Dataset

#Data File
F <- read.csv("FluencyV1.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

#Sample Size: Number of participants (rows)
nrow(F)
## [1] 50

Conditions

Biochar (Clear Condition)

#Time spent reading introductory study instructions (in seconds)
F$Instructions_Page_Submit
##  [1]   1.084   0.869   1.047   7.554   3.597   0.820   0.978   2.335   1.594
## [10]   0.710   4.565   0.704   1.123   0.999   1.174   0.984   1.240   6.820
## [19]   1.549  22.875   2.854   3.607   8.761  18.619   1.898  51.922 527.461
## [28]  21.885   1.231   1.652   1.046   1.507   0.969  11.484   3.283   2.745
## [37]   1.265   1.277   1.323   4.152   4.689   3.576   4.476   4.071   1.101
## [46]   1.488   1.845  12.399   0.944   2.443
# Time spent reading biochar (clear) description (in seconds)
F$BIO_Clear_Page_Submit
##  [1]   1.098      NA   1.643      NA  12.253   0.893   1.976   1.791      NA
## [10]   0.865   1.251      NA      NA      NA      NA      NA   1.417  18.495
## [19]  20.876      NA      NA  24.701      NA  26.765  23.329   1.104 305.836
## [28]      NA      NA   1.099   4.917      NA      NA   3.701   9.757      NA
## [37]      NA      NA      NA      NA  10.042      NA      NA  14.179      NA
## [46]  36.961      NA  24.530      NA      NA
# Attention Check #1: "The climate change method I just read about was: (1 = biochar, 2 = biofuel, 3 = enhanced weathering, 4 = wind energy) 
table(F$BIO_Clear_ATN)
## 
##  1  2  3  4 
## 11  7  3  3
F$ATN_BioClear <- NA
F$ATN_BioClear[F$BIO_Clear_ATN == 1] <- 'Biochar'
F$ATN_BioClear[F$BIO_Clear_ATN == 2] <- 'Biofuel'
F$ATN_BioClear[F$BIO_Clear_ATN == 3] <- 'Enhanced Weathering'
F$ATN_BioClear[F$BIO_Clear_ATN == 4] <- 'Wind Energy'

describe(F$ATN_BioClear)
## F$ATN_BioClear 
##        n  missing distinct 
##       24       26        4 
##                                                                       
## Value                  Biochar             Biofuel Enhanced Weathering
## Frequency                   11                   7                   3
## Proportion               0.458               0.292               0.125
##                               
## Value              Wind Energy
## Frequency                    3
## Proportion               0.125
# Time spend responding to attention check #1 
describe(F$BIO_Clear_ATN_TIME_Page.Submit, na.rm = TRUE)
##  
## NULL
# Attention Check #2 (Qualitative, Open Text Response) "In your own words, please describe the climate change method you read about in this study. Include as many details as possible."
describe(F$BIO_Clear_ATN2)
## F$BIO_Clear_ATN2 
##        n  missing distinct 
##       24       26       24 
## 
## lowest : A solution that mixes animal and plant materials to break down into charcoal                                                                                                                                         Animal and plant matter converted into oxygen                                                                                                                                                                        Because it deacreases the carbon fuels                                                                                                                                                                               Biochar                                                                                                                                                                                                              Biochar is a form of fuel or charcoal that is obtained from burning plants and other organic materials in the absence of oxygen. This creates a more stable form of carbon that can be stored underground long-term.
## highest: It's about the turning tides if doing wat we wanna do about all of it.                                                                                                                                               It's what we should be doing however our government isn't there yet                                                                                                                                                  Kwje lqej qlwne peiidi e uuue jqjhww                                                                                                                                                                                 Trying to make it with less energy as possible and doing it the safest way                                                                                                                                           Wind study
## Electric study
## Gas study
## Solar panel study
# Time spend responding to attention check #2 
describe(F$BIO_Clear_ATN2_TIME_Page.Submit)
## F$BIO_Clear_ATN2_TIME_Page.Submit 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       26        1    39.22    50.87    5.835    6.839 
##      .25      .50      .75      .90      .95 
##   11.337   18.707   24.971   62.774   80.337 
## 
## lowest :   4.252   5.753   6.081   7.597   8.057
## highest:  29.401  53.801  71.747  83.200 457.383
##                                                                             
## Value          4     6     8    10    11    12    13    15    18    19    20
## Frequency      1     2     2     1     2     1     1     1     2     2     1
## Proportion 0.038 0.077 0.077 0.038 0.077 0.038 0.038 0.038 0.077 0.077 0.038
##                                                           
## Value         22    24    25    29    54    72    83   457
## Frequency      1     1     2     2     1     1     1     1
## Proportion 0.038 0.038 0.077 0.077 0.038 0.038 0.038 0.038
## 
## For the frequency table, variable is rounded to the nearest 1
# Naturalness 
F$N1_BioClear <- as.numeric(F$Naturalness_BIO_30)
F$N2R_BioClear <- as.numeric(100 - F$Naturalness_BIO_31)
F$N3R_BioClear <- as.numeric(100 - F$Naturalness_BIO_35)
F$N4R_BioClear <- as.numeric(100- F$Naturalness_BIO_36)

hist(F$N1_BioClear)

hist(F$N2R_BioClear)

hist(F$N3R_BioClear)

hist(F$N4R_BioClear)

F$NatScore_BioClear <- rowMeans(F [, c( "N1_BioClear" , "N2R_BioClear", "N3R_BioClear", "N4R_BioClear")], na.rm=TRUE)
describe(F$NatScore_BioClear)
## F$NatScore_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       21    0.998    41.91    15.83    25.00    26.27 
##      .25      .50      .75      .90      .95 
##    31.38    36.38    52.19    64.15    65.39 
## 
## lowest : 25.00 29.25 31.00 31.50 32.50, highest: 57.75 62.75 64.75 65.50 66.00
sd(F$NatScore_BioClear, na.rm = TRUE)
## [1] 13.88106
F$NatScale_BioClear <- data.frame(F$N1_BioClear, F$N2R_BioClear, F$N3R_BioClear, F$N4R_BioClear)
describe(F$NatScale_BioClear)
## F$NatScale_BioClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       19    0.995    70.25    29.77    23.30    26.50 
##      .25      .50      .75      .90      .95 
##    61.50    73.00    92.25   100.00   100.00 
## 
## lowest :  11  23  25  30  50, highest:  89  91  96  99 100
##                                                                             
## Value         11    23    25    30    50    57    63    65    68    69    73
## Frequency      1     1     1     1     1     1     1     1     2     1     2
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.083
##                                                           
## Value         75    79    82    89    91    96    99   100
## Frequency      1     1     1     1     1     1     1     4
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.167
## --------------------------------------------------------------------------------
## F.N2R_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.997    32.04    30.86      0.0      0.9 
##      .25      .50      .75      .90      .95 
##     12.5     23.5     46.0     75.4     76.0 
## 
## lowest :  0  3  9 11 13, highest: 67 69 74 76 87
##                                                                             
## Value          0     3     9    11    13    15    18    19    21    22    25
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.125 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                                 
## Value         27    32    34    39    67    69    74    76    87
## Frequency      1     2     1     1     1     1     1     2     1
## Proportion 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.083 0.042
## --------------------------------------------------------------------------------
## F.N3R_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       16    0.983    25.62     26.5     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     8.25    21.00    35.00    64.20    72.80 
## 
## lowest :  0 11 13 17 20, highest: 48 60 66 74 75
##                                                                             
## Value          0    11    13    17    20    21    22    26    30    34    38
## Frequency      6     1     2     1     1     2     1     2     1     1     1
## Proportion 0.250 0.042 0.083 0.042 0.042 0.083 0.042 0.083 0.042 0.042 0.042
##                                         
## Value         48    60    66    74    75
## Frequency      1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042
## --------------------------------------------------------------------------------
## F.N4R_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       21    0.998    39.71    32.68     0.00     3.30 
##      .25      .50      .75      .90      .95 
##    17.75    36.00    59.25    82.00    88.40 
## 
## lowest :  0 11 15 17 18, highest: 68 75 85 89 93
## --------------------------------------------------------------------------------
# Fluency
F$Fluency_BioClear <- as.numeric(F$Fluency_BIO_30)
hist(F$Fluency_BioClear)

sd(F$Fluency_BioClear, na.rm = TRUE)
## [1] 27.38371
# Understanding 
F$Und_BioClear <- as.numeric(F$Familiarity_BIO_33)
describe(F$Und_BioClear)
## F$Und_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       19    0.995     66.5    30.91    24.45    27.30 
##      .25      .50      .75      .90      .95 
##    43.25    75.00    81.25   100.00   100.00 
## 
## lowest :   9  24  27  28  34, highest:  80  81  82  94 100
##                                                                             
## Value          9    24    27    28    34    35    46    62    64    69    74
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                           
## Value         75    78    79    80    81    82    94   100
## Frequency      2     1     1     2     1     1     1     4
## Proportion 0.083 0.042 0.042 0.083 0.042 0.042 0.042 0.167
hist(F$Und_BioClear)

# Familiarity 
F$Fam_BioClear <- as.numeric(F$Familiarity_BIO_31)
hist(F$Fam_BioClear)

# Risk 
F$R1_BioClear <- as.numeric(F$Risk_BIO_30)
F$R2_BioClear <- as.numeric(F$Risk_BIO_31)
F$R3_BioClear <- as.numeric(F$Risk_BIO_32)

hist(F$R1_BioClear)

hist(F$R2_BioClear)

hist(F$R3_BioClear)

F$RiskScore_BioClear <- rowMeans(F [, c( "R1_BioClear" , "R2_BioClear", "R3_BioClear")], na.rm=TRUE)
describe(F$RiskScore_BioClear)
## F$RiskScore_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       22    0.999    61.81    28.61    25.97    33.33 
##      .25      .50      .75      .90      .95 
##    42.67    61.67    82.50    92.13    99.15 
## 
## lowest :  13.33333  24.66667  33.33333  33.66667  40.66667
## highest:  83.00000  86.66667  87.00000  94.33333 100.00000
sd(F$RiskScore_BioClear, na.rm = TRUE)
## [1] 24.46765
F$RiskScale_BioClear <- data.frame(F$R1_BioClear, F$R2_BioClear, F$R3_BioClear)
describe(F$RiskScale_BioClear)
## F$RiskScale_BioClear 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18    0.997    61.46    35.55      1.8     13.5 
##      .25      .50      .75      .90      .95 
##     46.5     71.5     86.0     95.1     99.4 
## 
## lowest :   0  12  17  34  36, highest:  85  86  93  96 100
##                                                                             
## Value          0    12    17    34    36    50    51    64    70    73    76
## Frequency      2     1     1     1     1     2     2     1     1     1     1
## Proportion 0.083 0.042 0.042 0.042 0.042 0.083 0.083 0.042 0.042 0.042 0.042
##                                                     
## Value         78    81    85    86    93    96   100
## Frequency      1     1     1     3     1     1     2
## Proportion 0.042 0.042 0.042 0.125 0.042 0.042 0.083
## --------------------------------------------------------------------------------
## F.R2_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.998    56.08    40.13     0.90     8.70 
##      .25      .50      .75      .90      .95 
##    26.00    71.00    85.25    94.70    99.25 
## 
## lowest :   0   6  15  17  29, highest:  86  91  94  95 100
##                                                                             
## Value          0     6    15    17    29    30    32    49    51    68    74
## Frequency      2     1     2     1     1     1     1     1     1     1     1
## Proportion 0.083 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                                 
## Value         75    78    81    85    86    91    94    95   100
## Frequency      2     1     1     1     1     1     1     1     2
## Proportion 0.083 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.083
## --------------------------------------------------------------------------------
## F.R3_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       17    0.994    67.88    31.33    20.00    22.10 
##      .25      .50      .75      .90      .95 
##    56.25    73.00    86.00   100.00   100.00 
## 
## lowest :  13  20  27  33  36, highest:  82  84  92  96 100
##                                                                             
## Value         13    20    27    33    36    63    67    69    71    73    80
## Frequency      1     2     1     1     1     1     1     2     1     2     2
## Proportion 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.083 0.083
##                                               
## Value         81    82    84    92    96   100
## Frequency      1     1     1     1     1     4
## Proportion 0.042 0.042 0.042 0.042 0.042 0.167
## --------------------------------------------------------------------------------
# Benefit
F$B1_BioClear <- as.numeric(F$Benefit_BIO_40)
F$B2_BioClear <- as.numeric(F$Benefit_BIO_42)
F$B3_BioClear <- as.numeric(F$Benefit_BIO_43)
F$B4_BioClear <- as.numeric(F$Benefit_BIO_45)

hist(F$B1_BioClear)

hist(F$B2_BioClear)

hist(F$B3_BioClear)

hist(F$B4_BioClear)

F$BenScore_BioClear <- rowMeans(F [, c( "B1_BioClear" , "B2_BioClear", "B3_BioClear", "B4_BioClear")], na.rm=TRUE)
describe(F$BenScore_BioClear)
## F$BenScore_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       22    0.998    71.31    26.03    23.00    45.98 
##      .25      .50      .75      .90      .95 
##    63.06    71.50    90.38    99.78   100.00 
## 
## lowest :  12.50  19.25  44.25  50.00  59.25, highest:  88.75  95.25  95.50  99.25 100.00
sd(F$BenScore_BioClear, na.rm = TRUE)
## [1] 23.49448
F$BenScale_BioClear <- data.frame(F$B1_BioClear, F$B2_BioClear, F$B3_BioClear, F$B4_BioClear)
describe(F$BenScale_BioClear)
## F$BenScale_BioClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       17     0.99     67.5    32.27    16.90    23.50 
##      .25      .50      .75      .90      .95 
##    50.00    76.50    85.25   100.00   100.00 
## 
## lowest :  12  16  22  27  31, highest:  81  84  85  86 100
##                                                                             
## Value         12    16    22    27    31    50    55    61    71    72    74
## Frequency      1     1     1     1     1     2     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.042
##                                               
## Value         79    81    84    85    86   100
## Frequency      2     1     1     2     1     5
## Proportion 0.083 0.042 0.042 0.083 0.042 0.208
## --------------------------------------------------------------------------------
## F.B2_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18    0.984    71.83    32.38    15.90    24.90 
##      .25      .50      .75      .90      .95 
##    50.75    82.50    94.75   100.00   100.00 
## 
## lowest :  11  15  21  34  35, highest:  85  90  91  93 100
##                                                                             
## Value         11    15    21    34    35    50    51    65    71    81    82
## Frequency      1     1     1     1     1     1     1     1     1     1     2
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.083
##                                                     
## Value         83    84    85    90    91    93   100
## Frequency      1     1     1     1     1     1     6
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.250
## --------------------------------------------------------------------------------
## F.B3_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       16    0.983    74.08    27.72    18.70    38.80 
##      .25      .50      .75      .90      .95 
##    69.00    79.00    94.75   100.00   100.00 
## 
## lowest :   9  16  34  50  51, highest:  82  84  85  93 100
##                                                                             
## Value          9    16    34    50    51    63    71    75    77    78    80
## Frequency      1     1     1     1     1     1     2     1     2     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.083 0.042 0.042
##                                         
## Value         82    84    85    93   100
## Frequency      2     1     1     1     6
## Proportion 0.083 0.042 0.042 0.042 0.250
## --------------------------------------------------------------------------------
## F.B4_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18    0.994    71.83    29.04    24.00    25.80 
##      .25      .50      .75      .90      .95 
##    65.00    76.00    96.25   100.00   100.00 
## 
## lowest :  18  24  30  48  50, highest:  85  96  97  99 100
##                                                                             
## Value         18    24    30    48    50    70    71    73    74    75    77
## Frequency      1     2     1     1     1     1     1     2     1     1     1
## Proportion 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042
##                                                     
## Value         79    82    85    96    97    99   100
## Frequency      2     1     1     1     1     1     4
## Proportion 0.083 0.042 0.042 0.042 0.042 0.042 0.167
## --------------------------------------------------------------------------------
# Support
F$S1_BioClear <- as.numeric(F$Support_BIO_40)
F$S2_BioClear <- as.numeric(F$Support_BIO_42)
F$S3_BioClear <- as.numeric(F$Support_BIO_43)
F$S4_BioClear <- as.numeric(F$Support_BIO_45)

hist(F$S1_BioClear)

hist(F$S2_BioClear)

hist(F$S3_BioClear)

hist(F$S4_BioClear)

F$SupScore_BioClear <- rowMeans(F [, c( "S1_BioClear" , "S2_BioClear", "S3_BioClear", "S4_BioClear")], na.rm=TRUE)
describe(F$SupScore_BioClear)
## F$SupScore_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       21    0.996    72.47    29.92    10.88    38.98 
##      .25      .50      .75      .90      .95 
##    62.69    78.75    94.44   100.00   100.00 
## 
## lowest :   3.75   6.75  34.25  50.00  52.00, highest:  90.75  93.75  96.50  97.75 100.00
sd(F$SupScore_BioClear, na.rm = TRUE)
## [1] 27.54634
F$SupScale_BioClear <- data.frame(F$S1_BioClear, F$S2_BioClear, F$S3_BioClear, F$S4_BioClear)
describe(F$SupScale_BioClear)
## F$SupScale_BioClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       17    0.984    70.92    32.57    10.20    35.50 
##      .25      .50      .75      .90      .95 
##    48.25    81.00    97.75   100.00   100.00 
## 
## lowest :   1   6  34  39  43, highest:  83  84  88  97 100
##                                                                             
## Value          1     6    34    39    43    50    68    70    74    78    81
## Frequency      1     1     1     1     2     1     1     1     1     1     2
## Proportion 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.083
##                                               
## Value         82    83    84    88    97   100
## Frequency      1     1     1     1     1     6
## Proportion 0.042 0.042 0.042 0.042 0.042 0.250
## --------------------------------------------------------------------------------
## F.S2_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       16     0.99    74.62    26.92    13.25    45.10 
##      .25      .50      .75      .90      .95 
##    74.25    80.50    89.00   100.00   100.00 
## 
## lowest :   1   8  43  50  57, highest:  82  85  88  92 100
##                                                                             
## Value          1     8    43    50    57    72    75    76    77    80    81
## Frequency      1     1     1     1     1     1     2     2     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.083 0.042 0.042 0.042
##                                         
## Value         82    85    88    92   100
## Frequency      1     2     2     1     5
## Proportion 0.042 0.083 0.083 0.042 0.208
## --------------------------------------------------------------------------------
## F.S3_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       15    0.963    72.88    33.71     5.65    20.70 
##      .25      .50      .75      .90      .95 
##    59.25    82.00   100.00   100.00   100.00 
## 
## lowest :   4  15  34  50  51, highest:  83  87  91  94 100
##                                                                             
## Value          4    15    34    50    51    62    71    72    78    81    83
## Frequency      2     1     1     1     1     1     1     2     1     1     1
## Proportion 0.083 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042
##                                   
## Value         87    91    94   100
## Frequency      1     1     1     8
## Proportion 0.042 0.042 0.042 0.333
## --------------------------------------------------------------------------------
## F.S4_BioClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       17    0.984    71.46    33.96     9.00    16.50 
##      .25      .50      .75      .90      .95 
##    58.25    82.50    98.50   100.00   100.00 
## 
## lowest :   0   9  34  40  50, highest:  84  89  92  98 100
##                                                                             
## Value          0     9    34    40    50    61    68    75    78    80    82
## Frequency      1     2     1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                               
## Value         83    84    89    92    98   100
## Frequency      2     1     1     1     1     6
## Proportion 0.083 0.042 0.042 0.042 0.042 0.250
## --------------------------------------------------------------------------------

Biochar (Blurred Condition)

