TPAK 448528 15616
##           mean     SE
## TPAK.p 0.75552 0.0097
##         total    SE
## TPAK.p 448809 15655
  1. Variabel Bekerja Skenario 1
mns3.1.3 = svytotal(~bekerja+bekerja.p, des7.4_3)
vcov(mns3.1.3)
##             bekerja bekerja.p
## bekerja   229554879 229554879
## bekerja.p 229554879 229554879
var_xA = 15909^2
var_xB = 15151^2
myu_xA = 456758
myu_xB = 445957

myu_B = 445957
var_B = 15151^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 229554879

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~bekerja, des7.4_3), level = 0.95)
## [1] 0.4756101
## [1] 451094.1
## [1] 451094.1
## [1] 10971.47
## [1] 0.02432191
## [1] 429590
## [1] 472598.2
##            2.5 %   97.5 %
## bekerja 416261.8 475652.9
  1. Variabel Pengangguran Skenario 1
mns3.2.3 = svytotal(~TPT+TPT.p, des7.3_3)
vcov(mns3.2.3)
##            TPT    TPT.p
## TPT   789668.3 789668.3
## TPT.p 789668.3 789668.3
var_xA = 641.24^2
var_xB = 1005.6^2
myu_xA = 1275.8
myu_xB = 2851.6

myu_B = 2570.7
var_B = 888.63^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 789668.3

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPT, des7.3_3), level = 0.95)
## [1] 0.7109231
## [1] 1731.327
## [1] 1695.882
## [1] 592.6824
## [1] 0.3494833
## [1] 534.2242
## [1] 2857.539
##        2.5 %   97.5 %
## TPT 828.9712 4312.348
  1. Variabel Angkatan Kerja Skenario 1
mns3.3.3 = svytotal(~TPAK+TPAK.p, des7.4_3)
vcov(mns3.3.3)
##             TPAK    TPAK.p
## TPAK   243859230 244436172
## TPAK.p 244436172 245092059
var_xA = 15955^2
var_xB = 15655^2
myu_xA = 458034
myu_xB = 448809

myu_B = 448528
var_B = 15616^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 244436172

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPAK, des7.4_3), level = 0.95)
## [1] 0.4905102
## [1] 453334
## [1] 453041.1
## [1] 11147.89
## [1] 0.0246068
## [1] 431191.2
## [1] 474891
##         2.5 %   97.5 %
## TPAK 417921.3 479134.8
  1. Variabel TPAK Skenario 1
mns3.5.3 = svymean(~TPAK+TPAK.p, des7.4_3)
vcov(mns3.5.3)
##                 TPAK        TPAK.p
## TPAK   0.00009631563 0.00009519356
## TPAK.p 0.00009519356 0.00009429198
var_xA = 0.0109^2
var_xB = 0.0097^2
myu_xA = 0.77408
myu_xB = 0.75552

myu_B = 0.75505
var_B = 0.0098^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 9.519356e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPAK, des7.4_3), level = 0.95)
## [1] 0.4419446
## [1] 0.7637225
## [1] 0.7633487
## [1] 0.007312748
## [1] 0.009579827
## [1] 0.7490157
## [1] 0.7776817
##          2.5 %    97.5 %
## TPAK 0.7358146 0.7742849
  1. Variabel TPT Skenario 1
mns3.4.3 = svymean(~TPT+TPT.p, des7.3_3)
vcov(mns3.4.3)
##                  TPT          TPT.p
## TPT   0.000003535039 0.000003535039
## TPT.p 0.000003535039 0.000003535039
var_xA = 0.0014^2
var_xB = 0.0021^2
myu_xA = 0.0027853
myu_xB = 0.0063538

myu_B = 0.0057313
var_B = 0.0019^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3.535039e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPT, des7.3_3), level = 0.95)
## [1] 0.6923077
## [1] 0.0038833
## [1] 0.003750957
## [1] 0.001283833
## [1] 0.342268
## [1] 0.001234645
## [1] 0.006267268
##           2.5 %      97.5 %
## TPT 0.002046259 0.009416389

##4.4. Kabupaten Sleman

susenas.tpt.04=filter(susenas.tpt, KODE_KAB == "04")
susenas_diy.04=filter(susenas_diy.15, KODE_KAB == "04")
des7.1.4 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas.tpt.04)
svytotal(~bekerja, des7.1.4)
svytotal(~pengangguran, des7.1.4)
svytotal(~TPT, des7.1.4)
svymean(~TPT, des7.1.4)

des7.2.4 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.04)
svymean(~TPAK, des7.2.4)
svytotal(~TPAK, des7.2.4)
##          total    SE
## bekerja 643825 41872
##               total   SE
## pengangguran 2626.9 1142
##      total   SE
## TPT 2626.9 1142
##          mean     SE
## TPT 0.0040635 0.0018
##         mean     SE
## TPAK 0.66868 0.0158
##       total    SE
## TPAK 646452 41731
sakernas.tpt.04=filter(sakernas.tpt, KODE_KAB == "04")
sakernas2.04=filter(sakernas2, KODE_KAB == "04")
sakernas3.04=filter(sakernas3, KODE_KAB == "04")
sakernas_diy.04=filter(sakernas_diy, KODE_KAB == "04")

des7.3_4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt.04)
des7.3.1_4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas2.04)
des7.3.2_4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas3.04)
des7.4_4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.04)

svytotal(~bekerja, des7.4_4)
svytotal(~TPT, des7.3.1_4)
svymean(~TPT, des7.3.1_4)

svytotal(~bekerja.p, des7.4_4)
svytotal(~TPT.p, des7.3.2_4)
svymean(~TPT.p, des7.3.2_4)

svymean(~TPAK, des7.4_4)
svytotal(~TPAK, des7.4_4)
svymean(~TPAK.p, des7.4_4)
svytotal(~TPAK.p, des7.4_4)
##          total    SE
## bekerja 633981 32009
##      total     SE
## TPT 6338.8 2298.9
##          mean     SE
## TPT 0.0098995 0.0035
##            total    SE
## bekerja.p 633981 32009
##        total     SE
## TPT.p 5823.2 2011.1
##            mean    SE
## TPT.p 0.0091015 0.003
##         mean     SE
## TPAK 0.68804 0.0121
##       total    SE
## TPAK 640320 32710
##           mean    SE
## TPAK.p 0.68749 0.012
##         total    SE
## TPAK.p 639804 32628
  1. Variabel Bekerja Skenario 1
mns3.1.4 = svytotal(~bekerja+bekerja.p, des7.4_4)
vcov(mns3.1.4)
##              bekerja  bekerja.p
## bekerja   1024605312 1024605312
## bekerja.p 1024605312 1024605312
var_xA = 41872^2
var_xB = 32009^2
myu_xA = 643825
myu_xB = 633981

myu_B = 633981
var_B = 32009^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1024605312

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~bekerja, des7.4_4), level = 0.95)
## [1] 0.3688391
## [1] 637611.9
## [1] 637612
## [1] 25429.33
## [1] 0.03988214
## [1] 587770.5
## [1] 687453.4
##            2.5 % 97.5 %
## bekerja 571243.2 696718
  1. Variabel Pengangguran Skenario 1
mns3.2.4 = svytotal(~TPT+TPT.p, des7.3_4)
vcov(mns3.2.4)
##           TPT   TPT.p
## TPT   4044556 4044556
## TPT.p 4044556 4044556
var_xA = 1142^2
var_xB = 2011.1^2
myu_xA = 2626.9
myu_xB = 5823.2

myu_B = 6338.8
var_B = 2298.9^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 4044556 

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPT, des7.3_4), level = 0.95)
## [1] 0.7561712
## [1] 3406.25
## [1] 3921.83
## [1] 1492.159
## [1] 0.3804752
## [1] 997.198
## [1] 6846.463
##        2.5 %   97.5 %
## TPT 1881.462 9764.862
  1. Variabel Angkatan Kerja Skenario 1
mns3.3.4 = svytotal(~TPAK+TPAK.p, des7.4_4)
vcov(mns3.3.4)
##              TPAK     TPAK.p
## TPAK   1069967033 1067135223
## TPAK.p 1067135223 1064569330
var_xA = 41731^2
var_xB = 32628^2
myu_xA = 646452
myu_xB = 639804

myu_B = 640320
var_B = 32710^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1067135223

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPAK, des7.4_4), level = 0.95)
## [1] 0.3793879
## [1] 642326.2
## [1] 642848.2
## [1] 25770.46
## [1] 0.04008794
## [1] 592338.1
## [1] 693358.3
##         2.5 %   97.5 %
## TPAK 576208.4 704430.6
  1. Variabel TPAK Skenario 1
mns3.5.4 = svymean(~TPAK+TPAK.p, des7.4_4)
vcov(mns3.5.4)
##                TPAK       TPAK.p
## TPAK   0.0001457487 0.0001442317
## TPAK.p 0.0001442317 0.0001430196
var_xA = 0.0158^2
var_xB = 0.012^2
myu_xA = 0.66868
myu_xB = 0.68749

myu_B = 0.68804
var_B = 0.0121^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0001442317

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPAK, des7.4_4), level = 0.95)
## [1] 0.3658165
## [1] 0.680609
## [1] 0.6811479
## [1] 0.009672785
## [1] 0.01420071
## [1] 0.6621893
## [1] 0.7001066
##          2.5 %    97.5 %
## TPAK 0.6643778 0.7117017
  1. Variabel TPT Skenario 1
mns3.4.4 = svymean(~TPT+TPT.p, des7.3_4)
vcov(mns3.4.4)
##                  TPT          TPT.p
## TPT   0.000009117403 0.000009117403
## TPT.p 0.000009117403 0.000009117403
var_xA = 0.0018^2
var_xB = 0.003^2
myu_xA = 0.0040635
myu_xB = 0.0091015

myu_B = 0.0098995
var_B = 0.0035^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 9.117403e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPT, des7.3_4), level = 0.95)
## [1] 0.7352941
## [1] 0.005397088
## [1] 0.006146765
## [1] 0.002336359
## [1] 0.3800958
## [1] 0.001567501
## [1] 0.01072603
##           2.5 %    97.5 %
## TPT 0.003183362 0.0150196