#Attention Checks & Timing
F$BIO_Blurred_Page.Submit
##  [1]     NA  6.786     NA  1.301     NA     NA     NA     NA  4.770     NA
## [11]     NA 10.201 13.219 23.802  3.597 23.801     NA     NA     NA 37.404
## [21] 49.877     NA 23.899     NA     NA     NA     NA 38.664  6.085     NA
## [31]     NA 12.100 14.820     NA     NA 39.289  0.889  0.760  1.475 17.664
## [41]     NA 11.300  3.079     NA  4.202     NA  1.588     NA  2.036 12.255
F$BIO_Blurred_ATN
##  [1] NA  1 NA  4 NA NA NA NA  2 NA NA  1  2  1  2  1 NA NA NA  1  1 NA  4 NA NA
## [26] NA NA  1  3 NA NA  3  2 NA NA  1  2  4  4  1 NA  1  2 NA  1 NA  3 NA  4  1
F$BIO_Blurred_ATN_TIME_Page.Submit
##  [1]     NA  5.093     NA  8.233     NA     NA     NA     NA  2.238     NA
## [11]     NA  6.958  4.720 11.882  5.159  7.265     NA     NA     NA  2.602
## [21]  5.809     NA  8.680     NA     NA     NA     NA  6.968  7.972     NA
## [31]     NA  9.901  8.941     NA     NA  7.994  6.272  4.184  6.753  7.250
## [41]     NA  3.901 11.313     NA  7.508     NA 24.021     NA 20.544  3.499
F$BIO_Blurred_ATN2
##  [1] NA                                                                                                                                                 
##  [2] "Its getting bad "                                                                                                                                 
##  [3] NA                                                                                                                                                 
##  [4] "The wind energy is a mindful"                                                                                                                     
##  [5] NA                                                                                                                                                 
##  [6] NA                                                                                                                                                 
##  [7] NA                                                                                                                                                 
##  [8] NA                                                                                                                                                 
##  [9] "How are these still a lot as much in advance of my life since the first one of those days when you are a lot and"                                 
## [10] NA                                                                                                                                                 
## [11] NA                                                                                                                                                 
## [12] "I could hardly see it it wouldn't let me enlarge it "                                                                                             
## [13] "I can not "                                                                                                                                       
## [14] "Biochar changes from mass to energy"                                                                                                              
## [15] "It was very hard to understand "                                                                                                                  
## [16] "Today's get hotter than usual in the summer and in the winter it don't last as long but some of the days are colder than usual"                   
## [17] NA                                                                                                                                                 
## [18] NA                                                                                                                                                 
## [19] NA                                                                                                                                                 
## [20] "They take organic matter from plants and animals and convert it to carbon."                                                                       
## [21] "Taking the biomass from animals and plants, and burning away the non-carbon products, and then storing the rest underground in a form of Charcoal"
## [22] NA                                                                                                                                                 
## [23] "It was about wind energy which is a fairly new concept but makes sense that it would work this way."                                              
## [24] NA                                                                                                                                                 
## [25] NA                                                                                                                                                 
## [26] NA                                                                                                                                                 
## [27] NA                                                                                                                                                 
## [28] "The breakdown and storage of carbon. I don't know how else to explain it "                                                                        
## [29] "I don’t remember "                                                                                                                                
## [30] NA                                                                                                                                                 
## [31] NA                                                                                                                                                 
## [32] "I don't really know "                                                                                                                             
## [33] "Its about animal and carbon"                                                                                                                      
## [34] NA                                                                                                                                                 
## [35] NA                                                                                                                                                 
## [36] "None "                                                                                                                                            
## [37] "Very cool "                                                                                                                                       
## [38] "The climate of this communication and I am sure I could be of help in any time to talk to the person to work in and I am sure I could be of help "
## [39] "the climate change method that occurred in the study is a serious sign that things are changing drastically"                                      
## [40] "It's very hard to explain "                                                                                                                       
## [41] NA                                                                                                                                                 
## [42] "It's innovative that will help materials being reused"                                                                                            
## [43] "Climate change is effecting the world drastically "                                                                                               
## [44] NA                                                                                                                                                 
## [45] "Everything from start to finish is good for me and it different from one side to another "                                                        
## [46] NA                                                                                                                                                 
## [47] "I didn’t catch the name of the company "                                                                                                          
## [48] NA                                                                                                                                                 
## [49] "It cool to me"                                                                                                                                    
## [50] "Sjeiejebfisnjfjsjsowkeowkketijsnd xjsifneovnxnvI Djd Diane Jens cjaisbcjsbdisjnc c"
F$BIO_Clear_ATN2_TIME_Page.Submit
##  [1]      NA  11.863      NA   7.597      NA      NA      NA      NA   5.753
## [10]      NA      NA  24.630   8.057  29.401  15.351  20.158      NA      NA
## [19]      NA  25.085  29.265      NA  83.200      NA      NA      NA      NA
## [28] 457.383  12.994      NA      NA  11.288  18.465      NA      NA  11.484
## [37]   6.081  10.233  71.747  23.700      NA  53.801  18.230      NA  21.505
## [46]      NA  18.949      NA   4.252  19.200
# Naturalness 
F$N1_BioBlur <- as.numeric(F$NaturalnessBLUR_BIO_30)
F$N2R_BioBlur <- as.numeric(100 - F$NaturalnessBLUR_BIO_31)
F$N3R_BioBlur <- as.numeric(100 - F$NaturalnessBLUR_BIO_35)
F$N4R_BioBlur <- as.numeric(100 - F$NaturalnessBLUR_BIO_36)

hist(F$N1_BioBlur)

hist(F$N2R_BioBlur)

hist(F$N3R_BioBlur)

hist(F$N4R_BioBlur)

F$NatScore_BioBlur <- rowMeans(F [, c( "N1_BioBlur" , "N2R_BioBlur", "N3R_BioBlur", "N4R_BioBlur")], na.rm=TRUE)
describe(F$NatScore_BioBlur)
## F$NatScore_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       23    0.999    40.53     16.2    25.00    25.38 
##      .25      .50      .75      .90      .95 
##    29.00    40.50    48.88    54.00    61.12 
## 
## lowest :  7.00 25.00 25.75 27.25 27.50, highest: 50.50 51.00 57.00 62.50 80.50
sd(F$NatScore_BioBlur, na.rm = TRUE)
## [1] 14.63836
F$NatScale_BioBlur <- data.frame(F$N1_BioBlur, F$N2R_BioBlur, F$N3R_BioBlur, F$N4R_BioBlur)
describe(F$NatScale_BioBlur)
## F$NatScale_BioBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.993    67.38    29.48    25.75    37.50 
##      .25      .50      .75      .90      .95 
##    49.25    70.00    88.25   100.00   100.00 
## 
## lowest :   8  22  37  38  43, highest:  79  86  89  94 100
## --------------------------------------------------------------------------------
## F.N2R_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.998    28.88    30.51     0.00     0.50 
##      .25      .50      .75      .90      .95 
##     8.50    21.50    43.50    61.00    89.25 
## 
## lowest :   0   1   3   8  10, highest:  50  53  69  96 100
## --------------------------------------------------------------------------------
## F.N3R_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.991    20.65    20.26     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.50    20.50    29.00    44.50    53.75 
## 
## lowest :  0  1  4  6  8, highest: 34 36 53 54 61
##                                                                             
## Value          0     1     4     6     8    12    17    18    23    25    26
## Frequency      5     1     1     1     1     2     1     1     1     1     1
## Proportion 0.192 0.038 0.038 0.038 0.038 0.077 0.038 0.038 0.038 0.038 0.038
##                                                           
## Value         28    29    32    34    36    53    54    61
## Frequency      1     3     1     1     1     1     1     1
## Proportion 0.038 0.115 0.038 0.038 0.038 0.038 0.038 0.038
## --------------------------------------------------------------------------------
## F.N4R_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       24    0.999    45.19    34.82     0.00     1.50 
##      .25      .50      .75      .90      .95 
##    27.25    42.50    70.75    78.00    89.75 
## 
## lowest :  0  3  8 16 27, highest: 75 76 80 93 99
## --------------------------------------------------------------------------------
# Fluency
F$Fluency_BioBlur <- as.numeric(F$FluencyBLUR_BIO_34)
describe(F$Fluency_BioBlur)
## F$Fluency_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       16    0.979    71.58    35.33     1.75     7.00 
##      .25      .50      .75      .90      .95 
##    64.50    81.50    99.75   100.00   100.00 
## 
## lowest :   0   7  47  48  63, highest:  90  94  97  99 100
##                                                                             
## Value          0     7    47    48    63    69    71    74    75    81    82
## Frequency      2     2     1     1     1     1     1     1     2     1     2
## Proportion 0.077 0.077 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.077
##                                         
## Value         90    94    97    99   100
## Frequency      1     1     1     1     7
## Proportion 0.038 0.038 0.038 0.038 0.269
hist(F$Fluency_BioBlur)

sd(F$Fluency_BioBlur, na.rm = TRUE)
## [1] 33.50125
# Understanding 
F$Und_BioBlur <- as.numeric(F$FamiliarityBLUR_BIO_33)
hist(F$Und_BioBlur)

# Familiarity
F$Fam_BioBlur <- as.numeric(F$FamiliarityBLUR_BIO_31)

# Risk 
F$R1_BioBlur <- as.numeric(F$RiskBLUR_BIO_30)
F$R2_BioBlur <- as.numeric(F$RiskBLUR_BIO_31)
F$R3_BioBlur <- as.numeric(F$RiskBLUR_BIO_32)

hist(F$R1_BioBlur)

hist(F$R2_BioBlur)

hist(F$R3_BioBlur)

F$RiskScore_BioBlur <- rowMeans(F [, c( "R1_BioBlur" , "R2_BioBlur", "R3_BioBlur")], na.rm=TRUE)
describe(F$RiskScore_BioBlur)
## F$RiskScore_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       25        1    63.42    24.37    31.67    34.00 
##      .25      .50      .75      .90      .95 
##    48.50    65.67    76.58    91.17    97.42 
## 
## lowest : 31.00000 31.33333 32.66667 35.33333 36.33333
## highest: 84.66667 88.66667 93.66667 98.66667 99.00000
sd(F$RiskScore_BioBlur, na.rm = TRUE)
## [1] 20.97587
F$RiskScale_BioBlur <- data.frame(F$R1_BioBlur, F$R2_BioBlur, F$R3_BioBlur)
describe(F$RiskScale_BioBlur)
## F$RiskScale_BioBlur 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       23    0.999    57.88    38.32     0.50     2.50 
##      .25      .50      .75      .90      .95 
##    30.25    68.00    83.50    96.00    99.75 
## 
## lowest :   0   2   3  24  27, highest:  85  87  93  99 100
## --------------------------------------------------------------------------------
## F.R2_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.996    62.04     38.3     1.25     8.00 
##      .25      .50      .75      .90      .95 
##    33.25    69.00    88.75   100.00   100.00 
## 
## lowest :   0   5  11  29  31, highest:  86  88  89  97 100
## --------------------------------------------------------------------------------
## F.R3_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.996    70.35    31.58    24.00    31.00 
##      .25      .50      .75      .90      .95 
##    54.25    77.00    93.00   100.00   100.00 
## 
## lowest :   1  22  30  32  35, highest:  90  93  96  98 100
## --------------------------------------------------------------------------------
# Benefit 
F$B1_BioBlur <- as.numeric(F$BenefitBLUR_BIO_40)
F$B2_BioBlur <- as.numeric(F$BenefitBLUR_BIO_41)
F$B3_BioBlur <- as.numeric(F$BenefitBLUR_BIO_42)
F$B4_BioBlur <- as.numeric(F$BenefitBLUR_BIO_43)

hist(F$B1_BioBlur)

hist(F$B2_BioBlur)

hist(F$B3_BioBlur)

hist(F$B4_BioBlur)

F$BenScore_BioBlur <- rowMeans(F [, c( "B1_BioBlur" , "B2_BioBlur", "B3_BioBlur", "B4_BioBlur")], na.rm=TRUE)
describe(F$BenScore_BioBlur)
## F$BenScore_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       23    0.999    61.49    34.13    5.188   18.250 
##      .25      .50      .75      .90      .95 
##   48.875   66.750   82.375   99.375   99.938 
## 
## lowest :   0.00   3.50  10.25  26.25  37.00, highest:  91.25  97.25  99.00  99.75 100.00
sd(F$BenScore_BioBlur, na.rm = TRUE)
## [1] 29.97203
F$BenScale_BioBlur <- data.frame(F$B1_BioBlur, F$B2_BioBlur, F$B3_BioBlur, F$B4_BioBlur)
describe(F$BenScale_BioBlur)
## F$BenScale_BioBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.997    58.15     35.9     4.75    16.50 
##      .25      .50      .75      .90      .95 
##    36.00    60.50    81.75    99.50   100.00 
## 
## lowest :   0   4   7  26  32, highest:  83  91  96  99 100
##                                                                             
## Value          0     4     7    26    32    36    50    52    58    63    64
## Frequency      1     1     1     2     1     2     2     2     1     1     2
## Proportion 0.038 0.038 0.038 0.077 0.038 0.077 0.077 0.077 0.038 0.038 0.077
##                                                           
## Value         68    77    78    83    91    96    99   100
## Frequency      1     1     1     1     1     1     1     3
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.115
## --------------------------------------------------------------------------------
## F.B2_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       22    0.998    61.04    36.65      4.4     11.2 
##      .25      .50      .75      .90      .95 
##     35.0     68.0     85.0     99.2    100.0 
## 
## lowest :   0   4   6  19  26, highest:  81  85  97  98 100
## --------------------------------------------------------------------------------
## F.B3_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       22    0.996    63.19    36.64     6.00    18.00 
##      .25      .50      .75      .90      .95 
##    42.25    72.50    87.00   100.00   100.00 
## 
## lowest :   0   4  12  24  27, highest:  84  88  98  99 100
## --------------------------------------------------------------------------------
## F.B4_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.996       64    34.15     5.50    21.00 
##      .25      .50      .75      .90      .95 
##    48.50    70.50    84.75   100.00   100.00 
## 
## lowest :   0   2  16  26  27, highest:  84  85  89  97 100
## --------------------------------------------------------------------------------
# Support
F$S1_BioBlur <- as.numeric(F$SupportBLUR_BIO_40)
F$S2_BioBlur <- as.numeric(F$SupportBLUR_BIO_42)
F$S3_BioBlur <- as.numeric(F$SupportBLUR_BIO_43)
F$S4_BioBlur <- as.numeric(F$SupportBLUR_BIO_45)

hist(F$S1_BioBlur)

hist(F$S2_BioBlur)

hist(F$S3_BioBlur)

hist(F$S4_BioBlur)

F$SupScore_BioBlur <- rowMeans(F [, c( "S1_BioBlur" , "S2_BioBlur", "S3_BioBlur", "S4_BioBlur")], na.rm=TRUE)
describe(F$SupScore_BioBlur)
## F$SupScore_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       23    0.998    64.44    30.44    21.88    30.00 
##      .25      .50      .75      .90      .95 
##    51.25    66.62    86.81    99.75   100.00 
## 
## lowest :   5.75  21.25  23.75  36.25  36.50, highest:  88.75  91.00  95.75  99.50 100.00
sd(F$SupScore_BioBlur, na.rm = TRUE)
## [1] 26.37919
F$SupScale_BioBlur <- data.frame(F$S1_BioBlur, F$S2_BioBlur, F$S3_BioBlur, F$S4_BioBlur)
describe(F$SupScale_BioBlur)
## F$SupScale_BioBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       20    0.996    63.73    33.18       14       24 
##      .25      .50      .75      .90      .95 
##       52       67       89      100      100 
## 
## lowest :   0  11  23  25  32, highest:  79  83  91  94 100
##                                                                             
## Value          0    11    23    25    32    37    52    53    54    59    66
## Frequency      1     1     1     1     1     1     2     1     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.038 0.038 0.038
##                                                                 
## Value         67    70    74    77    79    83    91    94   100
## Frequency      2     1     1     1     1     1     2     1     4
## Proportion 0.077 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.154
## --------------------------------------------------------------------------------
## F.S2_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.995    66.27    31.02     22.0     29.0 
##      .25      .50      .75      .90      .95 
##     52.0     67.5     89.5    100.0    100.0 
## 
## lowest :   8  21  25  33  50, highest:  85  91  92  96 100
##                                                                             
## Value          8    21    25    33    50    52    54    64    66    67    68
## Frequency      1     1     1     2     1     3     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.077 0.038 0.115 0.038 0.038 0.038 0.038 0.038
##                                                           
## Value         75    78    83    85    91    92    96   100
## Frequency      1     2     1     1     1     1     1     4
## Proportion 0.038 0.077 0.038 0.038 0.038 0.038 0.038 0.154
## --------------------------------------------------------------------------------
## F.S3_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.996    63.54    33.06    23.00    28.00 
##      .25      .50      .75      .90      .95 
##    46.50    65.00    88.75   100.00   100.00 
## 
## lowest :   0  23  33  34  36, highest:  82  91  98  99 100
## --------------------------------------------------------------------------------
## F.S4_BioBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.994    64.23    30.34    26.00    30.00 
##      .25      .50      .75      .90      .95 
##    42.25    69.00    80.75   100.00   100.00 
## 
## lowest :  15  26  34  35  38, highest:  80  81  89  96 100
##                                                                             
## Value         15    26    34    35    38    39    52    54    60    68    70
## Frequency      1     2     1     1     1     1     3     1     1     1     2
## Proportion 0.038 0.077 0.038 0.038 0.038 0.038 0.115 0.038 0.038 0.038 0.077
##                                                     
## Value         75    78    80    81    89    96   100
## Frequency      1     1     2     1     1     1     4
## Proportion 0.038 0.038 0.077 0.038 0.038 0.038 0.154
## --------------------------------------------------------------------------------

Biofuel (Clear Condition)

F$BF_Clear_Page.Submit
##  [1]     NA  8.922     NA     NA     NA     NA  7.796  4.260     NA  0.732
## [11]     NA 14.602     NA 14.977  9.343     NA     NA 38.795 23.046     NA
## [21] 46.338 19.502 38.701  5.623 23.581     NA     NA 43.987     NA     NA
## [31] 16.316     NA 12.927  4.157 11.044 32.091     NA     NA  5.526     NA
## [41]     NA     NA 34.825     NA     NA 12.669     NA     NA  1.314  2.599
F$BF_Clear_ATN
##  [1] NA  2 NA NA NA NA  2  2 NA  1 NA  2 NA  2  2 NA NA  2  2 NA  2  2  2  2  2
## [26] NA NA  2 NA NA  2 NA  2  2  2  2 NA NA  2 NA NA NA  2 NA NA  2 NA NA  4  2
F$BF_Clear_ATN_TIME_Page.Submit
##  [1]     NA  1.889     NA     NA     NA     NA  2.872  4.964     NA  2.411
## [11]     NA  2.886     NA  1.573  3.136     NA     NA  3.083  2.340     NA
## [21]  3.397  1.901  2.400  4.044  2.155     NA     NA  6.880     NA     NA
## [31]  1.253     NA  1.956  2.502  2.026  4.348     NA     NA  3.250     NA
## [41]     NA     NA  3.434     NA     NA  2.503     NA     NA 15.846  3.753
F$BF_Clear_ATN2
##  [1] NA                                                                                                                                                                                                            
##  [2] "Its about the fuel"                                                                                                                                                                                          
##  [3] NA                                                                                                                                                                                                            
##  [4] NA                                                                                                                                                                                                            
##  [5] NA                                                                                                                                                                                                            
##  [6] NA                                                                                                                                                                                                            
##  [7] "They use plants to make fuel."                                                                                                                                                                               
##  [8] "I don't remember "                                                                                                                                                                                           
##  [9] NA                                                                                                                                                                                                            
## [10] "I’m not sure "                                                                                                                                                                                               
## [11] NA                                                                                                                                                                                                            
## [12] "Uses plant to make fuel"                                                                                                                                                                                     
## [13] NA                                                                                                                                                                                                            
## [14] "A proccess to created fuel liquid fuel"                                                                                                                                                                      
## [15] "Taking plants and making energy "                                                                                                                                                                            
## [16] NA                                                                                                                                                                                                            
## [17] NA                                                                                                                                                                                                            
## [18] "The process that uses plants and trees to produce fuel, to power many things including cars. "                                                                                                               
## [19] "taking plants and making liquid out of them you can use as fuel"                                                                                                                                             
## [20] NA                                                                                                                                                                                                            
## [21] "biofuel is taking plants and either cooling or heating them at a biofuel facility in order to make a liquid biofuel that is then refined, and you can use it to run vehicles and other fuel dependent things"
## [22] "Biofuel is a liquid fuel obtained by burning various types of plants such as grass and trees. Once refined, it can be used in everyday transportation (cars, airplanes, etc.)"                               
## [23] "Biofuel is a fuel derived from plants. It is made to fuel cars and heat buildings. "                                                                                                                         
## [24] "Cut down on polution"                                                                                                                                                                                        
## [25] "biofuel is created by using agricultural waste, grass, grown crops.  the products are converted into a crude 'oil' that can be used for vehicles, heating, etc."                                             
## [26] NA                                                                                                                                                                                                            
## [27] NA                                                                                                                                                                                                            
## [28] "Taking natural things and breaking it all down to make biofuel to convert to crude oil."                                                                                                                     
## [29] NA                                                                                                                                                                                                            
## [30] NA                                                                                                                                                                                                            
## [31] "Using plants to create liquid fuel which would be used instead of gas. "                                                                                                                                     
## [32] NA                                                                                                                                                                                                            
## [33] "Biofuel made from like tress and all"                                                                                                                                                                        
## [34] "Chemistry \nScientific facts\nSolar System\nSolar energy "                                                                                                                                                   
## [35] "Turning plants into fuel "                                                                                                                                                                                   
## [36] "None"                                                                                                                                                                                                        
## [37] NA                                                                                                                                                                                                            
## [38] NA                                                                                                                                                                                                            
## [39] "it uses biofuel to operate or manage the energy crises"                                                                                                                                                      
## [40] NA                                                                                                                                                                                                            
## [41] NA                                                                                                                                                                                                            
## [42] NA                                                                                                                                                                                                            
## [43] "It uses plants trees and other things to create crude oil"                                                                                                                                                   
## [44] NA                                                                                                                                                                                                            
## [45] NA                                                                                                                                                                                                            
## [46] "A prices that uses plants to produce natural gas"                                                                                                                                                            
## [47] NA                                                                                                                                                                                                            
## [48] NA                                                                                                                                                                                                            
## [49] "It cool to me"                                                                                                                                                                                               
## [50] "Fjeiengidhrbfhicjv did riv djdhsichdbeinwf n. Dis cow vid crown is jam sod cosmic. Jaosncb"
F$BF_Clear_ATN2_TIME_Page.Submit
##  [1]      NA  11.283      NA      NA      NA      NA  14.218   7.490      NA
## [10]   5.500      NA  11.825      NA  27.092  15.687      NA      NA  49.100
## [19]  26.960      NA  87.440 170.250  66.001  44.579 126.001      NA      NA
## [28] 140.300      NA      NA  15.973      NA  13.649  28.155   9.623   3.518
## [37]      NA      NA  35.430      NA      NA      NA  23.561      NA      NA
## [46]  18.173      NA      NA   3.802   9.571
# Naturalness 
F$N1_BFClear <- as.numeric(F$Naturalness_BF_30)
F$N2R_BFClear <- as.numeric(100 - F$Naturalness_BF_31)
F$N3R_BFClear <- as.numeric(100 - F$Naturalness_BF_35)
F$N4R_BFClear <- as.numeric(100 - F$Naturalness_BF_36)

hist(F$N1_BFClear)

hist(F$N2R_BFClear)

hist(F$N3R_BFClear)

hist(F$N4R_BFClear)

F$NatScore_BFClear <- rowMeans(F [, c( "N1_BFClear" , "N2R_BFClear", "N3R_BFClear", "N4R_BFClear")], na.rm=TRUE)
describe(F$NatScore_BFClear)
## F$NatScore_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       24        1    43.68    24.44     4.75    21.45 
##      .25      .50      .75      .90      .95 
##    28.75    44.25    58.00    72.05    73.55 
## 
## lowest :  0.00  0.75 20.75 22.50 26.00, highest: 65.00 71.00 72.75 73.75 75.00
sd(F$NatScore_BFClear, na.rm = TRUE)
## [1] 21.13073
F$NatScale_BFClear <- data.frame(F$N1_BFClear, F$N2R_BFClear, F$N3R_BFClear, F$N4R_BFClear)
describe(F$NatScale_BFClear)
## F$NatScale_BFClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       17    0.967    59.84    42.27      0.4      2.8 
##      .25      .50      .75      .90      .95 
##     32.0     66.0    100.0    100.0    100.0 
## 
## lowest :   0   2   4  15  31, highest:  71  76  77  81 100
##                                                                            
## Value         0    2    4   15   31   32   33   43   50   51   64   66   71
## Frequency     2    1    1    1    1    1    1    1    1    1    1    1    1
## Proportion 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                               
## Value        76   77   81  100
## Frequency     1    1    1    8
## Proportion 0.04 0.04 0.04 0.32
## --------------------------------------------------------------------------------
## F.N2R_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.995    43.88    40.94      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     17.0     30.0     75.0     92.6     99.0 
## 
## lowest :   0   6   8  17  18, highest:  76  79  89  95 100
##                                                                            
## Value         0    6    8   17   18   19   26   27   30   32   52   72   74
## Frequency     4    1    1    1    1    1    1    1    2    1    1    2    1
## Proportion 0.16 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.08 0.04
##                                         
## Value        75   76   79   89   95  100
## Frequency     1    1    1    1    1    2
## Proportion 0.04 0.04 0.04 0.04 0.04 0.08
## --------------------------------------------------------------------------------
## F.N3R_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       16    0.977    20.92    25.29      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     16.0     30.0     50.0     59.6 
## 
## lowest :  0  1  3 11 12, highest: 35 39 50 62 99
##                                                                            
## Value         0    1    3   11   12   15   16   20   22   26   30   35   39
## Frequency     7    1    1    1    1    1    3    1    1    1    1    1    1
## Proportion 0.28 0.04 0.04 0.04 0.04 0.04 0.12 0.04 0.04 0.04 0.04 0.04 0.04
##                          
## Value        50   62   99
## Frequency     2    1    1
## Proportion 0.08 0.04 0.04
## --------------------------------------------------------------------------------
## F.N4R_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.995    49.75    43.34     1.05     7.30 
##      .25      .50      .75      .90      .95 
##    19.50    37.50    91.00   100.00   100.00 
## 
## lowest :   0   7   8  10  18, highest:  80  90  94  99 100
##                                                                             
## Value          0     7     8    10    18    20    21    25    28    30    32
## Frequency      2     1     1     1     1     1     1     1     1     1     1
## Proportion 0.083 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                                 
## Value         43    45    71    73    80    90    94    99   100
## Frequency      1     1     1     1     1     1     1     1     4
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.167
## --------------------------------------------------------------------------------
cor(F$NatScale_BFClear, use= "complete.obs")
##               F.N1_BFClear F.N2R_BFClear F.N3R_BFClear F.N4R_BFClear
## F.N1_BFClear     1.0000000     0.1830883    -0.4643078     0.4025877
## F.N2R_BFClear    0.1830883     1.0000000     0.1945759     0.4566844
## F.N3R_BFClear   -0.4643078     0.1945759     1.0000000     0.1458218
## F.N4R_BFClear    0.4025877     0.4566844     0.1458218     1.0000000
# Fluency
F$Fluency_BFClear <- as.numeric(F$Fluency_BF_30)
describe(F$Fluency_BFClear)
## F$Fluency_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       14    0.936     78.8    28.51     23.0     36.2 
##      .25      .50      .75      .90      .95 
##     66.0     88.0    100.0    100.0    100.0 
## 
## lowest :   0  22  27  50  61, highest:  87  88  90  91 100
##                                                                            
## Value         0   22   27   50   61   66   72   80   82   87   88   90   91
## Frequency     1    1    1    1    1    2    1    1    1    1    2    1    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.08 0.04 0.04
##                
## Value       100
## Frequency    10
## Proportion 0.40
hist(F$Fluency_BFClear)

sd(F$Fluency_BFClear, na.rm = TRUE)
## [1] 27.8807
# Understanding 
F$Und_BFClear <- as.numeric(F$Familiarity_BF_31)
hist(F$Und_BFClear, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...): "na.rm"
## is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, ...): "na.rm" is not a graphical parameter

# Familiarity
F$Fam_BFClear <- as.numeric(F$Familiarity_BF_32)

# Risk 
F$R1_BFClear <- as.numeric(F$Risk_BF_30)
F$R2_BFClear <- as.numeric(F$Risk_BF_31)
F$R3_BFClear <- as.numeric(F$Risk_BF_32)

hist(F$R1_BFClear)

hist(F$R2_BFClear)

hist(F$R3_BFClear)

F$RiskScore_BFClear <- rowMeans(F [, c( "R1_BFClear" , "R2_BFClear", "R3_BFClear")], na.rm=TRUE)
describe(F$RiskScore_BFClear)
## F$RiskScore_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       20    0.995    49.03    28.48    14.07    20.20 
##      .25      .50      .75      .90      .95 
##    33.33    38.33    66.33    82.47    96.73 
## 
## lowest :  10.33333  13.66667  15.66667  27.00000  33.33333
## highest:  69.33333  78.66667  85.00000  99.66667 100.00000
## 
## 10.3333333333333 (1, 0.04), 13.6666666666667 (1, 0.04), 15.6666666666667 (1,
## 0.04), 27 (1, 0.04), 33.3333333333333 (4, 0.16), 33.6666666666667 (2, 0.08), 35
## (1, 0.04), 37.6666666666667 (1, 0.04), 38.3333333333333 (1, 0.04),
## 47.3333333333333 (1, 0.04), 56.3333333333333 (1, 0.04), 57.6666666666667 (1,
## 0.04), 58 (1, 0.04), 59.6666666666667 (1, 0.04), 66.3333333333333 (1, 0.04),
## 69.3333333333333 (2, 0.08), 78.6666666666667 (1, 0.04), 85 (1, 0.04),
## 99.6666666666667 (1, 0.04), 100 (1, 0.04)
sd(F$RiskScore_BFClear, na.rm = TRUE)
## [1] 25.02238
F$RiskScale_BFClear <- data.frame(F$R1_BFClear, F$R2_BFClear, F$R3_BFClear)
describe(F$RiskScale_BFClear)
## F$RiskScale_BFClear 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.992    37.28    39.51      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      8.0     29.0     65.0     85.6     97.2 
## 
## lowest :   0   7   8  11  13, highest:  74  84  85  86 100
##                                                                            
## Value         0    7    8   11   13   14   18   24   29   34   37   50   64
## Frequency     5    1    1    1    1    1    1    1    2    1    1    1    1
## Proportion 0.20 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04
##                                         
## Value        65   74   84   85   86  100
## Frequency     1    1    1    1    1    2
## Proportion 0.04 0.04 0.04 0.04 0.04 0.08
## --------------------------------------------------------------------------------
## F.R2_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       17    0.985     37.4    42.42      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      1.0     22.0     71.0     91.4     98.6 
## 
## lowest :   0   1   7   8  12, highest:  72  85  89  93 100
##                                                                            
## Value         0    1    7    8   12   17   22   32   50   66   70   71   72
## Frequency     6    1    1    2    1    1    1    2    1    1    1    1    1
## Proportion 0.24 0.04 0.04 0.08 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.04
##                               
## Value        85   89   93  100
## Frequency     1    1    1    2
## Proportion 0.04 0.04 0.04 0.08
## --------------------------------------------------------------------------------
## F.R3_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       18    0.978     72.4    32.55     12.8     19.6 
##      .25      .50      .75      .90      .95 
##     69.0     80.0    100.0    100.0    100.0 
## 
## lowest :  10  12  16  25  26, highest:  82  86  93  99 100
##                                                                            
## Value        10   12   16   25   26   62   69   71   73   74   77   80   81
## Frequency     1    1    1    1    1    1    1    1    1    2    1    1    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04
##                                    
## Value        82   86   93   99  100
## Frequency     1    1    1    1    7
## Proportion 0.04 0.04 0.04 0.04 0.28
## --------------------------------------------------------------------------------
# Benefit 
F$B1_BFClear <- as.numeric(F$Benefit_BF_40)
F$B2_BFClear <- as.numeric(F$Benefit_BF_42)
F$B3_BFClear <- as.numeric(F$Benefit_BF_43)
F$B4_BFClear <- as.numeric(F$Benefit_BF_44)

hist(F$B1_BFClear)

hist(F$B2_BFClear)

hist(F$B3_BFClear)

hist(F$B4_BFClear)

F$BenScore_BFClear <- rowMeans(F [, c( "B1_BFClear" , "B2_BFClear", "B3_BFClear", "B4_BFClear")], na.rm=TRUE)
describe(F$BenScore_BFClear)
## F$BenScore_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.992    70.56    34.43     1.50     9.10 
##      .25      .50      .75      .90      .95 
##    66.25    79.25    96.00   100.00   100.00 
## 
## lowest :   0.00   7.50  11.50  51.00  54.75, highest:  88.50  89.75  96.00  99.25 100.00
## 
## 0 (2, 0.08), 7.5 (1, 0.04), 11.5 (1, 0.04), 51 (1, 0.04), 54.75 (1, 0.04),
## 66.25 (1, 0.04), 69.5 (1, 0.04), 71 (1, 0.04), 72.25 (1, 0.04), 72.5 (1, 0.04),
## 73.75 (1, 0.04), 79.25 (1, 0.04), 85.25 (1, 0.04), 87.5 (1, 0.04), 88.5 (2,
## 0.08), 89.75 (1, 0.04), 96 (1, 0.04), 99.25 (1, 0.04), 100 (5, 0.20)
sd(F$BenScore_BFClear, na.rm = TRUE)
## [1] 32.58669
F$BenScale_BFClear <- data.frame(F$B1_BFClear, F$B2_BFClear, F$B3_BFClear, F$B4_BFClear)
describe(F$BenScale_BFClear)
## F$BenScale_BFClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       17    0.978    68.52    37.78      1.0      6.6 
##      .25      .50      .75      .90      .95 
##     51.0     73.0    100.0    100.0    100.0 
## 
## lowest :   0   5   9  27  50, highest:  88  90  93  99 100
##                                                                            
## Value         0    5    9   27   50   51   66   68   69   71   73   81   88
## Frequency     2    1    1    1    1    1    1    1    1    1    2    1    1
## Proportion 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04
##                               
## Value        90   93   99  100
## Frequency     1    1    1    7
## Proportion 0.04 0.04 0.04 0.28
## --------------------------------------------------------------------------------
## F.B2_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       18    0.978    72.88    32.85      2.8     15.2 
##      .25      .50      .75      .90      .95 
##     70.0     81.0    100.0    100.0    100.0 
## 
## lowest :   0  14  17  54  66, highest:  85  87  88  98 100
##                                                                            
## Value         0   14   17   54   66   70   73   74   75   78   79   81   83
## Frequency     2    1    1    1    1    1    1    1    1    1    1    1    1
## Proportion 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                    
## Value        85   87   88   98  100
## Frequency     1    1    1    1    7
## Proportion 0.04 0.04 0.04 0.04 0.28
## --------------------------------------------------------------------------------
## F.B3_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       15    0.977    69.96    35.15      1.6      8.4 
##      .25      .50      .75      .90      .95 
##     66.0     80.0    100.0    100.0    100.0 
## 
## lowest :   0   8   9  50  66, highest:  84  87  89  90 100
##                                                                            
## Value         0    8    9   50   66   67   68   71   73   80   84   87   89
## Frequency     2    1    1    2    1    1    1    1    2    1    2    1    1
## Proportion 0.08 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.08 0.04 0.08 0.04 0.04
##                     
## Value        90  100
## Frequency     1    7
## Proportion 0.04 0.28
## --------------------------------------------------------------------------------
## F.B4_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       15    0.953    70.88    37.01      0.6      6.2 
##      .25      .50      .75      .90      .95 
##     62.0     83.0    100.0    100.0    100.0 
## 
## lowest :   0   3  11  30  50, highest:  83  84  87  89 100
##                                                                            
## Value         0    3   11   30   50   62   67   70   77   82   83   84   87
## Frequency     2    1    1    1    1    1    1    1    2    1    1    1    1
## Proportion 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04
##                     
## Value        89  100
## Frequency     1    9
## Proportion 0.04 0.36
## --------------------------------------------------------------------------------
# Support 
F$S1_BFClear <- as.numeric(F$Support_BF_40)
F$S2_BFClear <- as.numeric(F$Support_BF_42)
F$S3_BFClear <- as.numeric(F$Support_BF_43)
F$S4_BFClear <- as.numeric(F$Support_BF_45)

hist(F$S1_BFClear)

hist(F$S2_BFClear)

hist(F$S3_BFClear)

hist(F$S4_BFClear)

F$SupScore_BFClear <- rowMeans(F [, c( "S1_BFClear" , "S2_BFClear", "S3_BFClear", "S4_BFClear")], na.rm=TRUE)
describe(F$SupScore_BFClear)
## F$SupScore_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       24        1    64.59    34.45     5.05     7.45 
##      .25      .50      .75      .90      .95 
##    57.50    70.00    85.25    99.15    99.95 
## 
## lowest :   0.00   4.75   6.25   9.25  34.50, highest:  89.00  96.75  98.25  99.75 100.00
sd(F$SupScore_BFClear, na.rm = TRUE)
## [1] 31.21847
F$SupScale_BFClear <- data.frame(F$S1_BFClear, F$S2_BFClear, F$S3_BFClear, F$S4_BFClear)
describe(F$SupScale_BFClear)
## F$SupScale_BFClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       20    0.995    68.64    35.68      0.2      2.6 
##      .25      .50      .75      .90      .95 
##     61.0     77.0     96.0    100.0    100.0 
## 
## lowest :   0   1   5  50  61, highest:  93  96  97  98 100
##                                                                            
## Value         0    1    5   50   61   62   70   72   73   76   77   81   83
## Frequency     2    1    1    2    1    1    1    1    1    1    1    1    1
## Proportion 0.08 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                              
## Value        84   87   93   96   97   98  100
## Frequency     1    1    1    1    1    1    4
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.16
## --------------------------------------------------------------------------------
## F.S2_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       20    0.997    65.32    33.71      2.6     13.0 
##      .25      .50      .75      .90      .95 
##     62.0     72.0     83.0     98.4    100.0 
## 
## lowest :   0  13  26  50  62, highest:  83  84  95  96 100
##                                                                            
## Value         0   13   26   50   62   64   66   68   69   71   72   75   80
## Frequency     2    2    1    1    1    1    1    1    1    1    1    1    1
## Proportion 0.08 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                              
## Value        81   82   83   84   95   96  100
## Frequency     1    1    2    1    1    1    3
## Proportion 0.04 0.04 0.08 0.04 0.04 0.04 0.12
## --------------------------------------------------------------------------------
## F.S3_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       17    0.995    61.12    37.97      0.0      1.6 
##      .25      .50      .75      .90      .95 
##     50.0     73.0     81.0     99.6    100.0 
## 
## lowest :   0   4   7  31  50, highest:  81  89  94  99 100
##                                                                            
## Value         0    4    7   31   50   63   67   68   73   76   77   79   81
## Frequency     3    1    1    1    2    1    1    2    1    3    1    1    1
## Proportion 0.12 0.04 0.04 0.04 0.08 0.04 0.04 0.08 0.04 0.12 0.04 0.04 0.04
##                               
## Value        89   94   99  100
## Frequency     1    1    1    3
## Proportion 0.04 0.04 0.04 0.12
## --------------------------------------------------------------------------------
## F.S4_BFClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       17    0.991    63.28    37.67      1.4      9.0 
##      .25      .50      .75      .90      .95 
##     50.0     74.0     88.0    100.0    100.0 
## 
## lowest :   0   7  12  19  30, highest:  84  86  88  89 100
##                                                                            
## Value         0    7   12   19   30   50   60   65   69   74   75   80   84
## Frequency     2    1    1    1    1    2    1    1    2    1    2    1    1
## Proportion 0.08 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.08 0.04 0.08 0.04 0.04
##                               
## Value        86   88   89  100
## Frequency     1    1    1    5
## Proportion 0.04 0.04 0.04 0.20
## --------------------------------------------------------------------------------

Biofuel (Blurred Condition)

F$BF_Blurred_Page.Submit
##  [1]  3.277     NA  0.957  2.101 14.101  0.714     NA     NA  3.177     NA
## [11]  4.200     NA  5.210     NA     NA  9.794  1.009     NA     NA 12.951
## [21]     NA     NA     NA     NA     NA 17.673 10.099     NA 12.404  2.378
## [31]     NA  3.801     NA     NA     NA     NA 10.272  0.623     NA 22.362
## [41] 36.739 11.301     NA  7.688  7.307     NA 23.510 35.302     NA     NA
F$BF_Blurred_ATN
##  [1]  2 NA  4  2  2  1 NA NA  2 NA  2 NA  1 NA NA  4  2 NA NA  2 NA NA NA NA NA
## [26]  2  2 NA  3  2 NA  3 NA NA NA NA  3  4 NA  2  4  2 NA  2  2 NA  2  2 NA NA
F$BF_Blurred_ATN_TIME_Page.Submit
##  [1] 2.175    NA 4.876 2.186 1.593 1.254    NA    NA 2.817    NA 2.177    NA
## [13] 2.232    NA    NA 2.502 2.624    NA    NA 1.104    NA    NA    NA    NA
## [25]    NA 6.207 1.601    NA 4.608 3.894    NA 3.546    NA    NA    NA    NA
## [37] 3.214 1.668    NA 5.340 3.437 2.039    NA 4.001 3.993    NA 2.373 2.755
## [49]    NA    NA
F$BF_Blurred_ATN2
##  [1] "Oahd pqid. Skei apeiej pausjs laisjs "                                                                                                                               
##  [2] NA                                                                                                                                                                    
##  [3] "Interesting "                                                                                                                                                        
##  [4] "We are coming tomorrow morning "                                                                                                                                     
##  [5] "They take trees and plants and they freeze them in that makes fuel."                                                                                                 
##  [6] "Htghhj"                                                                                                                                                              
##  [7] NA                                                                                                                                                                    
##  [8] NA                                                                                                                                                                    
##  [9] "What do you mean the world to see the first time I was wondering how much you can even get the email exchange email to"                                              
## [10] NA                                                                                                                                                                    
## [11] "Goossjdjxjxjx"                                                                                                                                                       
## [12] NA                                                                                                                                                                    
## [13] "I can not "                                                                                                                                                          
## [14] NA                                                                                                                                                                    
## [15] NA                                                                                                                                                                    
## [16] "Wild energy I believe it's just a force of nature and I don't think anybody really understand science"                                                               
## [17] "I'm interested"                                                                                                                                                      
## [18] NA                                                                                                                                                                    
## [19] NA                                                                                                                                                                    
## [20] "Plant matter only, no animal matter, is used to make fuel. The claim is that agricultural waste will be used, implying deforestation will not be considered."        
## [21] NA                                                                                                                                                                    
## [22] NA                                                                                                                                                                    
## [23] NA                                                                                                                                                                    
## [24] NA                                                                                                                                                                    
## [25] NA                                                                                                                                                                    
## [26] "It’s a way to change a plant based liquid into fuel for gas and trucks and other items"                                                                              
## [27] "Biofuel is used just the same way as gasoline is used in trucks, cars, airplanes, etc. Except this method is made from plants. Examples would be trees or grass. "   
## [28] NA                                                                                                                                                                    
## [29] "Can’t even see the letters "                                                                                                                                         
## [30] "I dont know"                                                                                                                                                         
## [31] NA                                                                                                                                                                    
## [32] "I don't really know "                                                                                                                                                
## [33] NA                                                                                                                                                                    
## [34] NA                                                                                                                                                                    
## [35] NA                                                                                                                                                                    
## [36] NA                                                                                                                                                                    
## [37] "Very cool "                                                                                                                                                          
## [38] "The only reason I have been a little busy with my work and then we can go on the road on the team gggg ytyt ytyyyg and then I can go to the Fair is the one thing I "
## [39] NA                                                                                                                                                                    
## [40] "Biofuel is heating up plants to make biofuel "                                                                                                                       
## [41] "Everything it is good on my end but I just didn’t want to "                                                                                                          
## [42] "The fuel can be recycled over again"                                                                                                                                 
## [43] NA                                                                                                                                                                    
## [44] "Fuel created from plants"                                                                                                                                            
## [45] "Everything from start to finish is good for me and different from one side to another "                                                                              
## [46] NA                                                                                                                                                                    
## [47] "It cones from plants and trees so its more healthy for the environment "                                                                                             
## [48] "Biofuel can be used to fuel cars and planes"                                                                                                                         
## [49] NA                                                                                                                                                                    
## [50] NA
F$BF_Blurred_ATN2_TIME_Page.Submit
##  [1]  5.401     NA  6.469  4.554 18.165  2.568     NA     NA  6.367     NA
## [11]  5.201     NA  6.435     NA     NA 12.300 11.900     NA     NA 47.565
## [21]     NA     NA     NA     NA     NA 42.000 59.456     NA  8.701 10.451
## [31]     NA  8.302     NA     NA     NA     NA  3.481 16.661     NA 27.401
## [41]  5.702 39.801     NA 29.504 22.001     NA 29.322 21.396     NA     NA
# Naturalness 
F$N1_BFBlur <- as.numeric(F$NaturalnessBLUR_BF_30)
F$N2R_BFBlur <- as.numeric(100 - F$NaturalnessBLUR_BF_31)
F$N3R_BFBlur <- as.numeric(100 - F$NaturalnessBLUR_BF_35)
F$N4R_BFBlur <- as.numeric(100- F$NaturalnessBLUR_BF_36)

hist(F$N1_BFBlur)

hist(F$N2R_BFBlur)

hist(F$N3R_BFBlur)

hist(F$N4R_BFBlur)