##4.5. Kota Yogyakarta

susenas.tpt.05=filter(susenas.tpt, KODE_KAB == "71")
susenas_diy.05=filter(susenas_diy.15, KODE_KAB == "71")
des7.1.5 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas.tpt.05)
svytotal(~bekerja, des7.1.5)
svytotal(~pengangguran, des7.1.5)
svytotal(~TPT, des7.1.5)
svymean(~TPT, des7.1.5)

des7.2.5 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.05)
svymean(~TPAK, des7.2.5)
svytotal(~TPAK, des7.2.5)
##          total    SE
## bekerja 227055 13528
##               total     SE
## pengangguran 2264.2 898.89
##      total     SE
## TPT 2264.2 898.89
##          mean     SE
## TPT 0.0098734 0.0039
##         mean     SE
## TPAK 0.65203 0.0169
##       total    SE
## TPAK 229320 13568
sakernas.tpt.05=filter(sakernas.tpt, KODE_KAB == "71")
sakernas2.05=filter(sakernas2, KODE_KAB == "71")
sakernas3.05=filter(sakernas3, KODE_KAB == "71")
sakernas_diy.05=filter(sakernas_diy, KODE_KAB == "71")

des7.3_5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt.05)
des7.3.1_5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas2.05)
des7.3.2_5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas3.05)
des7.4_5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.05)

svytotal(~bekerja, des7.4_5)
svytotal(~TPT, des7.3.1_5)
svymean(~TPT, des7.3.1_5)

svytotal(~bekerja.p, des7.4_5)
svytotal(~TPT.p, des7.3.2_5)
svymean(~TPT.p, des7.3.2_5)

svymean(~TPAK, des7.4_5)
svytotal(~TPAK, des7.4_5)
svymean(~TPAK.p, des7.4_5)
svytotal(~TPAK.p, des7.4_5)
##          total    SE
## bekerja 265487 20195
##     total     SE
## TPT  5388 1524.6
##         mean     SE
## TPT 0.019891 0.0054
##            total    SE
## bekerja.p 265487 20195
##        total     SE
## TPT.p 4981.5 1489.8
##           mean     SE
## TPT.p 0.018418 0.0053
##         mean     SE
## TPAK 0.66101 0.0164
##       total    SE
## TPAK 270875 20529
##           mean     SE
## TPAK.p 0.66001 0.0169
##         total    SE
## TPAK.p 270469 20525
  1. Variabel Bekerja Skenario 1
mns3.1.5 = svytotal(~bekerja+bekerja.p, des7.4_5)
vcov(mns3.1.5)
##             bekerja bekerja.p
## bekerja   407818426 407818426
## bekerja.p 407818426 407818426
var_xA = 13528^2
var_xB = 20195^2
myu_xA = 227055
myu_xB = 265487

myu_B = 265487
var_B = 20195^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 407818426

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~bekerja, des7.4_5), level = 0.95)
## [1] 0.6902625
## [1] 238958.8
## [1] 238960.1
## [1] 11240.54
## [1] 0.04703941
## [1] 216928.6
## [1] 260991.6
##            2.5 %   97.5 %
## bekerja 225906.7 305067.8
  1. Variabel Pengangguran Skenario 1
mns3.2.5 = svytotal(~TPT+TPT.p, des7.3_5)
vcov(mns3.2.5)
##           TPT   TPT.p
## TPT   2219512 2219512
## TPT.p 2219512 2219512
var_xA = 898.89^2
var_xB = 1489.8^2
myu_xA = 2264.2
myu_xB = 4981.5

myu_B = 5388
var_B = 1524.6^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2219512 

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPT, des7.3_5), level = 0.95)
## [1] 0.7331127
## [1] 2989.413
## [1] 3395.906
## [1] 835.0131
## [1] 0.2458882
## [1] 1759.28
## [1] 5032.531
##        2.5 %   97.5 %
## TPT 2061.533 7901.453
  1. Variabel Angkatan Kerja Skenario 1
mns3.3.5 = svytotal(~TPAK+TPAK.p, des7.4_5)
vcov(mns3.3.5)
##             TPAK    TPAK.p
## TPAK   421460364 421294311
## TPAK.p 421294311 421293510
var_xA = 13568^2
var_xB = 20525^2
myu_xA = 229320
myu_xB = 270469

myu_B = 270875
var_B = 20529^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 421294311

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPAK, des7.4_5), level = 0.95)
## [1] 0.6959021
## [1] 241833.3
## [1] 242238.1
## [1] 11324.63
## [1] 0.04675001
## [1] 220041.8
## [1] 264434.3
##         2.5 %   97.5 %
## TPAK 230638.2 311112.3
  1. Variabel TPAK Skenario 1
mns3.5.5 = svymean(~TPAK+TPAK.p, des7.4_5)
vcov(mns3.5.5)
##                TPAK       TPAK.p
## TPAK   0.0002696273 0.0002772316
## TPAK.p 0.0002772316 0.0002857993
var_xA = 0.0169^2
var_xB = 0.0169^2
myu_xA = 0.65203
myu_xB = 0.66001

myu_B = 0.66101
var_B = 0.0164^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0002772316

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPAK, des7.4_5), level = 0.95)
## [1] 0.5
## [1] 0.65602
## [1] 0.657137
## [1] 0.01159355
## [1] 0.01764252
## [1] 0.6344137
## [1] 0.6798604
##          2.5 %    97.5 %
## TPAK 0.6288234 0.6931899
  1. Variabel TPT Skenario 1
mns3.4.5 = svymean(~TPT+TPT.p, des7.3_5)
vcov(mns3.4.5)
##                 TPT         TPT.p
## TPT   0.00002834268 0.00002834268
## TPT.p 0.00002834268 0.00002834268
var_xA = 0.0039^2
var_xB = 0.0053^2
myu_xA = 0.0098734
myu_xB = 0.018418

myu_B = 0.019891
var_B = 0.0054^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2.834268e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPT, des7.3_5), level = 0.95)
## [1] 0.6487298
## [1] 0.01287486
## [1] 0.014298
## [1] 0.003256972
## [1] 0.2277921
## [1] 0.007914337
## [1] 0.02068167
##           2.5 %     97.5 %
## TPT 0.007983572 0.02885242

##5. Skenario 2 (Berdasarkan Hasil Prediksi Jenis Kegiatan)

susenas_diy.15$TPAK = ifelse(susenas_diy.15$jk == "1" | susenas_diy.15$jk=="2", 1, 0)

susenas_diy.15$bekerja = ifelse(susenas_diy.15$jk == "1", 1, 0)

susenas.tpt1 = susenas_diy.15 %>% filter(jk=="1" | jk=="2")
susenas.tpt1$TPT[susenas.tpt1$jk=="2"]=1
susenas.tpt1$TPT[susenas.tpt1$jk=="1"]=0
des7.1.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas.tpt1)
svytotal(~TPT, des7.1.1)
svymean(~TPT, des7.1.1)

des7.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.15)
svymean(~TPAK, des7.2)
svytotal(~TPAK, des7.2)
svytotal(~bekerja, des7.2)
##     total     SE
## TPT 61879 5805.8
##         mean     SE
## TPT 0.029952 0.0027
##         mean     SE
## TPAK 0.67712 0.0068
##        total    SE
## TPAK 2065977 52622
##           total    SE
## bekerja 2004098 51549
sakernas_diy$TPAK = ifelse(sakernas_diy$jk == "1" | sakernas_diy$jk=="2", 1, 0)

sakernas_diy$bekerja = ifelse(sakernas_diy$jk == "1", 1, 0)

sakernas5 = sakernas_diy %>% filter(jk=="1" | jk=="2")
sakernas5$TPT[sakernas5$jk=="2"]=1
sakernas5$TPT[sakernas5$jk=="1"]=0

sakernas_diy$TPAK.p = ifelse(sakernas_diy$jk.p == "1" | sakernas_diy$jk.p=="2", 1, 0)

sakernas_diy$bekerja.p = ifelse(sakernas_diy$jk.p == "1", 1, 0)

sakernas6 = sakernas_diy %>% filter(jk.p=="1" | jk.p=="2")
sakernas6$TPT.p[sakernas6$jk.p=="2"]=1
sakernas6$TPT.p[sakernas6$jk.p=="1"]=0

sakernas.tpt1 <- sakernas5[(sakernas5$id_unik %in% sakernas6$id_unik), ]

sakernas.tpt1$TPT.p[sakernas.tpt1$jk.p=="2"]=1
sakernas.tpt1$TPT.p[sakernas.tpt1$jk.p=="1"]=0
des7.3.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt1)
des7.3.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas5)
des7.3.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas6)
des7.3.6 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy)
svytotal(~TPT, des7.3.4)
svymean(~TPT, des7.3.4)

svytotal(~TPT.p, des7.3.5)
svymean(~TPT.p, des7.3.5)

svytotal(~bekerja, des7.3.6)
svytotal(~bekerja.p, des7.3.6)

svytotal(~TPAK, des7.3.6)
svytotal(~TPAK.p, des7.3.6)

svymean(~TPAK, des7.3.6)
svymean(~TPAK.p, des7.3.6)
##     total     SE
## TPT 95833 7243.6
##         mean     SE
## TPT 0.043888 0.0031
##       total     SE
## TPT.p 71916 5357.9
##           mean     SE
## TPT.p 0.034107 0.0025
##           total    SE
## bekerja 2087771 50155
##             total    SE
## bekerja.p 2036638 48505
##        total    SE
## TPAK 2183605 51953
##          total    SE
## TPAK.p 2108554 49530
##         mean     SE
## TPAK 0.70102 0.0061
##           mean     SE
## TPAK.p 0.67692 0.0061

#1. Variabel Bekerja Skenario 2

mns3.1.1 = svytotal(~bekerja+bekerja.p, des7.3.6)
vcov(mns3.1.1)
##              bekerja  bekerja.p
## bekerja   2515568799 2414988207
## bekerja.p 2414988207 2352738676
var_xA = 51549^2
var_xB = 48505^2
myu_xA = 2004098
myu_xB = 2036638

myu_B = 2087771
var_B = 50155^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2414988207

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~bekerja, des7.3.6), level = 0.95)
## [1] 0.4696046
## [1] 2021357
## [1] 2072086
## [1] 36761.75
## [1] 0.01774143
## [1] 2000033
## [1] 2144139
##           2.5 %  97.5 %
## bekerja 1989468 2186074