F$NatScore_BFBlur <- rowMeans(F [, c( "N1_BFBlur" , "N2R_BFBlur", "N3R_BFBlur", "N4R_BFBlur")], na.rm=TRUE)
describe(F$NatScore_BFBlur)
## F$NatScore_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       24        1    38.28    15.61     21.9     24.7 
##      .25      .50      .75      .90      .95 
##     25.5     36.0     49.0     55.8     60.0 
## 
## lowest : 18.25 21.25 24.50 25.00 25.25, highest: 52.50 55.50 56.00 61.00 62.00
sd(F$NatScore_BFBlur, na.rm = TRUE)
## [1] 13.4221
F$NatScale_BFBlur <- data.frame(F$N1_BFBlur, F$N2R_BFBlur, F$N3R_BFBlur, F$N4R_BFBlur)
describe(F$NatScale_BFBlur)
## F$NatScale_BFBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       18    0.986    70.24    32.56     24.2     31.0 
##      .25      .50      .75      .90      .95 
##     50.0     75.0     96.0    100.0    100.0 
## 
## lowest :   4  23  29  34  35, highest:  86  87  88  96 100
##                                                                            
## Value         4   23   29   34   35   50   52   62   66   67   73   75   83
## Frequency     1    1    1    1    1    2    1    1    1    1    1    1    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                    
## Value        86   87   88   96  100
## Frequency     1    1    1    2    6
## Proportion 0.04 0.04 0.04 0.08 0.24
## --------------------------------------------------------------------------------
## F.N2R_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       17    0.994     24.5    27.24     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     1.75    22.50    32.00    50.00    68.70 
## 
## lowest :   0   1   2   3   7, highest:  32  48  50  72 100
##                                                                             
## Value          0     1     2     3     7    17    22    23    26    27    28
## Frequency      4     2     1     1     1     2     1     1     1     1     1
## Proportion 0.167 0.083 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.042
##                                               
## Value         30    32    48    50    72   100
## Frequency      1     2     1     2     1     1
## Proportion 0.042 0.083 0.042 0.083 0.042 0.042
## --------------------------------------------------------------------------------
## F.N3R_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18    0.993    20.62    21.26     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     3.75    19.00    26.50    47.10    49.70 
## 
## lowest :  0  2  3  4  9, highest: 34 45 48 50 79
##                                                                             
## Value          0     2     3     4     9    12    13    15    19    22    24
## Frequency      4     1     1     1     1     1     1     1     3     1     2
## Proportion 0.167 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.125 0.042 0.083
##                                                     
## Value         26    28    34    45    48    50    79
## Frequency      1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042
## --------------------------------------------------------------------------------
## F.N4R_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18     0.99    33.46    35.54     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     9.50    26.50    55.00    84.30    97.25 
## 
## lowest :   0   8  10  12  19, highest:  62  64  93  98 100
##                                                                             
## Value          0     8    10    12    19    26    27    28    29    31    48
## Frequency      5     1     2     1     1     2     1     1     1     1     1
## Proportion 0.208 0.042 0.083 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.042
##                                                     
## Value         54    58    62    64    93    98   100
## Frequency      1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042
## --------------------------------------------------------------------------------
# Fluency 
F$Fluency_BFBlur <- as.numeric(F$FluencyBLUR_BF_34)
describe(F$Fluency_BFBlur)
## F$Fluency_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       16    0.967    84.04    19.52     52.4     63.6 
##      .25      .50      .75      .90      .95 
##     76.0     86.0    100.0    100.0    100.0 
## 
## lowest :  34  50  62  66  68, highest:  86  92  98  99 100
##                                                                            
## Value        34   50   62   66   68   69   76   78   79   81   84   86   92
## Frequency     1    1    1    1    1    1    1    1    1    2    1    1    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04
##                          
## Value        98   99  100
## Frequency     2    1    8
## Proportion 0.08 0.04 0.32
hist(F$Fluency_BFBlur)

sd(F$Fluency_BFBlur, na.rm = TRUE)
## [1] 18.05196
# Understanding
F$Und_BFBlur <- as.numeric(F$FamiliarityBLUR_BF_31)
describe(F$Und_BFBlur)
## F$Und_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       18    0.986    81.72    21.93     40.6     59.4 
##      .25      .50      .75      .90      .95 
##     68.0     86.0     99.0    100.0    100.0 
## 
## lowest :  30  36  59  60  66, highest:  95  96  98  99 100
##                                                                            
## Value        30   36   59   60   66   67   68   74   79   80   82   86   91
## Frequency     1    1    1    1    1    1    1    1    2    1    1    1    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04
##                                    
## Value        95   96   98   99  100
## Frequency     1    1    2    1    6
## Proportion 0.04 0.04 0.08 0.04 0.24
sd(F$Und_BFBlur, na.rm = TRUE)
## [1] 20.20833
hist(F$Und_BFBlur)

# Familiarity
F$Fam_BFBlur <- as.numeric(F$FamiliarityBLUR_BF_32)

# Risk 
F$R1_BFBlur <- as.numeric(F$RiskBLUR_BF_30)
F$R2_BFBlur <- as.numeric(F$RiskBLUR_BF_31)
F$R3_BFBlur <- as.numeric(F$RiskBLUR_BF_32)

hist(F$R1_BFBlur)

hist(F$R2_BFBlur)

hist(F$R3_BFBlur)

F$RiskScore_BFBlur <- rowMeans(F [, c( "R1_BFBlur" , "R2_BFBlur", "R3_BFBlur")], na.rm=TRUE)
describe(F$RiskScore_BFBlur)
## F$RiskScore_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       21    0.998    65.17     23.5    34.07    39.40 
##      .25      .50      .75      .90      .95 
##    52.00    65.00    78.33    96.20    99.67 
## 
## lowest :  32.33333  33.33333  37.00000  43.00000  47.33333
## highest:  78.33333  85.66667  93.00000  98.33333 100.00000
sd(F$RiskScore_BFBlur, na.rm = TRUE)
## [1] 20.20202
F$RiskScale_BFBlur <- data.frame(F$R1_BFBlur, F$R2_BFBlur, F$R3_BFBlur)
describe(F$RiskScale_BFBlur)
## F$RiskScale_BFBlur 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       17    0.995    60.44    37.03      1.2     10.4 
##      .25      .50      .75      .90      .95 
##     31.0     70.0     82.0     96.8    100.0 
## 
## lowest :   0   6  17  29  31, highest:  81  82  89  92 100
##                                                                            
## Value         0    6   17   29   31   42   52   68   69   70   73   79   81
## Frequency     2    1    1    2    1    1    2    1    1    1    1    3    1
## Proportion 0.08 0.04 0.04 0.08 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.12 0.04
##                               
## Value        82   89   92  100
## Frequency     1    1    2    3
## Proportion 0.04 0.04 0.08 0.12
## --------------------------------------------------------------------------------
## F.R2_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.997     53.6    39.14      5.0      5.4 
##      .25      .50      .75      .90      .95 
##     25.0     62.0     76.0     99.2    100.0 
## 
## lowest :   1   5   6  21  25, highest:  76  86  92  98 100
##                                                                            
## Value         1    5    6   21   25   27   34   52   53   62   64   65   70
## Frequency     1    2    1    1    2    2    1    1    1    1    1    1    1
## Proportion 0.04 0.08 0.04 0.04 0.08 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                         
## Value        73   76   86   92   98  100
## Frequency     2    1    1    1    1    3
## Proportion 0.08 0.04 0.04 0.04 0.04 0.12
## --------------------------------------------------------------------------------
## F.R3_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.992    81.48    20.59     40.8     57.6 
##      .25      .50      .75      .90      .95 
##     77.0     86.0     96.0    100.0    100.0 
## 
## lowest :  28  38  52  66  67, highest:  92  94  96  97 100
##                                                                            
## Value        28   38   52   66   67   69   77   79   80   81   85   86   90
## Frequency     1    1    1    1    1    1    1    2    1    1    1    1    2
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.04 0.08
##                                         
## Value        91   92   94   96   97  100
## Frequency     1    1    1    1    1    5
## Proportion 0.04 0.04 0.04 0.04 0.04 0.20
## --------------------------------------------------------------------------------
# Benefit 
F$B1_BFBlur <- as.numeric(F$BenefitBLUR_BF_40)
F$B2_BFBlur <- as.numeric(F$BenefitBLUR_BF_42)
F$B3_BFBlur <- as.numeric(F$BenefitBLUR_BF_43)
F$B4_BFBlur <- as.numeric(F$BenefitBLUR_BF_44)

hist(F$B1_BFBlur)

hist(F$B2_BFBlur)

hist(F$B3_BFBlur)

hist(F$B4_BFBlur)

F$BenScore_BFBlur <- rowMeans(F [, c( "B1_BFBlur" , "B2_BFBlur", "B3_BFBlur", "B4_BFBlur")], na.rm=TRUE)
describe(F$BenScore_BFBlur)
## F$BenScore_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       22    0.998    75.53    21.79    47.10    55.30 
##      .25      .50      .75      .90      .95 
##    61.00    70.25    93.00    99.70   100.00 
## 
## lowest :  41.50  45.50  53.50  58.00  59.50, highest:  93.00  98.25  98.75  99.25 100.00
sd(F$BenScore_BFBlur, na.rm = TRUE)
## [1] 18.82918
F$BenScale_BFBlur <- data.frame(F$B1_BFBlur, F$B2_BFBlur, F$B3_BFBlur, F$B4_BFBlur)
describe(F$BenScale_BFBlur)
## F$BenScale_BFBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       21    0.996       74    29.28     33.2     34.8 
##      .25      .50      .75      .90      .95 
##     65.0     80.0     98.0    100.0    100.0 
## 
## lowest :   3  33  34  36  45, highest:  91  93  98  99 100
## --------------------------------------------------------------------------------
## F.B2_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.986     74.4    29.89     29.6     32.8 
##      .25      .50      .75      .90      .95 
##     58.0     87.0     97.0    100.0    100.0 
## 
## lowest :  20  29  32  34  39, highest:  93  94  95  97 100
##                                                                            
## Value        20   29   32   34   39   42   58   66   69   70   79   80   87
## Frequency     1    1    1    1    1    1    1    1    1    1    1    1    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                         
## Value        88   93   94   95   97  100
## Frequency     2    1    1    1    1    6
## Proportion 0.08 0.04 0.04 0.04 0.04 0.24
## --------------------------------------------------------------------------------
## F.B3_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.978    75.44    28.15     29.4     35.0 
##      .25      .50      .75      .90      .95 
##     63.0     81.0    100.0    100.0    100.0 
## 
## lowest :  16  29  31  41  52, highest:  85  89  91  99 100
##                                                                            
## Value        16   29   31   41   52   55   63   68   72   74   78   80   81
## Frequency     1    1    1    1    1    1    1    1    1    1    1    1    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                         
## Value        82   85   89   91   99  100
## Frequency     1    1    1    1    1    7
## Proportion 0.04 0.04 0.04 0.04 0.04 0.28
## --------------------------------------------------------------------------------
## F.B4_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       19    0.992    78.28    21.99     41.0     47.8 
##      .25      .50      .75      .90      .95 
##     72.0     81.0     97.0    100.0    100.0 
## 
## lowest :  38  40  45  52  57, highest:  89  91  97  99 100
##                                                                            
## Value        38   40   45   52   57   66   72   74   75   78   80   81   82
## Frequency     1    1    1    1    1    1    1    2    1    1    1    2    1
## Proportion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04 0.08 0.04
##                                         
## Value        86   89   91   97   99  100
## Frequency     1    1    1    1    1    5
## Proportion 0.04 0.04 0.04 0.04 0.04 0.20
## --------------------------------------------------------------------------------
# Support 
F$S1_BFBlur <- as.numeric(F$SupportBLUR_BF_40)
F$S2_BFBlur <- as.numeric(F$SupportBLUR_BF_42)
F$S3_BFBlur <- as.numeric(F$SupportBLUR_BF_43)
F$S4_BFBlur <- as.numeric(F$SupportBLUR_BF_45)

hist(F$S1_BFBlur)

hist(F$S2_BFBlur)

hist(F$S3_BFBlur)

hist(F$S4_BFBlur)

F$SupScore_BFBlur <- rowMeans(F [, c( "S1_BFBlur" , "S2_BFBlur", "S3_BFBlur", "S4_BFBlur")], na.rm=TRUE)
describe(F$SupScore_BFBlur)
## F$SupScore_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       22    0.996    74.65     24.1    45.60    51.40 
##      .25      .50      .75      .90      .95 
##    58.00    76.75    97.50   100.00   100.00 
## 
## lowest :  32.00  44.25  51.00  52.00  54.25, highest:  93.75  97.50  98.00  99.25 100.00
sd(F$SupScore_BFBlur, na.rm = TRUE)
## [1] 20.81115
F$SupScale_BFBlur <- data.frame(F$S1_BFBlur, F$S2_BFBlur, F$S3_BFBlur, F$S4_BFBlur)
describe(F$SupScale_BFBlur)
## F$SupScale_BFBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       16    0.985    73.16    29.15     33.6     36.0 
##      .25      .50      .75      .90      .95 
##     49.0     80.0     99.0    100.0    100.0 
## 
## lowest :  25  33  36  38  49, highest:  82  88  97  99 100
##                                                                            
## Value        25   33   36   38   49   52   77   78   79   80   81   82   88
## Frequency     1    1    2    2    1    1    1    1    2    1    1    2    1
## Proportion 0.04 0.04 0.08 0.08 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.08 0.04
##                          
## Value        97   99  100
## Frequency     1    1    6
## Proportion 0.04 0.04 0.24
## --------------------------------------------------------------------------------
## F.S2_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       17     0.99    77.08    26.83    28.60    32.00 
##      .25      .50      .75      .90      .95 
##    71.00    83.50    98.25   100.00   100.00 
## 
## lowest :  23  28  32  52  71, highest:  90  97  98  99 100
##                                                                             
## Value         23    28    32    52    71    77    79    81    82    83    84
## Frequency      1     1     2     1     2     1     1     1     1     1     2
## Proportion 0.042 0.042 0.083 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.083
##                                               
## Value         87    90    97    98    99   100
## Frequency      1     1     1     1     1     5
## Proportion 0.042 0.042 0.042 0.042 0.042 0.208
## --------------------------------------------------------------------------------
## F.S3_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18     0.99    75.83    25.07     31.9     41.5 
##      .25      .50      .75      .90      .95 
##     66.5     80.5     96.5    100.0    100.0 
## 
## lowest :  31  37  52  53  59, highest:  87  88  96  98 100
##                                                                             
## Value         31    37    52    53    59    69    71    73    77    80    81
## Frequency      2     1     1     1     1     2     1     1     1     1     1
## Proportion 0.083 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.042
##                                                     
## Value         83    85    87    88    96    98   100
## Frequency      1     1     1     1     1     1     5
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.208
## --------------------------------------------------------------------------------
## F.S4_BFBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       18    0.986       74    27.63     35.0     35.4 
##      .25      .50      .75      .90      .95 
##     54.0     78.0     97.0    100.0    100.0 
## 
## lowest :  29  35  36  42  52, highest:  86  90  95  97 100
##                                                                            
## Value        29   35   36   42   52   54   67   68   72   75   78   80   84
## Frequency     1    2    1    1    1    1    1    1    1    2    1    1    1
## Proportion 0.04 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.08 0.04 0.04 0.04
##                                    
## Value        86   90   95   97  100
## Frequency     1    1    1    1    6
## Proportion 0.04 0.04 0.04 0.04 0.24
## --------------------------------------------------------------------------------

Enhanced Weathering (Clear Condition)