#2. Variabel Pengangguran Skenario 2

mns3.2.1 = svytotal(~TPT+TPT.p, des7.3.3)
vcov(mns3.2.1)
#table(sakernas.tpt1$TPT, sakernas.tpt1$TPT)
##            TPT    TPT.p
## TPT   13704444  9185408
## TPT.p  9185408 24759717
var_xA = 5805.8^2
var_xB = 5357.9^2
myu_xA = 61879
myu_xB = 71916

myu_B = 95833
var_B = 7243.6^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 9185408

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPT, des7.3.3), level = 0.95)
## [1] 0.4599434
## [1] 67299.55
## [1] 94355.87
## [1] 7149.681
## [1] 0.07577357
## [1] 80342.5
## [1] 108369.2
##        2.5 %   97.5 %
## TPT 20074.88 34586.27

#3. Variabel Angkatan Kerja Skenario 2

mns3.3.1 = svytotal(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.3.1)
##              TPAK     TPAK.p
## TPAK   2699099641 2543308390
## TPAK.p 2543308390 2453224583
var_xA = 52622^2
var_xB = 49530^2
myu_xA = 2065977
myu_xB = 2108554

myu_B = 2183605
var_B = 51953^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2543308390

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svytotal(~TPAK, des7.3.6), level = 0.95)
## [1] 0.4697591
## [1] 2088553
## [1] 2162870
## [1] 38216.47
## [1] 0.01766934
## [1] 2087965
## [1] 2237774
##        2.5 %  97.5 %
## TPAK 2081779 2285430

#4. Variabel TPAK Skenario 2

mns3.4.1 = svymean(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.4.1)
##                 TPAK        TPAK.p
## TPAK   0.00003781874 0.00003462845
## TPAK.p 0.00003462845 0.00003760976
var_xA = 0.0068^2
var_xB = 0.0061^2
myu_xA = 0.67712
myu_xB = 0.67692

myu_B = 0.70102
var_B = 0.0061^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3.462845e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPAK, des7.3.6), level = 0.95)
## [1] 0.4458957
## [1] 0.6770092
## [1] 0.701103
## [1] 0.00477918
## [1] 0.006816659
## [1] 0.6917358
## [1] 0.7104702
##          2.5 %    97.5 %
## TPAK 0.6889621 0.7130685

#5. Variabel TPT Skenario 2

mns3.4.1 = svymean(~TPT+TPT.p, des7.3.3)
vcov(mns3.4.1)
##                  TPT          TPT.p
## TPT   0.000003172067 0.000002049135
## TPT.p 0.000002049135 0.000005419683
var_xA = 0.0027^2
var_xB = 0.0025^2
myu_xA = 0.029952
myu_xB = 0.034107

myu_B = 0.043888
var_B = 0.0031^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2.049135e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~TPT, des7.3.3), level = 0.95)
## [1] 0.4615953
## [1] 0.03218907
## [1] 0.04325918
## [1] 0.003049571
## [1] 0.07049535
## [1] 0.03728203
## [1] 0.04923634
##           2.5 %     97.5 %
## TPT 0.009662869 0.01664438

5.1. Kabupaten Kulonprogo

susenas_kulonprogo.15=filter(susenas_diy.15, KODE_KAB == "01")
susenas_kulonprogo.tpt=filter(susenas.tpt1, KODE_KAB == "01")
des7.1.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_kulonprogo.tpt)
svytotal(~TPT, des7.1.1)
svymean(~TPT, des7.1.1)

des7.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_kulonprogo.15)
svymean(~TPAK, des7.2)
svytotal(~TPAK, des7.2)
svytotal(~bekerja, des7.2)
##      total     SE
## TPT 3426.4 856.49
##         mean     SE
## TPT 0.014279 0.0035
##         mean     SE
## TPAK 0.71135 0.0132
##       total     SE
## TPAK 239957 9168.8
##          total     SE
## bekerja 236530 9103.3
sakernas5_kulonprogo=filter(sakernas5, KODE_KAB == "01")
sakernas6_kulonprogo=filter(sakernas6, KODE_KAB == "01")
sakernas.diy_kulonprogo=filter(sakernas_diy, KODE_KAB == "01")
sakernas.tpt1_kulonprogo=filter(sakernas.tpt1, KODE_KAB == "01")
des7.3.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt1_kulonprogo)
des7.3.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas5_kulonprogo)
des7.3.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas6_kulonprogo)
des7.3.6 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.diy_kulonprogo)
svytotal(~TPT, des7.3.4)
svymean(~TPT, des7.3.4)

svytotal(~TPT.p, des7.3.5)
svymean(~TPT.p, des7.3.5)

svytotal(~bekerja, des7.3.6)
svytotal(~bekerja.p, des7.3.6)

svytotal(~TPAK, des7.3.6)
svytotal(~TPAK.p, des7.3.6)

svymean(~TPAK, des7.3.6)
svymean(~TPAK.p, des7.3.6)
##      total     SE
## TPT 7103.2 1333.9
##         mean     SE
## TPT 0.024668 0.0043
##        total     SE
## TPT.p 6670.3 1270.5
##          mean     SE
## TPT.p 0.02348 0.0044
##          total    SE
## bekerja 280845 17023
##            total    SE
## bekerja.p 277414 16569
##       total    SE
## TPAK 287948 17495
##         total    SE
## TPAK.p 284084 16820
##         mean     SE
## TPAK 0.74727 0.0132
##           mean     SE
## TPAK.p 0.73724 0.0125

#1. Variabel Bekerja Skenario 2

mns3.1.1 = svytotal(~bekerja+bekerja.p, des7.3.6)
vcov(mns3.1.1)
##             bekerja bekerja.p
## bekerja   289773745 280709104
## bekerja.p 280709104 274522443
var_xA = 9103.3^2
var_xB = 16569^2
myu_xA = 236530
myu_xB = 277414

myu_B = 280845
var_B = 17023^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 280709104

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.7681319
## [1] 246009.7
## [1] 248734.1
## [1] 8325.21
## [1] 0.03347033
## [1] 232416.6
## [1] 265051.5

#2. Variabel Pengangguran Skenario 2

mns3.2.1 = svytotal(~TPT+TPT.p, des7.3.3)
vcov(mns3.2.1)
#table(sakernas.tpt1$TPT, sakernas.tpt1$TPT)
##            TPT   TPT.p
## TPT   370704.5  133312
## TPT.p 133312.0 1160112
var_xA = 856.49^2
var_xB = 1270.5^2
myu_xA = 3426.4
myu_xB = 6670.3

myu_B = 7103.2
var_B = 1333.9^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 133312

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.6875406
## [1] 4439.987
## [1] 6919.002
## [1] 1331.059
## [1] 0.1923774
## [1] 4310.125
## [1] 9527.878

#3. Variabel Angkatan Kerja Skenario 2

mns3.3.1 = svytotal(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.3.1)
##             TPAK    TPAK.p
## TPAK   306062634 292759993
## TPAK.p 292759993 282914490
var_xA = 9168.8^2
var_xB = 16820^2
myu_xA = 239957
myu_xB = 284084

myu_B = 287948
var_B = 17495^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 292759993

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.770922
## [1] 250065.5
## [1] 252745.4
## [1] 8516.099
## [1] 0.03369437
## [1] 236053.9
## [1] 269437

#4. Variabel TPAK Skenario 2

mns3.4.1 = svymean(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.4.1)
##                TPAK       TPAK.p
## TPAK   0.0001742854 0.0001538663
## TPAK.p 0.0001538663 0.0001552137
var_xA = 0.0132^2
var_xB = 0.0125^2
myu_xA = 0.71135
myu_xB = 0.73724

myu_B = 0.74727
var_B = 0.0132^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0001538663

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4727828
## [1] 0.7249997
## [1] 0.7352164
## [1] 0.01012938
## [1] 0.01377742
## [1] 0.7153628
## [1] 0.75507

#5. Variabel TPT Skenario 2

mns3.4.1 = svymean(~TPT+TPT.p, des7.3.3)
vcov(mns3.4.1)
##                  TPT          TPT.p
## TPT   0.000005056066 0.000001697217
## TPT.p 0.000001697217 0.000013669045
var_xA = 0.0035^2
var_xB = 0.0044^2
myu_xA = 0.014279
myu_xB = 0.02348

myu_B = 0.024668
var_B = 0.0043^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1.697217e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.6124644
## [1] 0.01784471
## [1] 0.02417398
## [1] 0.004289391
## [1] 0.1774384
## [1] 0.01576677
## [1] 0.03258118

5.2. Kabupaten Bantul

susenas_bantul.15=filter(susenas_diy.15, KODE_KAB == "02")
susenas_bantul.tpt=filter(susenas.tpt1, KODE_KAB == "02")
des7.1.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_bantul.tpt)
svytotal(~TPT, des7.1.1)
svymean(~TPT, des7.1.1)

des7.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_bantul.15)
svymean(~TPAK, des7.2)
svytotal(~TPAK, des7.2)
svytotal(~bekerja, des7.2)
##     total     SE
## TPT 16270 2603.8
##         mean     SE
## TPT 0.029747 0.0046
##         mean     SE
## TPAK 0.68059 0.0124
##       total    SE
## TPAK 546952 23717
##          total    SE
## bekerja 530682 23213
sakernas5_bantul=filter(sakernas5, KODE_KAB == "02")
sakernas6_bantul=filter(sakernas6, KODE_KAB == "02")
sakernas.diy_bantul=filter(sakernas_diy, KODE_KAB == "02")
sakernas.tpt1_bantul=filter(sakernas.tpt1, KODE_KAB == "02")
des7.3.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt1_bantul)
des7.3.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas5_bantul)
des7.3.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas6_bantul)
des7.3.6 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.diy_bantul)
svytotal(~TPT, des7.3.4)
svymean(~TPT, des7.3.4)

svytotal(~TPT.p, des7.3.5)
svymean(~TPT.p, des7.3.5)

svytotal(~bekerja, des7.3.6)
svytotal(~bekerja.p, des7.3.6)

svytotal(~TPAK, des7.3.6)
svytotal(~TPAK.p, des7.3.6)

svymean(~TPAK, des7.3.6)
svymean(~TPAK.p, des7.3.6)
##     total     SE
## TPT 22152 3822.4
##         mean     SE
## TPT 0.039308 0.0062
##       total     SE
## TPT.p 12197 2505.1
##           mean     SE
## TPT.p 0.022417 0.0044
##          total    SE
## bekerja 541402 23649
##            total    SE
## bekerja.p 531883 22576
##       total    SE
## TPAK 563555 25033
##         total    SE
## TPAK.p 544080 23294
##         mean     SE
## TPAK 0.70878 0.0141
##           mean     SE
## TPAK.p 0.68428 0.0138

#1. Variabel Bekerja Skenario 2

mns3.1.1 = svytotal(~bekerja+bekerja.p, des7.3.6)
vcov(mns3.1.1)
##             bekerja bekerja.p
## bekerja   559255604 529381755
## bekerja.p 529381755 509655935
var_xA = 23213^2
var_xB = 22576^2
myu_xA = 530682
myu_xB = 531883

myu_B = 541402
var_B = 23649^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 529381755

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4860911
## [1] 531299.2
## [1] 540795.6
## [1] 17087.96
## [1] 0.03159781
## [1] 507303.2
## [1] 574288

#2. Variabel Pengangguran Skenario 2

mns3.2.1 = svytotal(~TPT+TPT.p, des7.3.3)
vcov(mns3.2.1)
#table(sakernas.tpt1$TPT, sakernas.tpt1$TPT)
##           TPT   TPT.p
## TPT   2432548 1488534
## TPT.p 1488534 6127965
var_xA = 2603.8^2
var_xB = 2505.1^2
myu_xA = 16270
myu_xB = 12197

myu_B = 22152
var_B = 3822.4^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov =  1488534

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.480688
## [1] 14154.84
## [1] 22616.39
## [1] 3800.135
## [1] 0.1680257
## [1] 15168.13
## [1] 30064.66

#3. Variabel Angkatan Kerja Skenario 2

mns3.3.1 = svytotal(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.3.1)
##             TPAK    TPAK.p
## TPAK   626664676 575344532
## TPAK.p 575344532 542626957
var_xA = 23717^2
var_xB = 23294^2
myu_xA = 546952
myu_xB = 544080

myu_B = 563555
var_B = 25033^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 575344532

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4910028
## [1] 545490.2
## [1] 565050.2
## [1] 18086.27
## [1] 0.03200825
## [1] 529601.1
## [1] 600499.3

#4. Variabel TPAK Skenario 2

mns3.4.1 = svymean(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.4.1)
##                TPAK       TPAK.p
## TPAK   0.0001997467 0.0001825111
## TPAK.p 0.0001825111 0.0001912266
var_xA = 0.0124^2
var_xB = 0.0138^2
myu_xA = 0.68059
myu_xB = 0.68428

myu_B = 0.70878
var_B = 0.0141^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0001825111

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.553283
## [1] 0.6822384
## [1] 0.7068234
## [1] 0.01010119
## [1] 0.01429096
## [1] 0.6870251
## [1] 0.7266217

#5. Variabel TPT Skenario 2

mns3.4.1 = svymean(~TPT+TPT.p, des7.3.3)
vcov(mns3.4.1)
##                  TPT         TPT.p
## TPT   0.000008356458 0.00000459841
## TPT.p 0.000004598410 0.00001891729
var_xA = 0.0046^2
var_xB = 0.0044^2
myu_xA = 0.029747
myu_xB = 0.022417

myu_B = 0.039308
var_B = 0.0062^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 4.598410e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4777887
## [1] 0.02591919
## [1] 0.04013984
## [1] 0.006157771
## [1] 0.153408
## [1] 0.02807061
## [1] 0.05220908

5.3. Kabupaten Gunung Kidul

susenas_gunungkidul.15=filter(susenas_diy.15, KODE_KAB == "03")
susenas_gunungkidul.tpt=filter(susenas.tpt1, KODE_KAB == "03")
des7.1.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_gunungkidul.tpt)
svytotal(~TPT, des7.1.1)
svymean(~TPT, des7.1.1)

des7.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_gunungkidul.15)
svymean(~TPAK, des7.2)
svytotal(~TPAK, des7.2)
svytotal(~bekerja, des7.2)
##     total     SE
## TPT 21509 3370.9
##         mean     SE
## TPT 0.048526 0.0071
##        mean    SE
## TPAK 0.7491 0.011
##       total    SE
## TPAK 443251 15806
##          total    SE
## bekerja 421742 14830
sakernas5_gunungkidul=filter(sakernas5, KODE_KAB == "03")
sakernas6_gunungkidul=filter(sakernas6, KODE_KAB == "03")
sakernas.diy_gunungkidul=filter(sakernas_diy, KODE_KAB == "03")
sakernas.tpt1_gunungkidul=filter(sakernas.tpt1, KODE_KAB == "03")
des7.3.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt1_gunungkidul)
des7.3.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas5_gunungkidul)
des7.3.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas6_gunungkidul)
des7.3.6 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.diy_gunungkidul)
svytotal(~TPT, des7.3.4)
svymean(~TPT, des7.3.4)

svytotal(~TPT.p, des7.3.5)
svymean(~TPT.p, des7.3.5)

svytotal(~bekerja, des7.3.6)
svytotal(~bekerja.p, des7.3.6)

svytotal(~TPAK, des7.3.6)
svytotal(~TPAK.p, des7.3.6)

svymean(~TPAK, des7.3.6)
svymean(~TPAK.p, des7.3.6)
##     total     SE
## TPT 22944 3427.2
##         mean     SE
## TPT 0.051959 0.0074
##       total     SE
## TPT.p 20448 2802.7
##           mean     SE
## TPT.p 0.048362 0.0062
##          total    SE
## bekerja 418633 14980
##            total    SE
## bekerja.p 402354 13981
##       total    SE
## TPAK 441577 15656
##         total    SE
## TPAK.p 422802 14836
##         mean     SE
## TPAK 0.74335 0.0098
##           mean     SE
## TPAK.p 0.71174 0.0098

#1. Variabel Bekerja Skenario 2

mns3.1.1 = svytotal(~bekerja+bekerja.p, des7.3.6)
vcov(mns3.1.1)
##             bekerja bekerja.p
## bekerja   224391669 206464033
## bekerja.p 206464033 195468246
var_xA = 14830^2
var_xB = 13981^2
myu_xA = 421742
myu_xB = 402354

myu_B = 418633
var_B = 14980^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 206464033

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4705577
## [1] 411477.2
## [1] 428269.4
## [1] 11035.49
## [1] 0.02576763
## [1] 406639.8
## [1] 449898.9

#2. Variabel Pengangguran Skenario 2

mns3.2.1 = svytotal(~TPT+TPT.p, des7.3.3)
vcov(mns3.2.1)
#table(sakernas.tpt1$TPT, sakernas.tpt1$TPT)
##           TPT   TPT.p
## TPT   4486137 4004242
## TPT.p 4004242 7439857
var_xA = 3370.9^2
var_xB = 2802.7^2
myu_xA = 21509
myu_xB = 20448

myu_B = 22944
var_B = 3427.2^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 4004242

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.408736
## [1] 20881.67
## [1] 23165.07
## [1] 3303.238
## [1] 0.1425957
## [1] 16690.72
## [1] 29639.42

#3. Variabel Angkatan Kerja Skenario 2

mns3.3.1 = svytotal(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.3.1)
##             TPAK    TPAK.p
## TPAK   245125984 228741954
## TPAK.p 228741954 220096413
var_xA = 15806^2
var_xB = 14836^2
myu_xA = 443251
myu_xB = 422802

myu_B = 441577
var_B = 15656^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 228741954

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4683758
## [1] 432379.8
## [1] 451530.6
## [1] 11565.9
## [1] 0.02561488
## [1] 428861.4
## [1] 474199.7

#4. Variabel TPAK Skenario 2

mns3.4.1 = svymean(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.4.1)
##                 TPAK        TPAK.p
## TPAK   0.00009535862 0.00008573822
## TPAK.p 0.00008573822 0.00009600055
var_xA = 0.011^2
var_xB = 0.0098^2
myu_xA = 0.7491
myu_xB = 0.71174

myu_B = 0.74335
var_B = 0.0098^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 8.573822e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4424991
## [1] 0.7282718
## [1] 0.7581085
## [1] 0.007884825
## [1] 0.01040066
## [1] 0.7426542
## [1] 0.7735627

#5. Variabel TPT Skenario 2

mns3.4.1 = svymean(~TPT+TPT.p, des7.3.3)
vcov(mns3.4.1)
##                 TPT         TPT.p
## TPT   0.00002459235 0.00002028879
## TPT.p 0.00002028879 0.00003607211
var_xA = 0.0071^2
var_xB = 0.0062^2
myu_xA = 0.048526
myu_xB = 0.048362

myu_B = 0.051959
var_B = 0.0074^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2.028879e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4326393
## [1] 0.04843295
## [1] 0.05199645
## [1] 0.007080048
## [1] 0.1361641
## [1] 0.03811956
## [1] 0.06587334

5.4. Kabupaten Sleman

susenas_sleman.15=filter(susenas_diy.15, KODE_KAB == "04")
susenas_sleman.tpt=filter(susenas.tpt1, KODE_KAB == "04")
des7.1.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_sleman.tpt)
svytotal(~TPT, des7.1.1)
svymean(~TPT, des7.1.1)

des7.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_sleman.15)
svymean(~TPAK, des7.2)
svytotal(~TPAK, des7.2)
svytotal(~bekerja, des7.2)
##     total   SE
## TPT 15825 3686
##         mean     SE
## TPT 0.025451 0.0058
##         mean     SE
## TPAK 0.64316 0.0164
##       total    SE
## TPAK 621786 41214
##          total    SE
## bekerja 605962 40539
sakernas5_sleman=filter(sakernas5, KODE_KAB == "04")
sakernas6_sleman=filter(sakernas6, KODE_KAB == "04")
sakernas.diy_sleman=filter(sakernas_diy, KODE_KAB == "04")
sakernas.tpt1_sleman=filter(sakernas.tpt1, KODE_KAB == "04")
des7.3.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt1_sleman)
des7.3.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas5_sleman)
des7.3.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas6_sleman)
des7.3.6 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.diy_sleman)
svytotal(~TPT, des7.3.4)
svymean(~TPT, des7.3.4)

svytotal(~TPT.p, des7.3.5)
svymean(~TPT.p, des7.3.5)

svytotal(~bekerja, des7.3.6)
svytotal(~bekerja.p, des7.3.6)

svytotal(~TPAK, des7.3.6)
svytotal(~TPAK.p, des7.3.6)

svymean(~TPAK, des7.3.6)
svymean(~TPAK.p, des7.3.6)
##     total   SE
## TPT 28525 4400
##         mean     SE
## TPT 0.045721 0.0067
##       total     SE
## TPT.p 23005 3190.2
##          mean     SE
## TPT.p 0.03812 0.0054
##          total    SE
## bekerja 595368 31993
##            total    SE
## bekerja.p 580483 31452
##       total    SE
## TPAK 623893 33021
##         total    SE
## TPAK.p 603488 31735
##         mean     SE
## TPAK 0.67039 0.0129
##           mean    SE
## TPAK.p 0.64846 0.013