F$EW_Clear_Page.Submit
##  [1]     NA  1.478  1.937     NA     NA     NA     NA  2.652     NA  0.870
## [11]  1.376     NA     NA 69.565     NA  0.901     NA 37.983     NA 21.172
## [21] 88.520     NA     NA  3.762 22.067     NA 19.378 45.657     NA     NA
## [31] 23.935  4.101     NA  2.989 12.882     NA  1.013     NA     NA 30.501
## [41]     NA  8.684 35.346 17.406  5.079 48.032     NA 44.100     NA     NA
F$EW_Clear_ATN
##  [1] NA  1  3 NA NA NA NA  4 NA  4  3 NA NA  3 NA  3 NA  3 NA  3  3 NA NA  3  3
## [26] NA  3  3 NA NA  3  3 NA  3  3 NA  1 NA NA  3 NA  3  3  3  3  3 NA  3 NA NA
F$EW_Clear_ATN_TIME_Page.Submit
##  [1]    NA 4.939 1.811    NA    NA    NA    NA 3.964    NA 1.783 2.200    NA
## [13]    NA 1.788    NA 1.801    NA 2.152    NA 1.847 3.591    NA    NA 2.580
## [25] 2.643    NA 2.001 4.574    NA    NA 1.654 1.500    NA 1.218 2.719    NA
## [37] 6.535    NA    NA 4.676    NA 1.400 2.200 3.870 1.802 2.258    NA 3.981
## [49]    NA    NA
F$EW_Clear_ATN2
##  [1] NA                                                                                                                                                                                                                                  
##  [2] "Its dangerous "                                                                                                                                                                                                                    
##  [3] "Yea"                                                                                                                                                                                                                               
##  [4] NA                                                                                                                                                                                                                                  
##  [5] NA                                                                                                                                                                                                                                  
##  [6] NA                                                                                                                                                                                                                                  
##  [7] NA                                                                                                                                                                                                                                  
##  [8] "I don't remember "                                                                                                                                                                                                                 
##  [9] NA                                                                                                                                                                                                                                  
## [10] "I’m not sure "                                                                                                                                                                                                                     
## [11] "Cyhhzgbk"                                                                                                                                                                                                                          
## [12] NA                                                                                                                                                                                                                                  
## [13] NA                                                                                                                                                                                                                                  
## [14] "Been changed from rock form to powder form and goes into the ocean"                                                                                                                                                                
## [15] NA                                                                                                                                                                                                                                  
## [16] "It's hard to believe in enhanced weather and I don't see how any human can make the weather happen"                                                                                                                                
## [17] NA                                                                                                                                                                                                                                  
## [18] "It draws carbon out of the atmosphere and combined with other minerals "                                                                                                                                                           
## [19] NA                                                                                                                                                                                                                                  
## [20] "This involves depositing calcium carbonate runoff into the water where they believe it will harmlessly settle on the ocean floor. "                                                                                                
## [21] "From what I understand enhanced weathering is the process of pulling carbon dioxide out of the atmosphere through powdered mineral rocks added to land, which flows into the ocean, and stores deposits at the bottom of the ocean"
## [22] NA                                                                                                                                                                                                                                  
## [23] NA                                                                                                                                                                                                                                  
## [24] "Was hard to read"                                                                                                                                                                                                                  
## [25] "using rocks to pull carbon out of the atmosphere and 'store' it in the deep ocean"                                                                                                                                                 
## [26] NA                                                                                                                                                                                                                                  
## [27] "Pretty much taking the carbon from our atmosphere and mixing it with powdered rock minerals which eventually would run off into the ocean ultimately settling on the ocean floor "                                                 
## [28] "I really don't understand what this is or what it's main purpose is "                                                                                                                                                              
## [29] NA                                                                                                                                                                                                                                  
## [30] NA                                                                                                                                                                                                                                  
## [31] "Did not fully understand. It’s for weathering, but what does that even mean and how is it beneficial? "                                                                                                                            
## [32] "I don't really know "                                                                                                                                                                                                              
## [33] NA                                                                                                                                                                                                                                  
## [34] "Keeping elements from damage\nTokyo drift \nSolar System\nStars"                                                                                                                                                                   
## [35] "No idea "                                                                                                                                                                                                                          
## [36] NA                                                                                                                                                                                                                                  
## [37] "Very cool "                                                                                                                                                                                                                        
## [38] NA                                                                                                                                                                                                                                  
## [39] NA                                                                                                                                                                                                                                  
## [40] "Enhanced weathering is the process of using biofuels in our natural climate "                                                                                                                                                      
## [41] NA                                                                                                                                                                                                                                  
## [42] "The weather is getting to the point where everything changes"                                                                                                                                                                      
## [43] "It takes carbon dioxide out of the atmosphere"                                                                                                                                                                                     
## [44] "It takes carbon dioxide out of the atmosphere by using rocks"                                                                                                                                                                      
## [45] "It help to know what going on in the world from start to finish is good "                                                                                                                                                          
## [46] "Mixing rocks and land to generate weather patterns "                                                                                                                                                                               
## [47] NA                                                                                                                                                                                                                                  
## [48] "Small scale field experiments "                                                                                                                                                                                                    
## [49] NA                                                                                                                                                                                                                                  
## [50] NA
F$EW_Clear_ATN2_TIME_Page.Submit
##  [1]     NA  7.179  2.790     NA     NA     NA     NA  4.956     NA  3.648
## [11]  6.301     NA     NA 38.174     NA 10.600     NA 22.561     NA 39.288
## [21] 37.024     NA     NA 11.662 63.752     NA 65.672 62.572     NA     NA
## [31] 26.761  8.303     NA 29.057  4.375     NA  3.123     NA     NA 44.753
## [41]     NA 34.087 13.158 78.481 24.405 18.775     NA 15.272     NA     NA
# Naturalness
F$N1_EWClear <- as.numeric(F$Naturalness_EW_30)
F$N2R_EWClear <- as.numeric(100 - F$Naturalness_EW_31)
F$N3R_EWClear <- as.numeric(100 - F$Naturalness_EW_35)
F$N4R_EWClear <- as.numeric(100- F$Naturalness_EW_36)

hist(F$N1_EWClear)

hist(F$N2R_EWClear)

hist(F$N3R_EWClear)

hist(F$N4R_EWClear)

F$NatScore_EWClear <- rowMeans(F [, c( "N1_EWClear" , "N2R_EWClear", "N3R_EWClear", "N4R_EWClear")], na.rm=TRUE)
describe(F$NatScore_EWClear)
## F$NatScore_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       25        1    40.54    18.23    19.38    21.25 
##      .25      .50      .75      .90      .95 
##    27.56    40.04    47.44    64.62    69.38 
## 
## lowest : 16.00 19.25 19.75 22.75 25.00, highest: 58.50 64.00 65.25 70.75 72.25
sd(F$NatScore_EWClear, na.rm = TRUE)
## [1] 15.85944
F$NatScale_EWClear <- data.frame(F$N1_EWClear, F$N2R_EWClear, F$N3R_EWClear, F$N4R_EWClear)
describe(F$NatScale_EWClear)
## F$NatScale_EWClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       18    0.986    68.52    35.85     14.6     20.6 
##      .25      .50      .75      .90      .95 
##     37.0     74.0     99.0    100.0    100.0 
## 
## lowest :  14  17  26  31  36, highest:  93  94  95  99 100
##                                                                            
## Value        14   17   26   31   36   37   50   58   60   69   71   74   80
## Frequency     2    1    1    1    1    1    1    1    1    1    1    1    1
## Proportion 0.08 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
##                                    
## Value        93   94   95   99  100
## Frequency     1    1    2    1    6
## Proportion 0.04 0.04 0.08 0.04 0.24
## --------------------------------------------------------------------------------
## F.N2R_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       23    0.998    31.19    32.63     0.00     1.00 
##      .25      .50      .75      .90      .95 
##     5.25    21.00    47.75    74.00    81.25 
## 
## lowest :   0   2   3   4   5, highest:  66  69  79  82 100
## --------------------------------------------------------------------------------
## F.N3R_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.987     28.5    28.55      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     22.5     46.0     63.0     68.0 
## 
## lowest :  0  4 12 15 17, highest: 50 61 65 69 91
##                                                                             
## Value          0     4    12    15    17    21    24    26    29    37    40
## Frequency      6     1     1     1     1     3     1     1     1     1     1
## Proportion 0.231 0.038 0.038 0.038 0.038 0.115 0.038 0.038 0.038 0.038 0.038
##                                                           
## Value         43    47    48    50    61    65    69    91
## Frequency      1     1     1     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
## --------------------------------------------------------------------------------
## F.N4R_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.998    35.04    35.17     0.25     1.00 
##      .25      .50      .75      .90      .95 
##    10.00    27.00    48.25    85.50    94.25 
## 
## lowest :  0  1  2  8 16, highest: 64 74 82 89 96
## --------------------------------------------------------------------------------
# Fluency 
F$Fluency_EWClear <- as.numeric(F$Fluency_EW_30)
describe(F$Fluency_EWClear)
## F$Fluency_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.971    67.96    36.76     10.5     18.0 
##      .25      .50      .75      .90      .95 
##     44.0     78.0    100.0    100.0    100.0 
## 
## lowest :   0   9  15  21  28, highest:  81  82  90  95 100
##                                                                             
## Value          0     9    15    21    28    39    42    50    61    65    72
## Frequency      1     1     1     1     1     1     1     1     2     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.038
##                                                     
## Value         76    80    81    82    90    95   100
## Frequency      1     1     1     1     1     1     8
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.308
hist(F$Fluency_EWClear)

sd(F$Fluency_EWClear, na.rm = TRUE)
## [1] 32.65882
# Understanding
F$Und_EWClear <- as.numeric(F$Familiarity_EW_33)
describe(F$Und_EWClear)
## F$Und_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.992    64.65    38.64     2.00    11.00 
##      .25      .50      .75      .90      .95 
##    35.75    73.00    97.00   100.00   100.00 
## 
## lowest :   0   8  14  18  20, highest:  84  94  98  99 100
##                                                                             
## Value          0     8    14    18    20    27    62    67    69    73    77
## Frequency      2     1     1     1     1     1     1     2     2     2     1
## Proportion 0.077 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.077 0.077 0.038
##                                                     
## Value         79    83    84    94    98    99   100
## Frequency      1     1     1     1     1     1     5
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.192
hist(F$Und_EWClear)

sd(F$Und_EWClear, na.rm = TRUE)
## [1] 34.86424
# Familiarity 
F$Fam_EWClear <- as.numeric(F$Familiarity_EW_34)

# Risk 
F$R1_EWClear <- as.numeric(F$Risk_EW_32)
F$R2_EWClear <- as.numeric(F$Risk_EW_33)
F$R3_EWClear <- as.numeric(F$Risk_EW_34)

hist(F$R1_EWClear)

hist(F$R2_EWClear)

hist(F$R3_EWClear)

F$RiskScore_EWClear <- rowMeans(F [, c( "R1_EWClear" , "R2_EWClear", "R3_EWClear")], na.rm=TRUE)
describe(F$RiskScore_EWClear)
## F$RiskScore_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.998    59.22    29.55    18.92    33.67 
##      .25      .50      .75      .90      .95 
##    42.75    56.33    79.17    93.67    99.58 
## 
## lowest :   2.666667  14.333333  32.666667  34.666667  35.000000
## highest:  82.000000  85.333333  89.000000  98.333333 100.000000
sd(F$RiskScore_EWClear, na.rm = TRUE)
## [1] 25.67869
F$RiskScale_EWClear <- data.frame(F$R1_EWClear, F$R2_EWClear, F$R3_EWClear)
describe(F$RiskScale_EWClear)
## F$RiskScale_EWClear 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.997    59.35    38.04     0.50     3.50 
##      .25      .50      .75      .90      .95 
##    50.00    63.50    85.75    99.50   100.00 
## 
## lowest :   0   2   5  13  30, highest:  87  92  96  99 100
## --------------------------------------------------------------------------------
## F.R2_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.991    51.23     44.1      0.5      5.0 
##      .25      .50      .75      .90      .95 
##     13.0     50.0     91.5    100.0    100.0 
## 
## lowest :   0   2   8   9  12, highest:  81  90  92  99 100
##                                                                             
## Value          0     2     8     9    12    16    22    24    38    50    52
## Frequency      2     1     2     1     1     1     1     1     1     3     1
## Proportion 0.077 0.038 0.077 0.038 0.038 0.038 0.038 0.038 0.038 0.115 0.038
##                                                     
## Value         62    67    81    90    92    99   100
## Frequency      1     1     1     1     1     1     5
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.192
## --------------------------------------------------------------------------------
## F.R3_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.991    67.08    33.38     18.5     21.5 
##      .25      .50      .75      .90      .95 
##     50.0     75.0     92.0    100.0    100.0 
## 
## lowest :   0  18  20  23  42, highest:  83  89  93  98 100
##                                                                             
## Value          0    18    20    23    42    44    50    62    66    67    75
## Frequency      1     1     1     1     1     1     3     1     1     1     2
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.115 0.038 0.038 0.038 0.077
##                                                           
## Value         78    79    82    83    89    93    98   100
## Frequency      1     1     1     1     1     1     1     5
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.192
## --------------------------------------------------------------------------------
# Benefit 
F$B1_EWClear <- as.numeric(F$Benefit_EW_40)
F$B2_EWClear <- as.numeric(F$Benefit_EW_42)
F$B3_EWClear <- as.numeric(F$Benefit_EW_43)
F$B4_EWClear <- as.numeric(F$Benefit_EW_51)

hist(F$B1_EWClear)

hist(F$B2_EWClear)

hist(F$B3_EWClear)

hist(F$B4_EWClear)

F$BenScore_EWClear <- rowMeans(F [, c( "B1_EWClear" , "B2_EWClear", "B3_EWClear", "B4_EWClear")], na.rm=TRUE)
describe(F$BenScore_EWClear)
## F$BenScore_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       23    0.998    66.07    35.43     5.75    11.38 
##      .25      .50      .75      .90      .95 
##    51.12    68.25    98.75    99.88   100.00 
## 
## lowest :   0.25   5.25   7.25  15.50  42.75, highest:  98.00  99.00  99.50  99.75 100.00
sd(F$BenScore_EWClear, na.rm = TRUE)
## [1] 31.66225
F$BenScale_EWClear <- data.frame(F$B1_EWClear, F$B2_EWClear, F$B3_EWClear, F$B4_EWClear)
describe(F$BenScale_EWClear)
## F$BenScale_EWClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       14    0.958    62.62    39.84     2.25    10.50 
##      .25      .50      .75      .90      .95 
##    41.25    64.50   100.00   100.00   100.00 
## 
## lowest :   0   9  12  20  30, highest:  64  65  72  85 100
##                                                                             
## Value          0     9    12    20    30    40    45    49    54    64    65
## Frequency      2     1     1     1     1     1     1     1     2     2     2
## Proportion 0.077 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.077 0.077
##                             
## Value         72    85   100
## Frequency      1     1     9
## Proportion 0.038 0.038 0.346
## --------------------------------------------------------------------------------
## F.B2_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.987       66    36.58     7.00    12.00 
##      .25      .50      .75      .90      .95 
##    49.25    71.50    98.00   100.00   100.00 
## 
## lowest :   1   6  10  14  40, highest:  86  87  95  99 100
##                                                                             
## Value          1     6    10    14    40    41    49    50    54    57    65
## Frequency      1     1     1     1     1     1     1     1     1     2     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038
##                                                           
## Value         71    72    76    86    87    95    99   100
## Frequency      1     1     1     2     1     1     1     6
## Proportion 0.038 0.038 0.038 0.077 0.038 0.038 0.038 0.231
## --------------------------------------------------------------------------------
## F.B3_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.987    69.12     36.1     4.25    15.00 
##      .25      .50      .75      .90      .95 
##    52.25    75.00    99.00   100.00   100.00 
## 
## lowest :   0   1  14  16  38, highest:  89  93  97  99 100
##                                                                             
## Value          0     1    14    16    38    48    50    59    61    65    68
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
##                                                     
## Value         73    77    89    93    97    99   100
## Frequency      2     2     1     1     1     2     6
## Proportion 0.077 0.077 0.038 0.038 0.038 0.077 0.231
## --------------------------------------------------------------------------------
## F.B4_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       25       25       22    0.996    65.28    36.36      2.6     13.4 
##      .25      .50      .75      .90      .95 
##     50.0     72.0     97.0    100.0    100.0 
## 
## lowest :   0   1   9  20  35, highest:  88  97  98  99 100
## --------------------------------------------------------------------------------
# Support 
F$S1_EWClear <- as.numeric(F$Support_EW_40)
F$S2_EWClear <- as.numeric(F$Support_EW_42)
F$S3_EWClear <- as.numeric(F$Support_EW_43)
F$S4_EWClear <- as.numeric(F$Support_EW_45)

hist(F$S1_EWClear)

hist(F$S2_EWClear)

hist(F$S3_EWClear)

hist(F$S4_EWClear)

F$SupScore_EWClear <- rowMeans(F [, c( "S1_EWClear" , "S2_EWClear", "S3_EWClear", "S4_EWClear")], na.rm=TRUE)
describe(F$SupScore_EWClear)
## F$SupScore_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       24    0.999     60.5    37.62    7.125   12.875 
##      .25      .50      .75      .90      .95 
##   35.750   64.500   92.125   99.625  100.000 
## 
## lowest :   0.00   5.25  12.75  13.00  17.25, highest:  93.25  98.00  99.00  99.25 100.00
sd(F$SupScore_EWClear, na.rm = TRUE)
## [1] 32.83923
F$SupScale_EWClear <- data.frame(F$S1_EWClear, F$S2_EWClear, F$S3_EWClear, F$S4_EWClear)
describe(F$SupScale_EWClear)
## F$SupScale_EWClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.995    59.81     38.3      6.5      9.0 
##      .25      .50      .75      .90      .95 
##     33.5     63.0     89.0    100.0    100.0 
## 
## lowest :   0   6   8  10  19, highest:  83  91  97  98 100
## --------------------------------------------------------------------------------
## F.S2_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.993    61.42    38.94     6.00    12.50 
##      .25      .50      .75      .90      .95 
##    34.25    66.00    95.50   100.00   100.00 
## 
## lowest :   0   4  12  13  18, highest:  83  91  97  99 100
## --------------------------------------------------------------------------------
## F.S3_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.993    59.65    38.96     3.00     9.00 
##      .25      .50      .75      .90      .95 
##    36.25    61.50    92.75   100.00   100.00 
## 
## lowest :   0   2   6  12  15, highest:  75  92  93  97 100
## --------------------------------------------------------------------------------
## F.S4_EWClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       22    0.998    61.12    36.48     9.50    19.50 
##      .25      .50      .75      .90      .95 
##    37.25    62.50    91.25    99.50   100.00 
## 
## lowest :   0   7  17  22  24, highest:  92  97  98  99 100
## --------------------------------------------------------------------------------

Enhanced Weathering (Blurred Condition)

F$EW_Blurred_Page.Submit
##  [1]  1.902     NA     NA  2.375 22.558  0.797 11.918     NA  3.438     NA
## [11]     NA 26.701  0.881     NA 13.366     NA  0.717     NA 36.561     NA
## [21]     NA 56.001 60.702     NA     NA 55.011     NA     NA  1.199  1.199
## [31]     NA     NA 16.758     NA     NA 15.100     NA  0.686  4.355     NA
## [41]  0.818     NA     NA     NA     NA     NA 22.149     NA  0.636  2.072
F$EW_Blurred_ATN
##  [1]  3 NA NA  3  3  4  3 NA  3 NA NA  3  3 NA  3 NA  2 NA  3 NA NA  3  3 NA NA
## [26]  3 NA NA  3  4 NA NA  3 NA NA  3 NA  4  3 NA  3 NA NA NA NA NA  3 NA  4  3
F$EW_Blurred_ATN_TIME_Page.Submit
##  [1]  2.001     NA     NA  1.700  1.792  3.886  1.588     NA  1.246     NA
## [11]     NA  1.986  1.857     NA  2.928     NA  1.882     NA  1.700     NA
## [21]     NA  2.201  3.603     NA     NA  2.354     NA     NA  2.752  2.256
## [31]     NA     NA  1.878     NA     NA  2.394     NA  2.217  5.000     NA
## [41] 52.037     NA     NA     NA     NA     NA  8.229     NA 25.417  2.312
F$EW_Blurred_ATN2
##  [1] "Lajdb. Aksibd aosi leuhsnqa pckabwnx oshs.  pw ohdbo eobenwi"                                                                                                                                                 
##  [2] NA                                                                                                                                                                                                             
##  [3] NA                                                                                                                                                                                                             
##  [4] "Ok boo I love you "                                                                                                                                                                                           
##  [5] "They take carbon dioxide out of things."                                                                                                                                                                      
##  [6] "Hghjjj"                                                                                                                                                                                                       
##  [7] "Stealing resources from the atmosphere. "                                                                                                                                                                     
##  [8] NA                                                                                                                                                                                                             
##  [9] "How much is the best way of life and the rest is a good idea since it has to do it before the end result of a new hat"                                                                                        
## [10] NA                                                                                                                                                                                                             
## [11] NA                                                                                                                                                                                                             
## [12] "Rock weathering "                                                                                                                                                                                             
## [13] "I can not "                                                                                                                                                                                                   
## [14] NA                                                                                                                                                                                                             
## [15] "Taking energy from rocks "                                                                                                                                                                                    
## [16] NA                                                                                                                                                                                                             
## [17] "I'm interested "                                                                                                                                                                                              
## [18] NA                                                                                                                                                                                                             
## [19] "i wasn’t really sure but something about taking minerals out of rocks and adding them to the oceans and waterways "                                                                                           
## [20] NA                                                                                                                                                                                                             
## [21] NA                                                                                                                                                                                                             
## [22] "Enhanced weathering is a process where normal weathering is accelerated by using calcium and carbon."                                                                                                         
## [23] "Enhanced weathering is a scientific approach to alter weather patterns around the world. "                                                                                                                    
## [24] NA                                                                                                                                                                                                             
## [25] NA                                                                                                                                                                                                             
## [26] "It’s a process of changing minareals to the ocean floor "                                                                                                                                                     
## [27] NA                                                                                                                                                                                                             
## [28] NA                                                                                                                                                                                                             
## [29] "Make the letters readable"                                                                                                                                                                                    
## [30] "I dont know"                                                                                                                                                                                                  
## [31] NA                                                                                                                                                                                                             
## [32] NA                                                                                                                                                                                                             
## [33] "Not undersrand much"                                                                                                                                                                                          
## [34] NA                                                                                                                                                                                                             
## [35] NA                                                                                                                                                                                                             
## [36] "None"                                                                                                                                                                                                         
## [37] NA                                                                                                                                                                                                             
## [38] "The fact that you have a softball doubleheader and you want to do this for yourself as well and you are playing with your friends are a couple of things I need to be at Houghs and the baby will you have a "
## [39] "no specific reasoning"                                                                                                                                                                                        
## [40] NA                                                                                                                                                                                                             
## [41] "Everything is good now I’m not sure if anything "                                                                                                                                                             
## [42] NA                                                                                                                                                                                                             
## [43] NA                                                                                                                                                                                                             
## [44] NA                                                                                                                                                                                                             
## [45] NA                                                                                                                                                                                                             
## [46] NA                                                                                                                                                                                                             
## [47] "I dont like this idea to try to make fuel from the air"                                                                                                                                                       
## [48] NA                                                                                                                                                                                                             
## [49] "It all good to me"                                                                                                                                                                                            
## [50] "Du diekigjenchebfijwfiwbijfbdiwnficnsodnfksnwicjsbfowbfinsificjdjeoxjsncosjfndowkfnoenfjfnd"
F$EW_Blurred_ATN2_TIME_Page.Submit
##  [1] 13.166     NA     NA  3.065  9.469  2.484 13.000     NA  5.843     NA
## [11]     NA  8.831  4.362     NA  8.290     NA  4.972     NA 21.355     NA
## [21]     NA 54.201 77.520     NA     NA 25.439     NA     NA  9.701  8.778
## [31]     NA     NA  9.748     NA     NA  4.148     NA 10.487 18.503     NA
## [41]  5.078     NA     NA     NA     NA     NA 41.573     NA  5.690  9.787
# Naturalness 
F$N1_EWBlur <- as.numeric(F$NaturalnessBLUR_EW_30)
F$N2R_EWBlur <- as.numeric(100 - F$NaturalnessBLUR_EW_31)
F$N3R_EWBlur <- as.numeric(100 - F$NaturalnessBLUR_EW_35)
F$N4R_EWBlur <- as.numeric(100- F$NaturalnessBLUR_EW_36)

hist(F$N1_EWBlur)

hist(F$N2R_EWBlur)

hist(F$N3R_EWBlur)

hist(F$N4R_EWBlur)