#1. Variabel Bekerja Skenario 2

mns3.1.1 = svytotal(~bekerja+bekerja.p, des7.3.6)
vcov(mns3.1.1)
##              bekerja bekerja.p
## bekerja   1023551123 999843557
## bekerja.p  999843557 989255834
var_xA = 40539^2
var_xB = 31452^2
myu_xA = 605962
myu_xB = 580483

myu_B = 595368
var_B = 31993^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 999843557

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.3757554
## [1] 590056.9
## [1] 605044.6
## [1] 25373.68
## [1] 0.04193688
## [1] 555312.2
## [1] 654777

#2. Variabel Pengangguran Skenario 2

mns3.2.1 = svytotal(~TPT+TPT.p, des7.3.3)
vcov(mns3.2.1)
#table(sakernas.tpt1$TPT, sakernas.tpt1$TPT)
##           TPT   TPT.p
## TPT   5552597 3455136
## TPT.p 3455136 7485552
var_xA = 3686^2
var_xB = 3190.2^2
myu_xA = 15825
myu_xB = 23005

myu_B = 28525
var_B = 4400^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3455136

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4282691
## [1] 19930.03
## [1] 27481.07
## [1] 4342.539
## [1] 0.1580193
## [1] 18969.7
## [1] 35992.45

#3. Variabel Angkatan Kerja Skenario 2

mns3.3.1 = svytotal(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.3.1)
##              TPAK     TPAK.p
## TPAK   1090358197 1034637148
## TPAK.p 1034637148 1007124862
var_xA = 41214^2
var_xB = 31735^2
myu_xA = 621786
myu_xB = 603488

myu_B = 623893
var_B = 33021^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1034637148

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.3722174
## [1] 610298.8
## [1] 630890
## [1] 26358.12
## [1] 0.04177926
## [1] 579228.1
## [1] 682551.9

#4. Variabel TPAK Skenario 2

mns3.4.1 = svymean(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.4.1)
##                TPAK       TPAK.p
## TPAK   0.0001653199 0.0001514739
## TPAK.p 0.0001514739 0.0001680650
var_xA = 0.0164^2
var_xB = 0.013^2
myu_xA = 0.64316
myu_xB = 0.64846

myu_B = 0.67039
var_B = 0.0129^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0001514739

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.38588
## [1] 0.6464148
## [1] 0.6685569
## [1] 0.01067806
## [1] 0.0159718
## [1] 0.6476279
## [1] 0.6894859

#5. Variabel TPT Skenario 2

mns3.4.1 = svymean(~TPT+TPT.p, des7.3.3)
vcov(mns3.4.1)
##                 TPT         TPT.p
## TPT   0.00001558758 0.00001001475
## TPT.p 0.00001001475 0.00002286456
var_xA = 0.0058^2
var_xB = 0.0054^2
myu_xA = 0.025451
myu_xB = 0.03812

myu_B = 0.045721
var_B = 0.0067^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1.001475e-05

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.4643312
## [1] 0.03223739
## [1] 0.04370067
## [1] 0.006579737
## [1] 0.1505638
## [1] 0.03080438
## [1] 0.05659695

5.5. Kota Yogyakarta

susenas_jogja.15=filter(susenas_diy.15, KODE_KAB == "71")
susenas_jogja.tpt=filter(susenas.tpt1, KODE_KAB == "71")
des7.1.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_jogja.tpt)
svytotal(~TPT, des7.1.1)
svymean(~TPT, des7.1.1)

des7.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_jogja.15)
svymean(~TPAK, des7.2)
svytotal(~TPAK, des7.2)
svytotal(~bekerja, des7.2)
##      total     SE
## TPT 4848.8 1115.4
##         mean     SE
## TPT 0.022655 0.0053
##         mean     SE
## TPAK 0.60856 0.0174
##       total    SE
## TPAK 214032 13195
##          total    SE
## bekerja 209183 13126
sakernas5_jogja=filter(sakernas5, KODE_KAB == "71")
sakernas6_jogja=filter(sakernas6, KODE_KAB == "71")
sakernas.diy_jogja=filter(sakernas_diy, KODE_KAB == "71")
sakernas.tpt1_jogja=filter(sakernas.tpt1, KODE_KAB == "71")
des7.3.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.tpt1_jogja)
des7.3.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas5_jogja)
des7.3.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas6_jogja)
des7.3.6 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas.diy_jogja)
svytotal(~TPT, des7.3.4)
svymean(~TPT, des7.3.4)

svytotal(~TPT.p, des7.3.5)
svymean(~TPT.p, des7.3.5)

svytotal(~bekerja, des7.3.6)
svytotal(~bekerja.p, des7.3.6)

svytotal(~TPAK, des7.3.6)
svytotal(~TPAK.p, des7.3.6)

svymean(~TPAK, des7.3.6)
svymean(~TPAK.p, des7.3.6)
##     total     SE
## TPT 15109 2230.6
##         mean     SE
## TPT 0.056666 0.0087
##        total     SE
## TPT.p 9596.3 1668.9
##           mean     SE
## TPT.p 0.037766 0.0064
##          total    SE
## bekerja 251523 20460
##            total    SE
## bekerja.p 244504 19592
##       total    SE
## TPAK 266632 20758
##         total    SE
## TPAK.p 254100 20012
##         mean     SE
## TPAK 0.65065 0.0169
##           mean     SE
## TPAK.p 0.62007 0.0174

#1. Variabel Bekerja Skenario 2

mns3.1.1 = svytotal(~bekerja+bekerja.p, des7.3.6)
vcov(mns3.1.1)
##             bekerja bekerja.p
## bekerja   418596659 398589759
## bekerja.p 398589759 383836217
var_xA = 13126^2
var_xB = 19592^2
myu_xA = 209183
myu_xB = 244504

myu_B = 251523
var_B = 20460^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 398589759

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.6901996
## [1] 220125.5
## [1] 226208.1
## [1] 11529.89
## [1] 0.0509703
## [1] 203609.5
## [1] 248806.7

#2. Variabel Pengangguran Skenario 2

mns3.2.1 = svytotal(~TPT+TPT.p, des7.3.3)
vcov(mns3.2.1)
#table(sakernas.tpt1$TPT, sakernas.tpt1$TPT)
##            TPT   TPT.p
## TPT   862457.4  104184
## TPT.p 104184.0 2546233
var_xA = 1115.4^2
var_xB = 1668.9^2
myu_xA = 4848.8
myu_xB = 9596.3

myu_B = 15109
var_B = 2230.6^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 104184.0

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.6912358
## [1] 6314.658
## [1] 14986.25
## [1] 2229.996
## [1] 0.1488028
## [1] 10615.45
## [1] 19357.04

#3. Variabel Angkatan Kerja Skenario 2

mns3.3.1 = svytotal(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.3.1)
##             TPAK    TPAK.p
## TPAK   430888150 411824761
## TPAK.p 411824761 400461860
var_xA = 13195^2
var_xB = 20012^2
myu_xA = 214032
myu_xB = 254100

myu_B = 266632
var_B = 20758^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 411824761

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.6969864
## [1] 226173.1
## [1] 237914
## [1] 11650.2
## [1] 0.04896812
## [1] 215079.6
## [1] 260748.5

#4. Variabel TPAK Skenario 2

mns3.4.1 = svymean(~TPAK+TPAK.p, des7.3.6)
vcov(mns3.4.1)
##                TPAK       TPAK.p
## TPAK   0.0002850374 0.0002725574
## TPAK.p 0.0002725574 0.0003014736
var_xA = 0.0174^2
var_xB = 0.0174^2
myu_xA = 0.60856
myu_xB = 0.62007

myu_B = 0.65065
var_B = 0.0169^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 0.0002725574

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.5
## [1] 0.614315
## [1] 0.6454691
## [1] 0.01276425
## [1] 0.01977516
## [1] 0.6204512
## [1] 0.670487

#5. Variabel TPT Skenario 2

mns3.4.1 = svymean(~TPT+TPT.p, des7.3.3)
vcov(mns3.4.1)
##                  TPT          TPT.p
## TPT   0.000015547087 0.000003043771
## TPT.p 0.000003043771 0.000036591082
var_xA = 0.0053^2
var_xB = 0.0064^2
myu_xA = 0.022655
myu_xB = 0.037766

myu_B = 0.056666
var_B = 0.0087^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3.043771e-06

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)


(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))
## [1] 0.5931933
## [1] 0.02880226
## [1] 0.0559999
## [1] 0.008692286
## [1] 0.1552197
## [1] 0.03896302
## [1] 0.07303678
  1. Variabel Pendapatan Uang Sebulan Status Berusaha Sendiri/Pekerja Bebas
options(survey.lonely.psu = "adjust")
des8 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.156)
svymean(~B5_R28B1, des8)


options(survey.lonely.psu = "adjust")
des9 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.156)
svymean(~B5_R28B1.p, des9)
svymean(~B5_R28B1, des9)
##             mean     SE
## B5_R28B1 1483119 9988.9
##               mean    SE
## B5_R28B1.p 1247446 20557
##             mean    SE
## B5_R28B1 1260581 33776
mns4 = svymean(~B5_R28B1+ B5_R28B1.p, des9)
vcov(mns4)
##              B5_R28B1 B5_R28B1.p
## B5_R28B1   1140844964  465629586
## B5_R28B1.p  465629586  422604507
var_xA = 9570.6^2
var_xB = 20557^2
myu_xA = 1493578
myu_xB = 1247446

myu_B = 1260581
var_B = 33776^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 465629586

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B1, des9), level = 0.95)
## [1] 0.8218616
## [1] 1449732
## [1] 1483470
## [1] 26817.16
## [1] 0.01807732
## [1] 33776
## [1] 0.02679399
## [1] 1430908
## [1] 1536031
##            2.5 %  97.5 %
## B5_R28B1 1194381 1326782