F$NatScore_EWBlur <- rowMeans(F [, c( "N1_EWBlur" , "N2R_EWBlur", "N3R_EWBlur", "N4R_EWBlur")], na.rm=TRUE)
describe(F$NatScore_EWBlur)
## F$NatScore_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.998    37.17    22.15    0.675   10.275 
##      .25      .50      .75      .90      .95 
##   25.000   35.375   52.750   58.375   62.787 
## 
## lowest :  0.00  4.50 23.75 24.75 25.00, highest: 53.25 57.50 58.75 63.50 74.75
##                                                                             
## Value       0.00  4.50 23.75 24.75 25.00 31.00 31.25 31.75 32.75 38.00 39.00
## Frequency      2     1     1     1     2     1     1     2     1     1     1
## Proportion 0.083 0.042 0.042 0.042 0.083 0.042 0.042 0.083 0.042 0.042 0.042
##                                                                 
## Value      45.00 45.50 49.75 52.75 53.25 57.50 58.75 63.50 74.75
## Frequency      1     1     1     2     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.042
sd(F$NatScore_EWBlur, na.rm = TRUE)
## [1] 19.37511
F$NatScale_EWBlur <- data.frame(F$N1_EWBlur, F$N2R_EWBlur, F$N3R_EWBlur, F$N4R_EWBlur)
describe(F$NatScale_EWBlur)
## F$NatScale_EWBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.997    52.54    39.88     0.00     0.90 
##      .25      .50      .75      .90      .95 
##    25.25    57.00    82.00    95.10    99.85 
## 
## lowest :   0   3  17  23  26, highest:  82  85  86  99 100
##                                                                             
## Value          0     3    17    23    26    35    36    39    43    52    62
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.125 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                                 
## Value         64    72    77    78    82    85    86    99   100
## Frequency      1     1     1     1     2     1     1     1     2
## Proportion 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.083
## --------------------------------------------------------------------------------
## F.N2R_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.991    24.75    25.82     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.50    20.50    37.25    60.60    66.85 
## 
## lowest :  0  1  3  6 16, highest: 46 48 66 67 74
##                                                                             
## Value          0     1     3     6    16    18    19    20    21    26    27
## Frequency      5     1     1     1     1     1     1     1     1     1     1
## Proportion 0.208 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                                 
## Value         29    30    36    41    46    48    66    67    74
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
## --------------------------------------------------------------------------------
## F.N3R_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18     0.99    32.79       35     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     7.75    25.50    60.50    73.70    94.85 
## 
## lowest :   0   7   8  12  15, highest:  63  66  77  98 100
##                                                                             
## Value          0     7     8    12    15    20    22    29    30    32    39
## Frequency      5     1     1     1     2     1     1     1     1     2     1
## Proportion 0.208 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.083 0.042
##                                                     
## Value         60    62    63    66    77    98   100
## Frequency      1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042
## --------------------------------------------------------------------------------
## F.N4R_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.995    38.58    37.49     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    15.50    28.00    68.75    82.90    96.05 
## 
## lowest :  0  8 14 16 18, highest: 76 78 85 98 99
##                                                                             
## Value          0     8    14    16    18    19    23    24    32    34    35
## Frequency      4     1     1     1     2     1     1     1     1     1     1
## Proportion 0.167 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.042
##                                                                 
## Value         48    60    67    74    76    78    85    98    99
## Frequency      1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
## --------------------------------------------------------------------------------
# Fluency 
F$Fluency_EWBlur <- as.numeric(F$FluencyBLUR_EW_34)
describe(F$Fluency_EWBlur)
## F$Fluency_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18     0.99       75     28.2    18.85    37.10 
##      .25      .50      .75      .90      .95 
##    71.50    83.00    97.25   100.00   100.00 
## 
## lowest :  11  16  35  42  44, highest:  86  87  97  98 100
##                                                                             
## Value         11    16    35    42    44    64    74    78    79    80    83
## Frequency      1     1     1     1     1     1     2     1     1     1     2
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.083
##                                                     
## Value         84    85    86    87    97    98   100
## Frequency      1     1     1     1     1     1     5
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.208
hist(F$Fluency_EWBlur)

sd(F$Fluency_EWBlur, na.rm = TRUE)
## [1] 26.46737
# Understanding 
F$Und_EWBlur <- as.numeric(F$FamiliarityBLUR_EW_33)
describe(F$Und_EWBlur)
## F$Und_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       22    0.999    55.71    36.47     8.45    12.80 
##      .25      .50      .75      .90      .95 
##    28.25    66.50    81.75    89.70    98.50 
## 
## lowest :   5   8  11  17  20, highest:  84  85  89  90 100
hist(F$Und_EWBlur)

sd(F$Und_EWBlur, na.rm = TRUE)
## [1] 31.53118
# Familiarity 
F$Fam_EWBlur <- as.numeric(F$FamiliarityBLUR_EW_34)

# Risk 
F$R1_EWBlur <- as.numeric(F$RiskBLUR_EW_32)
F$R2_EWBlur <- as.numeric(F$RiskBLUR_EW_33)
F$R3_EWBlur <- as.numeric(F$RiskBLUR_EW_34)

hist(F$R1_EWBlur)

hist(F$R2_EWBlur)

hist(F$R3_EWBlur)

F$RiskScore_EWBlur <- rowMeans(F [, c( "R1_EWBlur" , "R2_EWBlur", "R3_EWBlur")], na.rm=TRUE)
describe(F$RiskScore_EWBlur)
## F$RiskScore_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       22    0.999    62.78    23.42    29.93    34.23 
##      .25      .50      .75      .90      .95 
##    49.38    61.17    77.17    88.57    91.37 
## 
## lowest : 29.33333 33.33333 36.33333 47.33333 48.50000
## highest: 85.33333 86.00000 89.66667 91.66667 98.33333
sd(F$RiskScore_EWBlur, na.rm = TRUE)
## [1] 20.05623
F$RiskScale_EWBlur <- data.frame(F$R1_EWBlur, F$R2_EWBlur, F$R3_EWBlur)
describe(F$RiskScale_EWBlur)
## F$RiskScale_EWBlur 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       16    0.996    67.17    29.57      2.2     23.6 
##      .25      .50      .75      .90      .95 
##     63.0     76.0     84.5     89.0     98.9 
## 
## lowest :   0  22  30  54  60, highest:  84  85  87  89 100
##                                                                             
## Value          0    22    30    54    60    66    72    74    76    77    80
## Frequency      2     1     1     1     1     2     1     2     1     1     3
## Proportion 0.087 0.043 0.043 0.043 0.043 0.087 0.043 0.087 0.043 0.043 0.130
##                                         
## Value         84    85    87    89   100
## Frequency      1     1     1     2     2
## Proportion 0.043 0.043 0.043 0.087 0.087
## --------------------------------------------------------------------------------
## F.R2_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       19    0.998    59.71    34.92     1.65    14.60 
##      .25      .50      .75      .90      .95 
##    32.00    72.00    82.75    90.00    90.85 
## 
## lowest :   0  11  23  30  32, highest:  85  87  90  91 100
##                                                                             
## Value          0    11    23    30    32    40    44    69    71    73    75
## Frequency      2     1     1     1     2     1     1     2     1     1     1
## Proportion 0.083 0.042 0.042 0.042 0.083 0.042 0.042 0.083 0.042 0.042 0.042
##                                                           
## Value         76    81    82    85    87    90    91   100
## Frequency      1     1     2     1     1     2     1     1
## Proportion 0.042 0.042 0.083 0.042 0.042 0.083 0.042 0.042
## --------------------------------------------------------------------------------
## F.R3_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       22    0.999    62.25    32.96    15.35    23.90 
##      .25      .50      .75      .90      .95 
##    35.75    67.00    85.00    94.10    99.25 
## 
## lowest :   9  14  23  26  30, highest:  88  90  92  95 100
## --------------------------------------------------------------------------------
# Benefit 
F$B1_EWBlur <- as.numeric(F$BenefitBLUR_EW_40)
F$B2_EWBlur <- as.numeric(F$BenefitBLUR_EW_42)
F$B3_EWBlur <- as.numeric(F$BenefitBLUR_EW_43)
F$B4_EWBlur <- as.numeric(F$BenefitBLUR_EW_51)

hist(F$B1_EWBlur)

hist(F$B2_EWBlur)

hist(F$B3_EWBlur)

hist(F$B4_EWBlur)

F$BenScore_EWBlur <- rowMeans(F [, c( "B1_EWBlur" , "B2_EWBlur", "B3_EWBlur", "B4_EWBlur")], na.rm=TRUE)
describe(F$BenScore_EWBlur)
## F$BenScore_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       20    0.999    61.05    30.23    10.00    19.25 
##      .25      .50      .75      .90      .95 
##    51.62    62.25    79.88    90.60    99.20 
## 
## lowest :   0.00   9.50  14.50  38.25  49.75, highest:  80.75  84.75  85.00  92.00 100.00
## 
## 0 (1, 0.043), 9.5 (1, 0.043), 14.5 (1, 0.043), 38.25 (1, 0.043), 49.75 (1,
## 0.043), 51 (1, 0.043), 52.25 (2, 0.087), 54 (1, 0.043), 54.25 (1, 0.043), 60.25
## (1, 0.043), 62.25 (1, 0.043), 67 (2, 0.087), 73 (1, 0.043), 77.5 (1, 0.043), 79
## (1, 0.043), 80.75 (1, 0.043), 84.75 (1, 0.043), 85 (1, 0.043), 92 (1, 0.043),
## 100 (2, 0.087)
sd(F$BenScore_EWBlur, na.rm = TRUE)
## [1] 26.86223
F$BenScale_EWBlur <- data.frame(F$B1_EWBlur, F$B2_EWBlur, F$B3_EWBlur, F$B4_EWBlur)
describe(F$BenScale_EWBlur)
## F$BenScale_EWBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       20    0.999    57.43    38.78      0.6      8.4 
##      .25      .50      .75      .90      .95 
##     29.5     68.0     84.0     97.4     99.9 
## 
## lowest :   0   6  18  19  25, highest:  82  86  91  99 100
##                                                                             
## Value          0     6    18    19    25    34    37    52    53    60    68
## Frequency      2     1     1     1     1     1     1     1     1     1     1
## Proportion 0.087 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043
##                                                                 
## Value         70    76    78    81    82    86    91    99   100
## Frequency      1     1     1     1     1     2     1     1     2
## Proportion 0.043 0.043 0.043 0.043 0.043 0.087 0.043 0.043 0.087
## --------------------------------------------------------------------------------
## F.B2_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       19    0.997    62.96    32.44      9.0     19.2 
##      .25      .50      .75      .90      .95 
##     52.0     72.0     82.5     89.6     99.0 
## 
## lowest :   0   8  18  24  32, highest:  84  87  88  90 100
##                                                                             
## Value          0     8    18    24    32    52    61    65    69    72    75
## Frequency      1     1     1     1     1     3     1     1     1     1     1
## Proportion 0.043 0.043 0.043 0.043 0.043 0.130 0.043 0.043 0.043 0.043 0.043
##                                                           
## Value         78    79    81    84    87    88    90   100
## Frequency      1     1     2     1     1     1     1     2
## Proportion 0.043 0.043 0.087 0.043 0.043 0.043 0.043 0.087
## --------------------------------------------------------------------------------
## F.B3_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       17    0.997    61.61    34.13      2.0     21.6 
##      .25      .50      .75      .90      .95 
##     42.5     71.0     84.0     92.4     99.3 
## 
## lowest :   0  20  28  33  52, highest:  85  86  90  93 100
##                                                                             
## Value          0    20    28    33    52    61    70    71    72    75    82
## Frequency      2     1     2     1     2     2     1     1     1     2     1
## Proportion 0.087 0.043 0.087 0.043 0.087 0.087 0.043 0.043 0.043 0.087 0.043
##                                               
## Value         83    85    86    90    93   100
## Frequency      1     1     1     1     1     2
## Proportion 0.043 0.043 0.043 0.043 0.043 0.087
## --------------------------------------------------------------------------------
## F.B4_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       20    0.999    62.22    31.58      5.6     11.6 
##      .25      .50      .75      .90      .95 
##     56.5     70.0     81.0     87.6     98.8 
## 
## lowest :   0   5  11  14  36, highest:  82  84  86  88 100
##                                                                             
## Value          0     5    11    14    36    52    61    65    68    69    70
## Frequency      1     1     1     1     1     1     1     1     1     2     1
## Proportion 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.087 0.043
##                                                                 
## Value         71    73    76    80    82    84    86    88   100
## Frequency      2     1     1     1     1     1     1     1     2
## Proportion 0.087 0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.087
## --------------------------------------------------------------------------------
# Support 
F$S1_EWBlur <- as.numeric(F$SupportBLUR_EW_40)
F$S2_EWBlur <- as.numeric(F$SupportBLUR_EW_42)
F$S3_EWBlur <- as.numeric(F$SupportBLUR_EW_43)
F$S4_EWBlur <- as.numeric(F$SupportBLUR_EW_45)

hist(F$S1_EWBlur)

hist(F$S2_EWBlur)

hist(F$S3_EWBlur)

hist(F$S4_EWBlur)

F$SupScore_EWBlur <- rowMeans(F [, c( "S1_EWBlur" , "S2_EWBlur", "S3_EWBlur", "S4_EWBlur")], na.rm=TRUE)
describe(F$SupScore_EWBlur)
## F$SupScore_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       24        1    57.82    32.64    10.81    19.08 
##      .25      .50      .75      .90      .95 
##    45.31    57.88    78.62    94.92    97.45 
## 
## lowest :   0.00   9.50  18.25  21.00  28.50, highest:  82.25  93.00  95.75  97.75 100.00
sd(F$SupScore_EWBlur, na.rm = TRUE)
## [1] 28.1679
F$SupScale_EWBlur <- data.frame(F$S1_EWBlur, F$S2_EWBlur, F$S3_EWBlur, F$S4_EWBlur)
describe(F$SupScale_EWBlur)
## F$SupScale_EWBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       21    0.998       59     35.9     2.85    19.90 
##      .25      .50      .75      .90      .95 
##    37.25    65.50    81.75    97.90   100.00 
## 
## lowest :   0  19  22  30  35, highest:  81  84  89  93 100
## --------------------------------------------------------------------------------
## F.S2_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       21    0.999    58.88    36.18     3.05    10.80 
##      .25      .50      .75      .90      .95 
##    39.75    65.50    82.00    96.10    97.85 
## 
## lowest :   0   2   9  15  29, highest:  85  94  97  98 100
## --------------------------------------------------------------------------------
## F.S3_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       20    0.999    54.39    37.94      8.4     21.2 
##      .25      .50      .75      .90      .95 
##     24.0     53.0     86.0     93.0     99.4 
## 
## lowest :   0   7  21  22  23, highest:  85  87  89  94 100
##                                                                             
## Value          0     7    21    22    23    24    25    29    35    52    53
## Frequency      1     1     1     1     1     2     1     1     1     1     1
## Proportion 0.043 0.043 0.043 0.043 0.043 0.087 0.043 0.043 0.043 0.043 0.043
##                                                                 
## Value         68    70    77    79    85    87    89    94   100
## Frequency      1     1     1     1     1     2     1     1     2
## Proportion 0.043 0.043 0.043 0.043 0.043 0.087 0.043 0.043 0.087
## --------------------------------------------------------------------------------
## F.S4_EWBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       21    0.999    59.29    31.03    22.30    24.60 
##      .25      .50      .75      .90      .95 
##    36.75    68.00    74.25    92.70    98.95 
## 
## lowest :   0  22  24  26  30, highest:  75  78  92  93 100
## --------------------------------------------------------------------------------

Wind Energy (Clear Condition)

F$WE_Clear_Page.Submit
##  [1]     NA     NA  1.299  1.397 13.702  0.871     NA     NA  1.440  0.684
## [11]  1.096  8.900  1.299     NA 14.149     NA     NA 35.010     NA 12.603
## [21]     NA     NA 48.501  2.236     NA 12.766  7.134     NA     NA  2.332
## [31]     NA     NA     NA  0.932     NA     NA     NA  2.470     NA     NA
## [41]  0.823     NA     NA 67.273     NA     NA 17.552     NA  0.722  1.100
F$WE_Clear_ATN
##  [1] NA NA  4  4  4  1 NA NA  4  3  4  4  3 NA  4 NA NA  4 NA  4 NA NA  4  4 NA
## [26]  4  4 NA NA  2 NA NA NA  4 NA NA NA  4 NA NA  3 NA NA  4 NA NA  4 NA  4  4
F$WE_Clear_ATN_TIME_Page.Submit
##  [1]    NA    NA 1.555 1.609 1.436 1.401    NA    NA 1.369 1.532 1.501 2.567
## [13] 4.869    NA 1.782    NA    NA 4.443    NA 1.401    NA    NA 1.970 2.213
## [25]    NA 1.696 5.863    NA    NA 2.376    NA    NA    NA 1.691    NA    NA
## [37]    NA 1.136    NA    NA 1.572    NA    NA 7.659    NA    NA 3.286    NA
## [49] 2.089 1.466
F$WE_Clear_ATN2
##  [1] NA                                                                                                                                                                                                                      
##  [2] NA                                                                                                                                                                                                                      
##  [3] "Very good "                                                                                                                                                                                                            
##  [4] "Please post your links here "                                                                                                                                                                                          
##  [5] "Turbines are used to produce energy from the wind which can then be connected to a generator and used as electricity."                                                                                                 
##  [6] "Ytguyy"                                                                                                                                                                                                                
##  [7] NA                                                                                                                                                                                                                      
##  [8] NA                                                                                                                                                                                                                      
##  [9] "What does this mean for the next few days to go through the years and years old when the first to know that"                                                                                                           
## [10] "I’m not sure "                                                                                                                                                                                                         
## [11] "such jdfjufdjjssjjsjsjsjdjdj"                                                                                                                                                                                          
## [12] "Energy my through wind turbines"                                                                                                                                                                                       
## [13] "I can not "                                                                                                                                                                                                            
## [14] NA                                                                                                                                                                                                                      
## [15] "Wind energy from wind turbines in fields "                                                                                                                                                                             
## [16] NA                                                                                                                                                                                                                      
## [17] NA                                                                                                                                                                                                                      
## [18] "It’s extracting energy from wind to use for power "                                                                                                                                                                    
## [19] NA                                                                                                                                                                                                                      
## [20] "This is anout using turbines to generate wond energy. This is already being done."                                                                                                                                     
## [21] NA                                                                                                                                                                                                                      
## [22] NA                                                                                                                                                                                                                      
## [23] "Wind energy is generated through turbines and makes electricity for generators to be used on farms."                                                                                                                   
## [24] "Wind energy is natural and very sustainable  and would be very good for environment and human existence "                                                                                                              
## [25] NA                                                                                                                                                                                                                      
## [26] "It’s a way to take wind and turn it into energy to power things and use it as a genaratior"                                                                                                                            
## [27] "Wind energy takes the wind and by the force generated from that wind, through windmills or turbines it creates energy. The energy then creates electricity which in turn we can use. Powering everything we power now."
## [28] NA                                                                                                                                                                                                                      
## [29] NA                                                                                                                                                                                                                      
## [30] "Dont know"                                                                                                                                                                                                             
## [31] NA                                                                                                                                                                                                                      
## [32] NA                                                                                                                                                                                                                      
## [33] NA                                                                                                                                                                                                                      
## [34] "Ways to promote this possibility.\nScientific Research\nWind farts"                                                                                                                                                    
## [35] NA                                                                                                                                                                                                                      
## [36] NA                                                                                                                                                                                                                      
## [37] NA                                                                                                                                                                                                                      
## [38] "The only way to make it work and we can still get it to you at all times if we need it to be more efficient to do this is to be a good friend to you "                                                                 
## [39] NA                                                                                                                                                                                                                      
## [40] NA                                                                                                                                                                                                                      
## [41] "Everything is okay and everything it was just happened "                                                                                                                                                               
## [42] NA                                                                                                                                                                                                                      
## [43] NA                                                                                                                                                                                                                      
## [44] "Power generated through the use of wind"                                                                                                                                                                               
## [45] NA                                                                                                                                                                                                                      
## [46] NA                                                                                                                                                                                                                      
## [47] "Generating energy from spinning wind power"                                                                                                                                                                            
## [48] NA                                                                                                                                                                                                                      
## [49] "It cool to me"                                                                                                                                                                                                         
## [50] "Eirjjxkfnxiwnfjiwkdjdbsknfnxnc. Oencn jd cksnckdiwnsndo. Xenografts ficndnck cnsisnc"
F$WE_Clear_ATN2_TIME_Page.Submit
##  [1]     NA     NA  6.438  2.801 29.650  2.271     NA     NA  4.642  3.727
## [11]  5.301 13.872  5.225     NA 14.390     NA     NA 14.584     NA 15.844
## [21]     NA     NA 66.463 75.020     NA 33.873 77.500     NA     NA  8.194
## [31]     NA     NA     NA 33.258     NA     NA     NA  9.276     NA     NA
## [41]  5.114     NA     NA 40.979     NA     NA 24.713     NA  3.629  8.841
# Naturalness
F$N1_WEClear <- as.numeric(F$Naturalness_WE_30)
F$N2R_WEClear <- as.numeric(100 - F$Naturalness_WE_31)
F$N3R_WEClear <- as.numeric(100 - F$Naturalness_WE_35)
F$N4R_WEClear <- as.numeric(100- F$Naturalness_WE_36)

hist(F$N1_WEClear)

hist(F$N2R_WEClear)

hist(F$N3R_WEClear)

hist(F$N4R_WEClear)