6.1. Kabupaten Kulonprogo

susenas_kulonprogo.156=filter(susenas_diy.156, KODE_KAB == "01")
sakernas_kulonprogo.156=filter(sakernas_diy.156, KODE_KAB == "01")
options(survey.lonely.psu = "adjust")
des8.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_kulonprogo.156)
svymean(~B5_R28B1, des8.1)


options(survey.lonely.psu = "adjust")
des9.1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_kulonprogo.156)
svymean(~B5_R28B1.p, des9.1)
svymean(~B5_R28B1, des9.1)
##             mean    SE
## B5_R28B1 1405299 16968
##               mean    SE
## B5_R28B1.p 1112117 50009
##            mean    SE
## B5_R28B1 897868 53834
mns4.1 = svymean(~B5_R28B1+ B5_R28B1.p, des9.1)
vcov(mns4.1)
##              B5_R28B1 B5_R28B1.p
## B5_R28B1   2898144116 2081326229
## B5_R28B1.p 2081326229 2500912768
var_xA = 18630^2
var_xB = 50009^2
myu_xA = 1401936
myu_xB = 1112117

myu_B = 897868
var_B = 53834^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2081326229

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B1, des9), level = 0.95)
## [1] 0.8781321
## [1] 1366616
## [1] 1109670
## [1] 37108.6
## [1] 0.03344111
## [1] 53834
## [1] 0.05995759
## [1] 1036937
## [1] 1182403
##            2.5 %  97.5 %
## B5_R28B1 1194381 1326782

6.2. Kabupaten Bantul

susenas_bantul.156=filter(susenas_diy.156, KODE_KAB == "02")
sakernas_bantul.156=filter(sakernas_diy.156, KODE_KAB == "02")
options(survey.lonely.psu = "adjust")
des8.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_bantul.156)
svymean(~B5_R28B1, des8.2)


options(survey.lonely.psu = "adjust")
des9.2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_bantul.156)
svymean(~B5_R28B1.p, des9.2)
svymean(~B5_R28B1, des9.2)
##             mean    SE
## B5_R28B1 1543058 20460
##               mean    SE
## B5_R28B1.p 1331683 37894
##             mean    SE
## B5_R28B1 1412421 85447
mns4.2 = svymean(~B5_R28B1+ B5_R28B1.p, des9.2)
vcov(mns4.2)
##              B5_R28B1 B5_R28B1.p
## B5_R28B1   7301135308 1797798007
## B5_R28B1.p 1797798007 1435918631
var_xA = 19151^2
var_xB = 37894^2
myu_xA = 1557936
myu_xB = 1331683

myu_B = 1412421
var_B = 85447^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1797798007

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B1, des9), level = 0.95)
## [1] 0.796551
## [1] 1511905
## [1] 1638057
## [1] 74217.9
## [1] 0.0453085
## [1] 85447
## [1] 0.06049683
## [1] 1492590
## [1] 1783524
##            2.5 %  97.5 %
## B5_R28B1 1194381 1326782

6.3. Kabupaten Gunung Kidul

susenas_gunungkidul.156=filter(susenas_diy.156, KODE_KAB == "03")
sakernas_gunungkidul.156=filter(sakernas_diy.156, KODE_KAB == "03")
options(survey.lonely.psu = "adjust")
des8.3 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_gunungkidul.156)
svymean(~B5_R28B1, des8.3)


options(survey.lonely.psu = "adjust")
des9.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_gunungkidul.156)
svymean(~B5_R28B1.p, des9.3)
svymean(~B5_R28B1, des9.3)
##             mean    SE
## B5_R28B1 1327790 14946
##               mean    SE
## B5_R28B1.p 1052012 48260
##            mean    SE
## B5_R28B1 979961 65905
mns4.3 = svymean(~B5_R28B1+ B5_R28B1.p, des9.3)
vcov(mns4.3)
##              B5_R28B1 B5_R28B1.p
## B5_R28B1   4343429727 2536246058
## B5_R28B1.p 2536246058 2329057043
var_xA = 16241^2
var_xB = 48260^2
myu_xA = 1345451
myu_xB = 1052012

myu_B = 979961
var_B = 65905^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2536246058

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B1, des9), level = 0.95)
## [1] 0.8982682
## [1] 1315599
## [1] 1267000
## [1] 43157.17
## [1] 0.03406249
## [1] 65905
## [1] 0.06725268
## [1] 1182412
## [1] 1351588
##            2.5 %  97.5 %
## B5_R28B1 1194381 1326782

6.4. Kabupaten Sleman

susenas_sleman.156=filter(susenas_diy.156, KODE_KAB == "04")
sakernas_sleman.156=filter(sakernas_diy.156, KODE_KAB == "04")
options(survey.lonely.psu = "adjust")
des8.4 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_sleman.156)
svymean(~B5_R28B1, des8.4)


options(survey.lonely.psu = "adjust")
des9.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_sleman.156)
svymean(~B5_R28B1.p, des9.4)
svymean(~B5_R28B1, des9.4)
##             mean    SE
## B5_R28B1 1542818 20721
##               mean    SE
## B5_R28B1.p 1367639 35234
##             mean    SE
## B5_R28B1 1496503 57757
mns4.4 = svymean(~B5_R28B1+ B5_R28B1.p, des9.4)
vcov(mns4.4)
##              B5_R28B1 B5_R28B1.p
## B5_R28B1   3335892627 1199487799
## B5_R28B1.p 1199487799 1241469554
var_xA = 19184^2
var_xB = 35234^2
myu_xA = 1554091
myu_xB = 1367639

myu_B = 1496503
var_B = 57757^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1199487799

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B1, des9), level = 0.95)
## [1] 0.7713359
## [1] 1511456
## [1] 1635461
## [1] 49415.84
## [1] 0.03021524
## [1] 57757
## [1] 0.03859464
## [1] 1538606
## [1] 1732316
##            2.5 %  97.5 %
## B5_R28B1 1194381 1326782

6.5. Kota Yogyakarta

susenas_jogja.156=filter(susenas_diy.156, KODE_KAB == "71")
sakernas_jogja.156=filter(sakernas_diy.156, KODE_KAB == "71")
options(survey.lonely.psu = "adjust")
des8.5 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_jogja.156)
svymean(~B5_R28B1, des8.5)


options(survey.lonely.psu = "adjust")
des9.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_jogja.156)
svymean(~B5_R28B1.p, des9.5)
svymean(~B5_R28B1, des9.5)
##             mean    SE
## B5_R28B1 1590399 19618
##               mean    SE
## B5_R28B1.p 1330877 39144
##             mean    SE
## B5_R28B1 1384087 55471
mns4.5 = svymean(~B5_R28B1+ B5_R28B1.p, des9.5)
vcov(mns4.5)
##              B5_R28B1 B5_R28B1.p
## B5_R28B1   3077010058 1224045213
## B5_R28B1.p 1224045213 1532270603
var_xA = 18655^2
var_xB = 39144^2
myu_xA = 1586293
myu_xB = 1330877

myu_B = 1384087
var_B = 55471^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1224045213

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B1, des9), level = 0.95)
## [1] 0.8149146
## [1] 1539019
## [1] 1550362
## [1] 47751.25
## [1] 0.03080006
## [1] 55471
## [1] 0.04007768
## [1] 1456770
## [1] 1643955
##            2.5 %  97.5 %
## B5_R28B1 1194381 1326782
  1. Variabel Pendapatan Barang Sebulan Status Berusaha Sendiri/Pekerja Bebas
options(survey.lonely.psu = "adjust")
des8 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.156)
svymean(~B5_R28B2, des8)

options(survey.lonely.psu = "adjust")
des9 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.156)
svymean(~B5_R28B2.p, des9)
svymean(~B5_R28B2, des9)
##           mean     SE
## B5_R28B2 95911 4601.7
##             mean     SE
## B5_R28B2.p 73405 3687.4
##           mean     SE
## B5_R28B2 73112 7406.8
mns5 = svymean(~B5_R28B2+B5_R28B2.p, des9)
vcov(mns5)
##            B5_R28B2 B5_R28B2.p
## B5_R28B2   54860156   17632418
## B5_R28B2.p 17632418   13596597
var_xA = 4466.9^2
var_xB = 3687.4^2
myu_xA = 94352
myu_xB = 73405

myu_B = 73112
var_B = 7406.8^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 17632418

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B2, des9), level = 0.95)
## [1] 0.4052719
## [1] 81894.23
## [1] 84120.79
## [1] 6752.325
## [1] 0.08026939
## [1] 7406.8
## [1] 0.1013076
## [1] 70886.24
## [1] 97355.35
##             2.5 %   97.5 %
## B5_R28B2 58594.46 87628.44

7.1. Kabupaten Kulonprogo

svymean(~B5_R28B2, des8.1)
svymean(~B5_R28B2.p, des9.1)
svymean(~B5_R28B2, des9.1)
##           mean     SE
## B5_R28B2 97121 9359.1
##             mean     SE
## B5_R28B2.p 52375 5024.7
##           mean     SE
## B5_R28B2 44799 5793.2
mns5.1 = svymean(~B5_R28B2+B5_R28B2.p, des9.1)
vcov(mns5.1)
##            B5_R28B2 B5_R28B2.p
## B5_R28B2   33561173   25166168
## B5_R28B2.p 25166168   25247549
var_xA = 8937.9^2
var_xB = 5024.7^2
myu_xA = 97942
myu_xB = 52375

myu_B = 44799
var_B = 5793.2^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 25166168

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B2, des9), level = 0.95)
## [1] 0.2401477
## [1] 63317.81
## [1] 55706.51
## [1] 5247.577
## [1] 0.09420042
## [1] 5793.2
## [1] 0.1293154
## [1] 45421.26
## [1] 65991.76
##             2.5 %   97.5 %
## B5_R28B2 58594.46 87628.44

7.2. Kabupaten Bantul

svymean(~B5_R28B2, des8.2)
svymean(~B5_R28B2.p, des9.2)
svymean(~B5_R28B2, des9.2)
##           mean     SE
## B5_R28B2 96497 8323.5
##             mean     SE
## B5_R28B2.p 74112 6464.8
##           mean     SE
## B5_R28B2 63288 8981.5
mns5.2 = svymean(~B5_R28B2+B5_R28B2.p, des9.2)
vcov(mns5.2)
##            B5_R28B2 B5_R28B2.p
## B5_R28B2   80667246   45435016
## B5_R28B2.p 45435016   41793719
var_xA = 8184.8^2
var_xB = 6464.8^2
myu_xA = 93753
myu_xB = 74112

myu_B = 63288
var_B = 8981.5^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 45435016

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B2, des9), level = 0.95)
## [1] 0.3841871
## [1] 81657.82
## [1] 71491.27
## [1] 7854.358
## [1] 0.1098646
## [1] 8981.5
## [1] 0.1419147
## [1] 56096.73
## [1] 86885.81
##             2.5 %   97.5 %
## B5_R28B2 58594.46 87628.44

7.3. Kabupaten Gunung Kidul

svymean(~B5_R28B2, des8.3)
svymean(~B5_R28B2.p, des9.3)
svymean(~B5_R28B2, des9.3)
##           mean     SE
## B5_R28B2 69117 5909.2
##             mean   SE
## B5_R28B2.p 57667 5748
##           mean   SE
## B5_R28B2 52479 7278
mns5.3 = svymean(~B5_R28B2+B5_R28B2.p, des9.3)
vcov(mns5.3)
##            B5_R28B2 B5_R28B2.p
## B5_R28B2   52969966   33314320
## B5_R28B2.p 33314320   33039236
var_xA = 6043.2^2
var_xB = 5748^2
myu_xA = 71267
myu_xB = 57667

myu_B = 52479
var_B = 7278^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 33314320

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B2, des9), level = 0.95)
## [1] 0.4749801
## [1] 64126.73
## [1] 58992.46
## [1] 6083.916
## [1] 0.1031304
## [1] 7278
## [1] 0.138684
## [1] 47067.99
## [1] 70916.93
##             2.5 %   97.5 %
## B5_R28B2 58594.46 87628.44

7.4. Kabupaten Sleman

svymean(~B5_R28B2, des8.4)
svymean(~B5_R28B2.p, des9.4)
svymean(~B5_R28B2, des9.4)
##            mean    SE
## B5_R28B2 109128 11772
##             mean   SE
## B5_R28B2.p 97311 9993
##            mean    SE
## B5_R28B2 121019 24671
mns5.4 = svymean(~B5_R28B2+B5_R28B2.p, des9.4)
vcov(mns5.4)
##             B5_R28B2 B5_R28B2.p
## B5_R28B2   608656351  142085026
## B5_R28B2.p 142085026   99859526
var_xA = 11361^2
var_xB = 9993^2
myu_xA = 105451
myu_xB = 97311

myu_B = 121019
var_B = 24671^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 142085026

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B2, des9), level = 0.95)
## [1] 0.4361989
## [1] 100861.7
## [1] 126071
## [1] 22813.91
## [1] 0.1809607
## [1] 24671
## [1] 0.2038606
## [1] 81355.77
## [1] 170786.3
##             2.5 %   97.5 %
## B5_R28B2 58594.46 87628.44

7.5. Kota Yogyakarta

svymean(~B5_R28B2, des8.5)
svymean(~B5_R28B2.p, des9.5)
svymean(~B5_R28B2, des9.5)
##            mean    SE
## B5_R28B2 115338 13414
##             mean     SE
## B5_R28B2.p 75536 9133.1
##           mean    SE
## B5_R28B2 65015 10270
mns5.5 = svymean(~B5_R28B2+B5_R28B2.p, des9.5)
vcov(mns5.5)
##             B5_R28B2 B5_R28B2.p
## B5_R28B2   105478910   72726604
## B5_R28B2.p  72726604   83413643
var_xA = 12759^2
var_xB = 9133.1^2
myu_xA = 111931
myu_xB = 75536

myu_B = 65015
var_B = 10270^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 72726604

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28B2, des9), level = 0.95)
## [1] 0.3387962
## [1] 87866.49
## [1] 75765.71
## [1] 9164.617
## [1] 0.12096
## [1] 10270
## [1] 0.1579635
## [1] 57803.06
## [1] 93728.36
##             2.5 %   97.5 %
## B5_R28B2 58594.46 87628.44
  1. Variabel Upah Uang Sebulan Status Buruh/Karyawan/Pegawai
options(survey.lonely.psu = "adjust")
des10 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.buruh)
svymean(~B5_R28C1, des10)

options(survey.lonely.psu = "adjust")
des11 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.buruh)
svymean(~B5_R28C1.p, des11)
svymean(~B5_R28C1, des11)
##             mean    SE
## B5_R28C1 2354317 22808
##               mean    SE
## B5_R28C1.p 2329804 19379
##             mean    SE
## B5_R28C1 2288719 47277
mns6 = svymean(~B5_R28C1+B5_R28C1.p, des11)
vcov(mns6)
##              B5_R28C1 B5_R28C1.p
## B5_R28C1   2235103759  643061296
## B5_R28C1.p  643061296  375540534
var_xA = 23459^2
var_xB = 20429^2
myu_xA = 2347191
myu_xB = 2323417

myu_B = 2288719
var_B = 47277^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 707882574

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C1, des11), level = 0.95)
## [1] 0.4312881
## [1] 2333670
## [1] 2306110
## [1] 41440.01
## [1] 0.01796966
## [1] 47277
## [1] 0.02065653
## [1] 2224888
## [1] 2387333
##            2.5 %  97.5 %
## B5_R28C1 2196058 2381380

8.1. Kabupaten Kulonprogo

susenas_kulonprogo.buruh = filter(susenas_diy.buruh, KODE_KAB == "01")
sakernas_kulonprogo.buruh = filter(sakernas_diy.buruh, KODE_KAB == "01")

options(survey.lonely.psu = "adjust")
des10.1 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_kulonprogo.buruh)
svymean(~B5_R28C1, des10.1)

options(survey.lonely.psu = "adjust")
des11.1 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_kulonprogo.buruh)
svymean(~B5_R28C1.p, des11.1)
svymean(~B5_R28C1, des11.1)
##             mean    SE
## B5_R28C1 2353528 44104
##               mean    SE
## B5_R28C1.p 2324381 55487
##             mean     SE
## B5_R28C1 2222026 101170
mns6.1 = svymean(~B5_R28C1+B5_R28C1.p, des11.1)
vcov(mns6.1)
##               B5_R28C1 B5_R28C1.p
## B5_R28C1   10235318997 3853084973
## B5_R28C1.p  3853084973 3078789421
var_xA = 45556^2
var_xB = 57508^2
myu_xA = 2353137
myu_xB = 2336438

myu_B = 2222026
var_B = 101170^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 3884963699

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C1, des11), level = 0.95)
## [1] 0.6144279
## [1] 2346698
## [1] 2234079
## [1] 86205
## [1] 0.03858637
## [1] 101170
## [1] 0.04553052
## [1] 2065117
## [1] 2403041
##            2.5 %  97.5 %
## B5_R28C1 2196058 2381380

8.2. Kabupaten Bantul

susenas_bantul.buruh = filter(susenas_diy.buruh, KODE_KAB == "02")
sakernas_bantul.buruh = filter(sakernas_diy.buruh, KODE_KAB == "02")

options(survey.lonely.psu = "adjust")
des10.2 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_bantul.buruh)
svymean(~B5_R28C1, des10.2)

options(survey.lonely.psu = "adjust")
des11.2 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_bantul.buruh)
svymean(~B5_R28C1.p, des11.2)
svymean(~B5_R28C1, des11.2)
##             mean    SE
## B5_R28C1 2290541 35910
##               mean    SE
## B5_R28C1.p 2282355 40413
##             mean    SE
## B5_R28C1 2197913 87468
mns6.2 = svymean(~B5_R28C1+B5_R28C1.p, des11.2)
vcov(mns6.2)
##              B5_R28C1 B5_R28C1.p
## B5_R28C1   7650679060 2709026515
## B5_R28C1.p 2709026515 1633249483
var_xA = 38147^2
var_xB = 42318^2
myu_xA = 2287828
myu_xB = 2284008

myu_B = 2197913
var_B = 87468^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2932281176

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C1, des11), level = 0.95)
## [1] 0.5516973
## [1] 2286115
## [1] 2201364
## [1] 70723.22
## [1] 0.032127
## [1] 87468
## [1] 0.03979593
## [1] 2062746
## [1] 2339981
##            2.5 %  97.5 %
## B5_R28C1 2196058 2381380

8.3. Kabupaten Gunung Kidul

susenas_gunungkidul.buruh = filter(susenas_diy.buruh, KODE_KAB == "03")
sakernas_gunungkidul.buruh = filter(sakernas_diy.buruh, KODE_KAB == "03")

options(survey.lonely.psu = "adjust")
des10.3 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_gunungkidul.buruh)
svymean(~B5_R28C1, des10.3)

options(survey.lonely.psu = "adjust")
des11.3 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_gunungkidul.buruh)
svymean(~B5_R28C1.p, des11.3)
svymean(~B5_R28C1, des11.3)
##             mean    SE
## B5_R28C1 2134975 46998
##               mean    SE
## B5_R28C1.p 2151443 42191
##             mean    SE
## B5_R28C1 1896499 79465
mns6.3 = svymean(~B5_R28C1+B5_R28C1.p, des11.3)
vcov(mns6.3)
##              B5_R28C1 B5_R28C1.p
## B5_R28C1   6314751150 2145918600
## B5_R28C1.p 2145918600 1780111569
var_xA = 52593^2
var_xB = 46523^2
myu_xA = 2115805
myu_xB = 2125756

myu_B = 1896499
var_B = 79465^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2593612604

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C1, des11), level = 0.95)
## [1] 0.4389875
## [1] 2121388
## [1] 1891264
## [1] 70358.6
## [1] 0.03720189
## [1] 79465
## [1] 0.04190089
## [1] 1753361
## [1] 2029167
##            2.5 %  97.5 %
## B5_R28C1 2196058 2381380