F$NatScore_WEClear <- rowMeans(F [, c( "N1_WEClear" , "N2R_WEClear", "N3R_WEClear", "N4R_WEClear")], na.rm=TRUE)
describe(F$NatScore_WEClear)
## F$NatScore_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       21    0.999    38.95    17.83    14.38    25.00 
##      .25      .50      .75      .90      .95 
##    29.69    39.38    46.69    56.42    63.85 
## 
## lowest :  0.00 12.50 25.00 25.50 28.75, highest: 50.00 51.00 58.75 64.75 75.00
sd(F$NatScore_WEClear, na.rm = TRUE)
## [1] 15.99541
F$NatScale_WEClear <- data.frame(F$N1_WEClear, F$N2R_WEClear, F$N3R_WEClear, F$N4R_WEClear)
describe(F$NatScale_WEClear)
## F$NatScale_WEClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       15    0.974    76.04    30.87     4.65    32.50 
##      .25      .50      .75      .90      .95 
##    70.00    85.50   100.00   100.00   100.00 
## 
## lowest :   0  31  36  52  70, highest:  87  90  91  99 100
##                                                                             
## Value          0    31    36    52    70    81    82    84    85    86    87
## Frequency      2     1     1     1     2     2     1     1     1     1     1
## Proportion 0.083 0.042 0.042 0.042 0.083 0.083 0.042 0.042 0.042 0.042 0.042
##                                   
## Value         90    91    99   100
## Frequency      1     1     1     7
## Proportion 0.042 0.042 0.042 0.292
## --------------------------------------------------------------------------------
## F.N2R_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       13    0.962    19.21    22.83      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     16.0     30.5     48.0     56.5 
## 
## lowest :  0  6 13 16 18, highest: 32 33 48 58 75
##                                                                             
## Value          0     6    13    16    18    20    24    30    32    33    48
## Frequency      8     2     1     2     2     1     1     1     1     1     2
## Proportion 0.333 0.083 0.042 0.083 0.083 0.042 0.042 0.042 0.042 0.042 0.083
##                       
## Value         58    75
## Frequency      1     1
## Proportion 0.042 0.042
## --------------------------------------------------------------------------------
## F.N3R_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       17     0.99    22.62    25.66     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.75    19.00    25.25    62.00    68.00 
## 
## lowest :   0   2   3   5  12, highest:  26  27  48  68 100
##                                                                             
## Value          0     2     3     5    12    15    18    19    20    21    22
## Frequency      5     1     1     1     1     1     1     2     1     1     1
## Proportion 0.208 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042
##                                               
## Value         25    26    27    48    68   100
## Frequency      2     1     1     1     2     1
## Proportion 0.083 0.042 0.042 0.042 0.083 0.042
## --------------------------------------------------------------------------------
## F.N4R_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       19    0.995    37.92    38.28     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    12.00    27.50    68.75    88.10    98.80 
## 
## lowest :   0  10  12  13  16, highest:  77  78  79  92 100
##                                                                             
## Value          0    10    12    13    16    18    23    25    30    34    36
## Frequency      4     1     2     1     1     1     1     1     1     1     1
## Proportion 0.167 0.042 0.083 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                           
## Value         42    47    66    77    78    79    92   100
## Frequency      1     1     1     1     1     1     1     2
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.083
## --------------------------------------------------------------------------------
# Fluency 
F$Fluency_WEClear <- as.numeric(F$Fluency_WE_30)
describe(F$Fluency_WEClear)
## F$Fluency_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       15    0.974    84.12    22.25     34.9     50.8 
##      .25      .50      .75      .90      .95 
##     81.0     93.0    100.0    100.0    100.0 
## 
## lowest :  11  34  40  76  78, highest:  95  97  98  99 100
##                                                                             
## Value         11    34    40    76    78    82    83    85    90    91    95
## Frequency      1     1     1     1     2     1     2     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.083 0.042 0.083 0.042 0.042 0.042 0.042
##                                   
## Value         97    98    99   100
## Frequency      1     1     2     7
## Proportion 0.042 0.042 0.083 0.292
hist(F$Fluency_WEClear)

sd(F$Fluency_WEClear, na.rm = TRUE)
## [1] 23.51745
# Understanding 
F$Und_WEClear <- as.numeric(F$Familiarity_WE_30)
describe(F$Und_WEClear)
## F$Und_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       14    0.928    85.17    19.28    54.25    68.80 
##      .25      .50      .75      .90      .95 
##    76.75    92.00   100.00   100.00   100.00 
## 
## lowest :  22  52  67  73  75, highest:  85  91  93  97 100
##                                                                             
## Value         22    52    67    73    75    76    77    78    81    85    91
## Frequency      1     1     1     1     1     1     2     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.042
##                             
## Value         93    97   100
## Frequency      1     1    10
## Proportion 0.042 0.042 0.417
hist(F$Und_WEClear)

sd(F$Und_WEClear , na.rm = TRUE)
## [1] 19.10308
# Familiarity
F$Fam_WEClear <- as.numeric(F$Familiarity_WE_31)

# Risk
F$R1_WEClear <- as.numeric(F$Risk_WE_32)
F$R2_WEClear <- as.numeric(F$Risk_WE_33)
F$R3_WEClear <- as.numeric(F$Risk_WE_34)

hist(F$R1_WEClear)

hist(F$R2_WEClear)

hist(F$R3_WEClear)

F$RiskScore_WEClear <- rowMeans(F [, c( "R1_WEClear" , "R2_WEClear", "R3_WEClear")], na.rm=TRUE)
describe(F$RiskScore_WEClear)
## F$RiskScore_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       22    0.999    58.79    24.05    33.33    33.53 
##      .25      .50      .75      .90      .95 
##    39.25    64.00    71.33    85.33    88.88 
## 
## lowest :  27.00000  33.33333  34.00000  36.33333  38.00000
## highest:  76.33333  83.00000  86.33333  89.33333 100.00000
sd(F$RiskScore_WEClear, na.rm = TRUE)
## [1] 20.73663
F$RiskScale_WEClear <- data.frame(F$R1_WEClear, F$R2_WEClear, F$R3_WEClear)
describe(F$RiskScale_WEClear)
## F$RiskScale_WEClear 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18    0.996    53.71    42.62     0.00     0.60 
##      .25      .50      .75      .90      .95 
##    13.25    69.00    82.00    97.00   100.00 
## 
## lowest :   0   2   4  11  14, highest:  81  82  86  90 100
##                                                                             
## Value          0     2     4    11    14    27    35    46    52    62    76
## Frequency      3     1     1     1     1     1     1     1     1     1     1
## Proportion 0.125 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                     
## Value         79    80    81    82    86    90   100
## Frequency      1     2     1     2     1     1     3
## Proportion 0.042 0.083 0.042 0.083 0.042 0.042 0.125
## --------------------------------------------------------------------------------
## F.R2_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       19    0.995    48.75    41.86     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.50    53.50    81.25    94.10    99.25 
## 
## lowest :   0   8  10  16  22, highest:  81  82  92  95 100
##                                                                             
## Value          0     8    10    16    22    27    33    41    52    55    60
## Frequency      4     1     1     1     1     1     1     1     1     1     1
## Proportion 0.167 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                           
## Value         68    70    76    81    82    92    95   100
## Frequency      1     1     1     1     2     1     1     2
## Proportion 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.083
## --------------------------------------------------------------------------------
## F.R3_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       16    0.975    73.92    29.28     26.2     34.2 
##      .25      .50      .75      .90      .95 
##     69.0     79.0    100.0    100.0    100.0 
## 
## lowest :   0  25  33  37  52, highest:  81  82  87  92 100
##                                                                             
## Value          0    25    33    37    52    63    71    72    73    75    79
## Frequency      1     1     1     1     1     1     1     1     2     1     2
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.042 0.083
##                                         
## Value         81    82    87    92   100
## Frequency      1     1     1     1     7
## Proportion 0.042 0.042 0.042 0.042 0.292
## --------------------------------------------------------------------------------
# Benefit
F$B1_WEClear <- as.numeric(F$Benefit_WE_19)
F$B2_WEClear <- as.numeric(F$Benefit_WE_27)
F$B3_WEClear <- as.numeric(F$Benefit_WE_28)
F$B4_WEClear <- as.numeric(F$Benefit_WE_29)

hist(F$B1_WEClear)

hist(F$B2_WEClear)

hist(F$B3_WEClear)

hist(F$B4_WEClear)

F$BenScore_WEClear <- rowMeans(F [, c( "B1_WEClear" , "B2_WEClear", "B3_WEClear", "B4_WEClear")], na.rm=TRUE)
describe(F$BenScore_WEClear)
## F$BenScore_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.995    78.92    22.74    44.75    49.90 
##      .25      .50      .75      .90      .95 
##    65.00    83.62    95.06   100.00   100.00 
## 
## lowest :  32.75  44.00  49.00  52.00  55.00, highest:  93.50  94.25  97.50  99.50 100.00
## 
## 32.75 (1, 0.042), 44 (1, 0.042), 49 (1, 0.042), 52 (1, 0.042), 55 (1, 0.042),
## 62 (1, 0.042), 66 (1, 0.042), 75.25 (1, 0.042), 76 (1, 0.042), 81.5 (1, 0.042),
## 81.75 (1, 0.042), 83.5 (1, 0.042), 83.75 (1, 0.042), 86.5 (1, 0.042), 86.75 (1,
## 0.042), 93.5 (2, 0.083), 94.25 (1, 0.042), 97.5 (1, 0.042), 99.5 (1, 0.042),
## 100 (4, 0.167)
sd(F$BenScore_WEClear, na.rm = TRUE)
## [1] 20.21887
F$BenScale_WEClear <- data.frame(F$B1_WEClear, F$B2_WEClear, F$B3_WEClear, F$B4_WEClear)
describe(F$BenScale_WEClear)
## F$BenScale_WEClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       16    0.975       75    29.26    24.15    27.10 
##      .25      .50      .75      .90      .95 
##    70.25    79.50   100.00   100.00   100.00 
## 
## lowest :   7  24  25  32  52, highest:  80  82  84  93 100
##                                                                             
## Value          7    24    25    32    52    68    71    76    77    78    79
## Frequency      1     1     1     1     1     1     1     1     1     1     2
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.083
##                                         
## Value         80    82    84    93   100
## Frequency      1     1     1     2     7
## Proportion 0.042 0.042 0.042 0.083 0.292
## --------------------------------------------------------------------------------
## F.B2_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       23       27       15    0.981    84.61    17.11       64       66 
##      .25      .50      .75      .90      .95 
##       79       86       99      100      100 
## 
## lowest :  29  64  74  78  80, highest:  90  91  94  98 100
##                                                                             
## Value         29    64    74    78    80    81    84    85    86    89    90
## Frequency      1     2     2     1     1     1     1     2     1     1     1
## Proportion 0.043 0.087 0.087 0.043 0.043 0.043 0.043 0.087 0.043 0.043 0.043
##                                   
## Value         91    94    98   100
## Frequency      1     1     1     6
## Proportion 0.043 0.043 0.043 0.261
## --------------------------------------------------------------------------------
## F.B3_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       16    0.983    79.83    19.67    53.35    62.50 
##      .25      .50      .75      .90      .95 
##    72.75    80.00    92.50   100.00   100.00 
## 
## lowest :  19  52  61  66  72, highest:  84  85  86  90 100
##                                                                             
## Value         19    52    61    66    72    73    74    76    78    79    81
## Frequency      1     1     1     1     2     1     1     1     2     1     1
## Proportion 0.042 0.042 0.042 0.042 0.083 0.042 0.042 0.042 0.083 0.042 0.042
##                                         
## Value         84    85    86    90   100
## Frequency      1     1     1     2     6
## Proportion 0.042 0.042 0.042 0.083 0.250
## --------------------------------------------------------------------------------
## F.B4_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       14    0.928    77.58    30.18     24.6     31.3 
##      .25      .50      .75      .90      .95 
##     68.5     89.0    100.0    100.0    100.0 
## 
## lowest :   9  24  28  39  41, highest:  84  86  88  90 100
##                                                                             
## Value          9    24    28    39    41    52    74    77    80    84    86
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                             
## Value         88    90   100
## Frequency      1     2    10
## Proportion 0.042 0.083 0.417
## --------------------------------------------------------------------------------
# Support 
F$S1_WEClear <- as.numeric(F$Support_WE_40)
F$S2_WEClear <- as.numeric(F$Support_WE_42)
F$S3_WEClear <- as.numeric(F$Support_WE_43)
F$S4_WEClear <- as.numeric(F$Support_WE_45)

hist(F$S1_WEClear)

hist(F$S2_WEClear)

hist(F$S3_WEClear)

hist(F$S4_WEClear)

F$SupScore_WEClear <- rowMeans(F [, c( "S1_WEClear" , "S2_WEClear", "S3_WEClear", "S4_WEClear")], na.rm=TRUE)
describe(F$SupScore_WEClear)
## F$SupScore_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       20    0.997     74.2    26.23    37.09    45.88 
##      .25      .50      .75      .90      .95 
##    62.50    76.25    96.25    99.78   100.00 
## 
## lowest :  11.75  36.00  43.25  52.00  52.50, highest:  96.00  97.00  97.75  99.25 100.00
## 
## 11.75 (1, 0.042), 36 (1, 0.042), 43.25 (1, 0.042), 52 (1, 0.042), 52.5 (1,
## 0.042), 61 (1, 0.042), 63 (1, 0.042), 67 (1, 0.042), 67.5 (1, 0.042), 68.5 (1,
## 0.042), 69.5 (2, 0.083), 83 (1, 0.042), 84.75 (1, 0.042), 86.75 (2, 0.083), 88
## (1, 0.042), 96 (1, 0.042), 97 (1, 0.042), 97.75 (1, 0.042), 99.25 (1, 0.042),
## 100 (3, 0.125)
sd(F$SupScore_WEClear, na.rm = TRUE)
## [1] 23.42634
F$SupScale_WEClear <- data.frame(F$S1_WEClear, F$S2_WEClear, F$S3_WEClear, F$S4_WEClear)
describe(F$SupScale_WEClear)
## F$SupScale_WEClear 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       19    0.995    75.83    28.08    25.90    31.90 
##      .25      .50      .75      .90      .95 
##    65.75    85.50    95.50   100.00   100.00 
## 
## lowest :  15  25  31  34  52, highest:  91  95  97  99 100
##                                                                             
## Value         15    25    31    34    52    65    66    74    76    79    80
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                           
## Value         82    89    90    91    95    97    99   100
## Frequency      1     2     1     2     1     1     1     4
## Proportion 0.042 0.083 0.042 0.083 0.042 0.042 0.042 0.167
## --------------------------------------------------------------------------------
## F.S2_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18    0.994    79.71    21.99    37.55    56.20 
##      .25      .50      .75      .90      .95 
##    76.25    85.00    93.50   100.00   100.00 
## 
## lowest :   8  35  52  66  67, highest:  91  93  95  96 100
##                                                                             
## Value          8    35    52    66    67    71    78    80    82    84    86
## Frequency      1     1     1     1     1     1     1     1     2     2     2
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.083 0.083 0.083
##                                                     
## Value         88    89    91    93    95    96   100
## Frequency      1     1     1     1     1     1     4
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.167
## --------------------------------------------------------------------------------
## F.S3_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       19    0.995    71.29       33    23.45    28.40 
##      .25      .50      .75      .90      .95 
##    49.50    82.50    98.00   100.00   100.00 
## 
## lowest :   5  23  26  34  35, highest:  90  96  98  99 100
##                                                                             
## Value          5    23    26    34    35    42    52    63    64    71    78
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                           
## Value         82    83    89    90    96    98    99   100
## Frequency      1     2     1     1     1     2     1     4
## Proportion 0.042 0.083 0.042 0.042 0.042 0.083 0.042 0.167
## --------------------------------------------------------------------------------
## F.S4_WEClear 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       24       26       18     0.99    69.96    32.97    21.15    23.20 
##      .25      .50      .75      .90      .95 
##    43.75    81.00    97.50   100.00   100.00 
## 
## lowest :   9  21  22  26  40, highest:  84  85  97  99 100
##                                                                             
## Value          9    21    22    26    40    43    44    52    75    76    80
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
##                                                     
## Value         81    83    84    85    97    99   100
## Frequency      3     1     1     1     1     1     5
## Proportion 0.125 0.042 0.042 0.042 0.042 0.042 0.208
## --------------------------------------------------------------------------------

Wind Energy (Blurred Condition)

F$WE_Blurred_Page.Submit
##  [1]  1.147  2.385     NA     NA     NA     NA  2.001  0.701     NA     NA
## [11]     NA     NA     NA 48.389     NA  8.573  0.712     NA 10.254     NA
## [21] 22.425 54.905     NA     NA 22.788     NA     NA 41.601  0.621     NA
## [31]  7.614  3.101  7.426     NA  4.072  7.375  0.879     NA  1.500  3.555
## [41]     NA  4.903 20.008     NA  1.708 14.652     NA 27.324     NA     NA
F$WE_Blurred_ATN
##  [1]  4  4 NA NA NA NA  4  4 NA NA NA NA NA  4 NA  4  2 NA  4 NA  4  4 NA NA  4
## [26] NA NA  4  3 NA  4  4  4 NA  4  4  3 NA  4  4 NA  4  4 NA  4  4 NA  4 NA NA
F$WE_Blurred_ATN_TIME_Page.Submit
##  [1] 1.202 1.563    NA    NA    NA    NA 1.482 3.701    NA    NA    NA    NA
## [13]    NA 3.201    NA 1.201 3.858    NA 2.270    NA 2.661 2.099    NA    NA
## [25] 3.015    NA    NA 3.851 1.291    NA 2.138 1.701 2.129    NA 2.115 2.176
## [37] 4.828    NA 2.663 2.948    NA 3.401 1.845    NA 1.602 1.942    NA 2.482
## [49]    NA    NA
F$WE_Blurred_ATN2
##  [1] "Laid oais paisb isna poshe posi eon sidb "                                                                                                                
##  [2] "Its when.the entertainment is bad "                                                                                                                       
##  [3] NA                                                                                                                                                         
##  [4] NA                                                                                                                                                         
##  [5] NA                                                                                                                                                         
##  [6] NA                                                                                                                                                         
##  [7] "Combustion wind through energy "                                                                                                                          
##  [8] "I don't remember "                                                                                                                                        
##  [9] NA                                                                                                                                                         
## [10] NA                                                                                                                                                         
## [11] NA                                                                                                                                                         
## [12] NA                                                                                                                                                         
## [13] NA                                                                                                                                                         
## [14] "Wind blows tubines to create energy"                                                                                                                      
## [15] NA                                                                                                                                                         
## [16] "Wild energy is just something people are trying to make"                                                                                                  
## [17] "I'm interested "                                                                                                                                          
## [18] NA                                                                                                                                                         
## [19] "the use of windmills and technology to make wind be energy"                                                                                               
## [20] NA                                                                                                                                                         
## [21] "Wind energy is using the wind to turn turbines, which then can be produced into energy and distributed through generators"                                
## [22] "Through the turning of wind turbines, electricity is produced, therefore providing wind energy. These turbines are often found in areas such as farmland."
## [23] NA                                                                                                                                                         
## [24] NA                                                                                                                                                         
## [25] "wind energy is created by using turbines that generate energy by spinning.  It is used in areas with enough wind to support the devices"                  
## [26] NA                                                                                                                                                         
## [27] NA                                                                                                                                                         
## [28] "The process of using wind to produce electricity."                                                                                                        
## [29] "Too small"                                                                                                                                                
## [30] NA                                                                                                                                                         
## [31] "Uses windmills to create energy. "                                                                                                                        
## [32] "I don't know "                                                                                                                                            
## [33] "Generate electricity from spinning"                                                                                                                       
## [34] NA                                                                                                                                                         
## [35] "Natural wind into energy "                                                                                                                                
## [36] "None"                                                                                                                                                     
## [37] "Very cool "                                                                                                                                               
## [38] NA                                                                                                                                                         
## [39] "i think that this is the most logical of all the four energy sources"                                                                                     
## [40] "Wind energy is accumulated by wind turbines "                                                                                                             
## [41] NA                                                                                                                                                         
## [42] "The wind helps make energy better and does different things"                                                                                              
## [43] "Produces natural energy by utilizing the wind "                                                                                                           
## [44] NA                                                                                                                                                         
## [45] "Easy to know what happened in the world from the past to finish "                                                                                         
## [46] "Using wind turbines to produce electricity "                                                                                                              
## [47] NA                                                                                                                                                         
## [48] "Turbines generate energy from spinning "                                                                                                                  
## [49] NA                                                                                                                                                         
## [50] NA
F$WE_Blurred_ATN2_TIME_Page.Submit
##  [1]  7.053 19.969     NA     NA     NA     NA 10.498 13.501     NA     NA
## [11]     NA     NA     NA 19.001     NA  8.297  3.608     NA 11.931     NA
## [21] 20.501 29.884     NA     NA 92.765     NA     NA 37.901  5.338     NA
## [31]  8.998  6.158  9.928     NA 11.029  3.690  9.136     NA 42.367 20.501
## [41]     NA 35.350 12.930     NA 26.401 15.773     NA 19.750     NA     NA
# Naturalness
F$N1_WEBlur <- as.numeric(F$NaturalnessBLUR_WE_30)
F$N2R_WEBlur <- as.numeric(100 - F$NaturalnessBLUR_WE_31)
F$N3R_WEBlur <- as.numeric(100 - F$NaturalnessBLUR_WE_35)
F$N4R_WEBlur <- as.numeric(100- F$NaturalnessBLUR_WE_36)

hist(F$N1_WEBlur)

hist(F$N2R_WEBlur)

hist(F$N3R_WEBlur)

hist(F$N4R_WEBlur)