8.4. Kabupaten Sleman

susenas_sleman.buruh = filter(susenas_diy.buruh, KODE_KAB == "04")
sakernas_sleman.buruh = filter(sakernas_diy.buruh, KODE_KAB == "04")

options(survey.lonely.psu = "adjust")
des10.4 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_sleman.buruh)
svymean(~B5_R28C1, des10.4)

options(survey.lonely.psu = "adjust")
des11.4 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_sleman.buruh)
svymean(~B5_R28C1.p, des11.4)
svymean(~B5_R28C1, des11.4)
##             mean    SE
## B5_R28C1 2433001 47536
##               mean    SE
## B5_R28C1.p 2410030 33278
##             mean    SE
## B5_R28C1 2473378 88081
mns6.4 = svymean(~B5_R28C1+B5_R28C1.p, des11.4)
vcov(mns6.4)
##              B5_R28C1 B5_R28C1.p
## B5_R28C1   7758177173 1818646862
## B5_R28C1.p 1818646862 1107412175
var_xA = 47199^2
var_xB = 34653^2
myu_xA = 2422076
myu_xB = 2399262

myu_B = 2473378
var_B = 88081^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2019925486

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C1, des11), level = 0.95)
## [1] 0.3502417
## [1] 2407252
## [1] 2486819
## [1] 81044.65
## [1] 0.03258969
## [1] 88081
## [1] 0.03561162
## [1] 2327971
## [1] 2645666
##            2.5 %  97.5 %
## B5_R28C1 2196058 2381380

8.5. Kota Yogyakarta

susenas_jogja.buruh = filter(susenas_diy.buruh, KODE_KAB == "71")
sakernas_jogja.buruh = filter(sakernas_diy.buruh, KODE_KAB == "71")

options(survey.lonely.psu = "adjust")
des10.5 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_jogja.buruh)
svymean(~B5_R28C1, des10.5)

options(survey.lonely.psu = "adjust")
des11.5 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_jogja.buruh)
svymean(~B5_R28C1.p, des11.5)
svymean(~B5_R28C1, des11.5)
##             mean    SE
## B5_R28C1 2501808 48761
##               mean    SE
## B5_R28C1.p 2398315 50254
##             mean     SE
## B5_R28C1 2435672 150801
mns6.5 = svymean(~B5_R28C1+B5_R28C1.p, des11.5)
vcov(mns6.5)
##               B5_R28C1 B5_R28C1.p
## B5_R28C1   22741003797 6107612179
## B5_R28C1.p  6107612179 2525503656
var_xA = 53342^2
var_xB = 53842^2
myu_xA = 2502533
myu_xB = 2390471

myu_B = 2435672
var_B = 150801^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 6831012152

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C1, des11), level = 0.95)
## [1] 0.5046648
## [1] 2447025
## [1] 2568933
## [1] 120903.6
## [1] 0.04706373
## [1] 150801
## [1] 0.06191351
## [1] 2331962
## [1] 2805904
##            2.5 %  97.5 %
## B5_R28C1 2196058 2381380
  1. Variabel Upah Barang Sebulan Status Buruh/Karyawan/Pegawai
options(survey.lonely.psu = "adjust")
des10 = svydesign(ids=~PSU+SSU, strata=~STRATA, weights=~FWT, data = susenas_diy.buruh)
svymean(~B5_R28C2, des10)

options(survey.lonely.psu = "adjust")
des11 = svydesign(ids=~psu+ssu, strata=~strata, weights=~w.adj2_20, data = sakernas_diy.buruh)
svymean(~B5_R28C2.p, des11)
svymean(~B5_R28C2, des11)
##           mean     SE
## B5_R28C2 69732 961.61
##             mean     SE
## B5_R28C2.p 67654 882.37
##           mean     SE
## B5_R28C2 71108 6621.3
mns7 = svymean(~B5_R28C2+B5_R28C2.p, des11)
vcov(mns7)
##            B5_R28C2 B5_R28C2.p
## B5_R28C2   43842182  1836699.4
## B5_R28C2.p  1836699   778571.6
var_xA = 932.1^2
var_xB = 881.48^2
myu_xA = 69877
myu_xB = 67840

myu_B = 71108
var_B = 6621.3^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 1780977.1

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C2, des11), level = 0.95)
## [1] 0.4721101
## [1] 68801.69
## [1] 73312.28
## [1] 6474.131
## [1] 0.08830896
## [1] 6621.3
## [1] 0.09311611
## [1] 60622.99
## [1] 86001.58
##            2.5 %   97.5 %
## B5_R28C2 58130.4 84085.59

9.1. Kabupaten Kulonprogo

svymean(~B5_R28C2, des10.1)
svymean(~B5_R28C2.p, des11.1)
svymean(~B5_R28C2, des11.1)
##           mean     SE
## B5_R28C2 66712 1608.2
##             mean     SE
## B5_R28C2.p 70903 2053.7
##           mean     SE
## B5_R28C2 75170 9401.5
mns7.1 = svymean(~B5_R28C2+B5_R28C2.p, des11.1)
vcov(mns7.1)
##            B5_R28C2 B5_R28C2.p
## B5_R28C2   88387959    2898235
## B5_R28C2.p  2898235    4217580
var_xA = 1620.4^2
var_xB = 2001^2
myu_xA = 67345
myu_xB = 70420

myu_B = 75170
var_B = 9401.5^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2537529

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C2, des11), level = 0.95)
## [1] 0.6039493
## [1] 68562.86
## [1] 73993.04
## [1] 9349.704
## [1] 0.1263592
## [1] 9401.5
## [1] 0.1250698
## [1] 55667.62
## [1] 92318.46
##            2.5 %   97.5 %
## B5_R28C2 58130.4 84085.59

9.2. Kabupaten Bantul

svymean(~B5_R28C2, des10.2)
svymean(~B5_R28C2.p, des11.2)
svymean(~B5_R28C2, des11.2)
##           mean     SE
## B5_R28C2 62650 1322.3
##             mean     SE
## B5_R28C2.p 59954 1574.3
##           mean     SE
## B5_R28C2 46216 3811.8
mns7.2 = svymean(~B5_R28C2+B5_R28C2.p, des11.2)
vcov(mns7.2)
##            B5_R28C2 B5_R28C2.p
## B5_R28C2   14529616    2339761
## B5_R28C2.p  2339761    2478518
var_xA = 1222.4^2
var_xB = 1584.4^2
myu_xA = 62717
myu_xB = 60303

myu_B = 46216
var_B = 3811.8^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2328307

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C2, des11), level = 0.95)
## [1] 0.6268623
## [1] 61816.25
## [1] 47619.52
## [1] 3629.892
## [1] 0.07622697
## [1] 3811.8
## [1] 0.08247793
## [1] 40504.94
## [1] 54734.11
##            2.5 %   97.5 %
## B5_R28C2 58130.4 84085.59

9.3. Kabupaten Gunung Kidul

svymean(~B5_R28C2, des10.3)
svymean(~B5_R28C2.p, des11.3)
svymean(~B5_R28C2, des11.3)
##           mean   SE
## B5_R28C2 66689 1994
##             mean     SE
## B5_R28C2.p 63622 1664.4
##           mean   SE
## B5_R28C2 56531 4381
mns7.3 = svymean(~B5_R28C2+B5_R28C2.p, des11.3)
vcov(mns7.3)
##            B5_R28C2 B5_R28C2.p
## B5_R28C2   19193482    2582066
## B5_R28C2.p  2582066    2770301
var_xA = 1938^2
var_xB = 1650.7^2
myu_xA = 67064
myu_xB = 64309

myu_B = 56531
var_B = 4381^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 2459450

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C2, des11), level = 0.95)
## [1] 0.420453
## [1] 65467.35
## [1] 57576.54
## [1] 4273.147
## [1] 0.0742168
## [1] 4381
## [1] 0.0774973
## [1] 49201.17
## [1] 65951.91
##            2.5 %   97.5 %
## B5_R28C2 58130.4 84085.59

9.4. Kabupaten Sleman

svymean(~B5_R28C2, des10.4)
svymean(~B5_R28C2.p, des11.4)
svymean(~B5_R28C2, des11.4)
##           mean     SE
## B5_R28C2 76575 1943.8
##             mean     SE
## B5_R28C2.p 74327 1738.9
##           mean    SE
## B5_R28C2 94293 16820
mns7.4 = svymean(~B5_R28C2+B5_R28C2.p, des11.4)
vcov(mns7.4)
##             B5_R28C2 B5_R28C2.p
## B5_R28C2   282910244    8722849
## B5_R28C2.p   8722849    3023686
var_xA = 1865.7^2
var_xB = 1742.9^2
myu_xA = 76332
myu_xB = 74413

myu_B = 94293
var_B = 16820^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 8490725

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C2, des11), level = 0.95)
## [1] 0.4660095
## [1] 75307.27
## [1] 96792.59
## [1] 16487.96
## [1] 0.1703432
## [1] 16820
## [1] 0.1783802
## [1] 64476.19
## [1] 129109
##            2.5 %   97.5 %
## B5_R28C2 58130.4 84085.59

9.5. Kota Yogyakarta

svymean(~B5_R28C2, des10.5)
svymean(~B5_R28C2.p, des11.5)
svymean(~B5_R28C2, des11.5)
##           mean     SE
## B5_R28C2 71989 2928.5
##             mean     SE
## B5_R28C2.p 68070 2350.6
##           mean    SE
## B5_R28C2 74891 19106
mns7.5 = svymean(~B5_R28C2+B5_R28C2.p, des11.5)
vcov(mns7.5)
##             B5_R28C2 B5_R28C2.p
## B5_R28C2   365031633   15372340
## B5_R28C2.p  15372340    5525240
var_xA = 2933.9^2
var_xB = 2347.4^2
myu_xA = 72772
myu_xB = 68231

myu_B = 74891
var_B = 19106^2

(alpha = var_xB / (var_xA+var_xB))
(myu_x = (alpha*myu_xA) + ((1-alpha)*myu_xB))

cov = 14619389

myu_gls = myu_B + ((cov/var_xB)*(myu_x-myu_xB))
myu_gls

var.myu_gls = var_B - (cov^2/(var_xA+var_xB))
sqrt(var.myu_gls)

(rse = sqrt(var.myu_gls)/myu_gls)

sqrt(var_B)

(rse_dir = sqrt(var_B)/myu_B)

(CI_lower = myu_gls - 1.96*sqrt(var.myu_gls))
(CI_upper = myu_gls + 1.96*sqrt(var.myu_gls))

confint(svymean(~B5_R28C2, des11), level = 0.95)
## [1] 0.3903007
## [1] 70003.36
## [1] 79593.25
## [1] 18705.63
## [1] 0.2350153
## [1] 19106
## [1] 0.2551174
## [1] 42930.21
## [1] 116256.3
##            2.5 %   97.5 %
## B5_R28C2 58130.4 84085.59