F$NatScore_WEBlur <- rowMeans(F [, c( "N1_WEBlur" , "N2R_WEBlur", "N3R_WEBlur", "N4R_WEBlur")], na.rm=TRUE)
describe(F$NatScore_WEBlur)
## F$NatScore_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       25        1    50.21    27.55    20.50    25.38 
##      .25      .50      .75      .90      .95 
##    32.69    44.50    72.56    79.75    87.12 
## 
## lowest :  0.75 19.00 25.00 25.75 26.50, highest: 75.00 77.50 79.50 80.00 89.50
sd(F$NatScore_WEBlur, na.rm = TRUE)
## [1] 23.77916
F$NatScale_WEBlur <- data.frame(F$N1_WEBlur, F$N2R_WEBlur, F$N3R_WEBlur, F$N4R_WEBlur)
describe(F$NatScale_WEBlur)
## F$NatScale_WEBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.N1_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.971    72.23     33.9     9.75    19.00 
##      .25      .50      .75      .90      .95 
##    64.50    80.50   100.00   100.00   100.00 
## 
## lowest :   3   7  18  20  25, highest:  82  87  95  98 100
##                                                                             
## Value          3     7    18    20    25    62    64    66    73    74    77
## Frequency      1     1     1     1     1     1     1     2     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.038 0.038
##                                                     
## Value         80    81    82    87    95    98   100
## Frequency      1     1     1     1     1     1     8
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.308
## --------------------------------------------------------------------------------
## F.N2R_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       17    0.986    51.19    44.22     0.00     0.50 
##      .25      .50      .75      .90      .95 
##    20.25    37.00    89.50   100.00   100.00 
## 
## lowest :   0   1   7  15  20, highest:  76  82  88  90 100
##                                                                             
## Value          0     1     7    15    20    21    28    31    35    37    57
## Frequency      3     1     1     1     1     1     1     2     1     2     1
## Proportion 0.115 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.077 0.038
##                                               
## Value         75    76    82    88    90   100
## Frequency      1     1     1     1     1     6
## Proportion 0.038 0.038 0.038 0.038 0.038 0.231
## --------------------------------------------------------------------------------
## F.N3R_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.993    30.73    31.39     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     8.50    23.50    38.75    73.50    76.25 
## 
## lowest :  0  2  7 13 18, highest: 70 73 74 77 94
## --------------------------------------------------------------------------------
## F.N4R_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.995    46.69    40.56     0.00     3.00 
##      .25      .50      .75      .90      .95 
##    19.75    32.50    82.25   100.00   100.00 
## 
## lowest :   0   6  12  18  19, highest:  77  84  85  88 100
##                                                                             
## Value          0     6    12    18    19    22    28    29    32    33    37
## Frequency      3     1     1     1     1     1     1     2     2     1     1
## Proportion 0.115 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.077 0.038 0.038
##                                                           
## Value         48    61    74    77    84    85    88   100
## Frequency      1     1     1     1     1     1     1     4
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.154
## --------------------------------------------------------------------------------
# Fluency
F$Fluency_WEBlur <- as.numeric(F$FluencyBLUR_WE_34)
describe(F$Fluency_WEBlur)
## F$Fluency_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       15    0.958    78.77    27.02     22.5     41.0 
##      .25      .50      .75      .90      .95 
##     69.5     87.0    100.0    100.0    100.0 
## 
## lowest :  13  22  24  58  63, highest:  86  88  94  99 100
##                                                                             
## Value         13    22    24    58    63    69    71    73    74    77    86
## Frequency      1     1     1     1     2     1     1     1     1     1     2
## Proportion 0.038 0.038 0.038 0.038 0.077 0.038 0.038 0.038 0.038 0.038 0.077
##                                   
## Value         88    94    99   100
## Frequency      2     1     1     9
## Proportion 0.077 0.038 0.038 0.346
hist(F$Fluency_WEBlur)

sd(F$Fluency_WEBlur, na.rm = TRUE)
## [1] 25.8183
# Understanding 
F$Und_WEBlur <- as.numeric(F$FamiliarityBLUR_WE_30)
describe(F$Und_WEBlur)
## F$Und_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       17    0.971    79.46    26.86    23.25    44.00 
##      .25      .50      .75      .90      .95 
##    71.50    89.50   100.00   100.00   100.00 
## 
## lowest :   4  22  27  61  62, highest:  90  95  97  98 100
##                                                                             
## Value          4    22    27    61    62    67    71    73    76    79    81
## Frequency      1     1     1     1     1     1     1     1     1     2     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038
##                                               
## Value         89    90    95    97    98   100
## Frequency      1     1     2     1     1     8
## Proportion 0.038 0.038 0.077 0.038 0.038 0.308
hist(F$Und_WEBlur)

sd(F$Und_WEBlur, na.rm = TRUE)
## [1] 26.37306
# Familiarity
F$Fam_WEBlur <- as.numeric(F$FamiliarityBLUR_WE_31)

# Risk 
F$R1_WEBlur <- as.numeric(F$RiskBLUR_WE_32)
F$R2_WEBlur <- as.numeric(F$RiskBLUR_WE_33)
F$R3_WEBlur <- as.numeric(F$RiskBLUR_WE_34)

hist(F$R1_WEBlur)

hist(F$R2_WEBlur)

hist(F$R3_WEBlur)

F$RiskScore_WEBlur <- rowMeans(F [, c( "R1_WEBlur" , "R2_WEBlur", "R3_WEBlur")], na.rm=TRUE)
describe(F$RiskScore_WEBlur)
## F$RiskScore_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       21    0.993    49.85    29.53    18.58    25.33 
##      .25      .50      .75      .90      .95 
##    33.33    37.83    71.67    83.00    94.50 
## 
## lowest :   8.00000  16.66667  24.33333  26.33333  29.66667
## highest:  80.66667  82.00000  84.00000  98.00000 100.00000
sd(F$RiskScore_WEBlur, na.rm = TRUE)
## [1] 26.15921
F$RiskScale_WEBlur <- data.frame(F$R1_WEBlur, F$R2_WEBlur, F$R3_WEBlur)
describe(F$RiskScale_WEBlur)
## F$RiskScale_WEBlur 
## 
##  3  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.R1_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.979    36.12    42.95     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.75    17.50    76.00    91.00    95.75 
## 
## lowest :   0   3   9  15  17, highest:  89  90  92  97 100
##                                                                             
## Value          0     3     9    15    17    18    20    29    53    67    73
## Frequency      7     3     1     1     1     1     1     1     1     1     1
## Proportion 0.269 0.115 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
##                                                     
## Value         77    84    89    90    92    97   100
## Frequency      1     1     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038
## --------------------------------------------------------------------------------
## F.R2_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       16     0.97    35.62    43.06      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     17.0     80.5     92.0     99.5 
## 
## lowest :   0   2   6   7  16, highest:  81  85  86  98 100
##                                                                             
## Value          0     2     6     7    16    17    18    26    41    66    79
## Frequency      8     1     1     1     1     2     1     1     1     1     1
## Proportion 0.308 0.038 0.038 0.038 0.038 0.077 0.038 0.038 0.038 0.038 0.038
##                                         
## Value         81    85    86    98   100
## Frequency      2     1     1     1     2
## Proportion 0.077 0.038 0.038 0.038 0.077
## --------------------------------------------------------------------------------
## F.R3_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       15     0.97    77.81    24.43    35.75    56.50 
##      .25      .50      .75      .90      .95 
##    69.25    80.50   100.00   100.00   100.00 
## 
## lowest :   4  31  50  63  67, highest:  81  82  83  99 100
##                                                                             
## Value          4    31    50    63    67    68    73    74    75    80    81
## Frequency      1     1     1     2     1     1     2     2     1     1     1
## Proportion 0.038 0.038 0.038 0.077 0.038 0.038 0.077 0.077 0.038 0.038 0.038
##                                   
## Value         82    83    99   100
## Frequency      1     2     1     8
## Proportion 0.038 0.077 0.038 0.308
## --------------------------------------------------------------------------------
# Benefit
F$B1_WEBlur <- as.numeric(F$BenefitBLUR_WE_19)
F$B2_WEBlur <- as.numeric(F$BenefitBLUR_WE_27)
F$B3_WEBlur <- as.numeric(F$BenefitBLUR_WE_28)
F$B4_WEBlur <- as.numeric(F$BenefitBLUR_WE_29)

hist(F$B1_WEBlur)

hist(F$B2_WEBlur)

hist(F$B3_WEBlur)

hist(F$B4_WEBlur)

F$BenScore_WEBlur <- rowMeans(F [, c( "B1_WEBlur" , "B2_WEBlur", "B3_WEBlur", "B4_WEBlur")], na.rm=TRUE)
describe(F$BenScore_WEBlur)
## F$BenScore_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.971    77.38    26.53    37.56    44.62 
##      .25      .50      .75      .90      .95 
##    65.12    82.50   100.00   100.00   100.00 
## 
## lowest :   9.75  35.50  43.75  45.50  57.50, highest:  86.25  86.75  97.75  98.75 100.00
##                                                                          
## Value        9.75  35.50  43.75  45.50  57.50  59.50  63.75  69.25  71.25
## Frequency       1      1      1      1      1      1      1      1      1
## Proportion  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038
##                                                                          
## Value       71.75  74.00  75.75  82.50  86.25  86.75  97.75  98.75 100.00
## Frequency       1      1      1      2      1      1      1      1      8
## Proportion  0.038  0.038  0.038  0.077  0.038  0.038  0.038  0.038  0.308
sd(F$BenScore_WEBlur, na.rm = TRUE)
## [1] 24.25616
F$BenScale_WEBlur <- data.frame(F$B1_WEBlur, F$B2_WEBlur, F$B3_WEBlur, F$B4_WEBlur)
describe(F$BenScale_WEBlur)
## F$BenScale_WEBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.B1_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       18    0.971    78.69     25.4    37.50    46.50 
##      .25      .50      .75      .90      .95 
##    70.25    83.00   100.00   100.00   100.00 
## 
## lowest :  11  37  39  54  59, highest:  85  88  97  98 100
##                                                                             
## Value         11    37    39    54    59    63    70    71    73    74    78
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
##                                                     
## Value         80    81    85    88    97    98   100
## Frequency      1     1     1     2     1     1     8
## Proportion 0.038 0.038 0.038 0.077 0.038 0.038 0.308
## --------------------------------------------------------------------------------
## F.B2_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       15    0.957    79.15     25.2    34.25    49.00 
##      .25      .50      .75      .90      .95 
##    72.25    85.00   100.00   100.00   100.00 
## 
## lowest :   6  32  41  57  61, highest:  86  87  88  97 100
##                                                                             
## Value          6    32    41    57    61    72    73    75    77    84    86
## Frequency      1     1     1     1     1     2     1     3     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.115 0.038 0.038 0.038
##                                   
## Value         87    88    97   100
## Frequency      1     1     1     9
## Proportion 0.038 0.038 0.038 0.346
## --------------------------------------------------------------------------------
## F.B3_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       16    0.958    73.08    32.61    13.50    31.00 
##      .25      .50      .75      .90      .95 
##    60.25    79.00   100.00   100.00   100.00 
## 
## lowest :   8   9  27  35  37, highest:  79  82  86  98 100
##                                                                             
## Value          8     9    27    35    37    57    70    71    73    76    78
## Frequency      1     1     1     2     1     1     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.077 0.038 0.038 0.038 0.038 0.038 0.038 0.038
##                                         
## Value         79    82    86    98   100
## Frequency      2     1     1     1     9
## Proportion 0.077 0.038 0.038 0.038 0.346
## --------------------------------------------------------------------------------
## F.B4_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       15     0.97    78.58    25.98     31.5     45.5 
##      .25      .50      .75      .90      .95 
##     69.0     88.5    100.0    100.0    100.0 
## 
## lowest :  14  30  36  55  61, highest:  87  90  92  98 100
##                                                                             
## Value         14    30    36    55    61    68    69    70    71    74    87
## Frequency      1     1     1     1     1     1     2     1     2     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.077 0.038 0.038
##                                   
## Value         90    92    98   100
## Frequency      2     1     2     8
## Proportion 0.077 0.038 0.077 0.308
## --------------------------------------------------------------------------------
# Support 
F$S1_WEBlur <- as.numeric(F$SupportBLUR_WE_40)
F$S2_WEBlur <- as.numeric(F$SupportBLUR_WE_42)
F$S3_WEBlur <- as.numeric(F$SupportBLUR_WE_43)
F$S4_WEBlur <- as.numeric(F$SupportBLUR_WE_45)

hist(F$S1_WEBlur)

hist(F$S2_WEBlur)

hist(F$S3_WEBlur)

hist(F$S4_WEBlur)

F$SupScore_WEBlur <- rowMeans(F [, c( "S1_WEBlur" , "S2_WEBlur", "S3_WEBlur", "S4_WEBlur")], na.rm=TRUE)
describe(F$SupScore_WEBlur)
## F$SupScore_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.971    74.62    30.56    21.06    30.50 
##      .25      .50      .75      .90      .95 
##    59.56    83.38   100.00   100.00   100.00 
## 
## lowest :   5.00  19.25  26.50  34.50  57.25, highest:  85.50  90.50  96.00  97.50 100.00
## 
## 5 (1, 0.038), 19.25 (1, 0.038), 26.5 (1, 0.038), 34.5 (1, 0.038), 57.25 (1,
## 0.038), 58.5 (1, 0.038), 59 (1, 0.038), 61.25 (1, 0.038), 64 (1, 0.038), 69.75
## (1, 0.038), 74 (1, 0.038), 74.75 (1, 0.038), 82.5 (1, 0.038), 84.25 (1, 0.038),
## 85.5 (1, 0.038), 90.5 (1, 0.038), 96 (1, 0.038), 97.5 (1, 0.038), 100 (8,
## 0.308)
sd(F$SupScore_WEBlur, na.rm = TRUE)
## [1] 28.01305
F$SupScale_WEBlur <- data.frame(F$S1_WEBlur, F$S2_WEBlur, F$S3_WEBlur, F$S4_WEBlur)
describe(F$SupScale_WEBlur)
## F$SupScale_WEBlur 
## 
##  4  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.S1_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       17     0.97    77.92    27.25    24.75    36.00 
##      .25      .50      .75      .90      .95 
##    73.50    83.50   100.00   100.00   100.00 
## 
## lowest :   7  22  33  39  61, highest:  87  89  95  99 100
##                                                                             
## Value          7    22    33    39    61    70    73    75    79    80    81
## Frequency      1     1     1     1     1     1     1     3     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.115 0.038 0.038 0.038
##                                               
## Value         86    87    89    95    99   100
## Frequency      1     1     1     1     1     8
## Proportion 0.038 0.038 0.038 0.038 0.038 0.308
## --------------------------------------------------------------------------------
## F.S2_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       19    0.971    75.42    29.53     29.5     35.5 
##      .25      .50      .75      .90      .95 
##     64.0     82.5    100.0    100.0    100.0 
## 
## lowest :   3  29  31  40  44, highest:  84  93  95  96 100
##                                                                             
## Value          3    29    31    40    44    58    63    67    69    70    75
## Frequency      1     1     1     1     1     1     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
##                                                           
## Value         79    82    83    84    93    95    96   100
## Frequency      1     1     1     1     1     1     1     8
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.308
## --------------------------------------------------------------------------------
## F.S3_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       17    0.971    74.31    31.89    12.00    28.00 
##      .25      .50      .75      .90      .95 
##    63.25    84.00   100.00   100.00   100.00 
## 
## lowest :   0   7  27  29  55, highest:  86  87  96  99 100
##                                                                             
## Value          0     7    27    29    55    63    64    69    70    74    83
## Frequency      1     1     1     1     2     1     1     1     1     1     1
## Proportion 0.038 0.038 0.038 0.038 0.077 0.038 0.038 0.038 0.038 0.038 0.038
##                                               
## Value         84    86    87    96    99   100
## Frequency      2     1     1     1     1     8
## Proportion 0.077 0.038 0.038 0.038 0.038 0.308
## --------------------------------------------------------------------------------
## F.S4_WEBlur 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       26       24       17    0.971    70.81    36.61     6.25    21.00 
##      .25      .50      .75      .90      .95 
##    45.75    84.00   100.00   100.00   100.00 
## 
## lowest :   0   3  16  26  33, highest:  85  89  95  99 100
##                                                                             
## Value          0     3    16    26    33    36    41    60    62    75    81
## Frequency      1     1     1     1     1     1     1     1     2     1     1
## Proportion 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.077 0.038 0.038
##                                               
## Value         83    85    89    95    99   100
## Frequency      1     1     1     2     1     8
## Proportion 0.038 0.038 0.038 0.077 0.038 0.308
## --------------------------------------------------------------------------------

Behavior (Petition)

# Petition: "Would you sign a petition to your congressional representative to ask them to support investment in the development of the technology you read about today?" (1 = Yes, I would, 2 = No, I would not)
F$Pet <- NA
F$Pet[F$Petition == 40] <- 'Yes I would'
F$Pet[F$Petition == 42] <- 'No I would not'
describe(F$Pet)
## F$Pet 
##        n  missing distinct 
##       50        0        2 
##                                         
## Value      No I would not    Yes I would
## Frequency              17             33
## Proportion           0.34           0.66
table(F$Pet)
## 
## No I would not    Yes I would 
##             17             33
# Behavior (Petition, click on link)
F$Click <- NA
F$Click[F$clicked == 0] <- 'Clicked to sign'
F$Click[F$clicked == 1] <- 'Did not click to sign'
describe(F$Click)
## F$Click 
##        n  missing distinct 
##       50        0        2 
##                                                       
## Value            Clicked to sign Did not click to sign
## Frequency                     49                     1
## Proportion                  0.98                  0.02
table(F$Click)
## 
##       Clicked to sign Did not click to sign 
##                    49                     1

Individual Differences

Aversion to Tampering with Nature

# Aversion to Tampering with Nature: How much do you agree or disagree with the following statements?

## Item 1: People who push for technological fixes to environmental problems are underestimating the risks. 
## Item 2: People who say we shouldn’t tamper with nature are just being naïve. 
## Item 3: Human beings have no right to meddle with the natural environment. 
## Item 4: I would prefer to live in a world where humans leave nature alone. 
## Item 5: Altering nature will be our downfall as a species.
F$ATNS1 <- as.numeric(F$ATNS_36)
F$ATNS2 <- as.numeric(F$ATNS_37)
F$ATNS3 <- as.numeric(F$ATNS_38)
F$ATNS4 <- as.numeric(F$ATNS_39)
F$ATNS5 <- as.numeric(F$ATNS_40)

# Reverse Code Item 2
F$ATNS2R <- (100- F$ATNS2)
describe(F$ATNS2R)
## F$ATNS2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       33    0.998    50.64    39.43     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    13.50    61.00    75.75    94.20    99.10 
## 
## lowest :   0   5   8  11  12, highest:  93  94  96  98 100
describe(F$ATNS1)
## F$ATNS1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       37    0.999    63.48    30.64     4.45    15.80 
##      .25      .50      .75      .90      .95 
##    50.50    72.00    83.50    91.60   100.00 
## 
## lowest :   0   4   5  14  16, highest:  87  89  91  97 100
describe(F$ATNS2R)
## F$ATNS2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       33    0.998    50.64    39.43     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    13.50    61.00    75.75    94.20    99.10 
## 
## lowest :   0   5   8  11  12, highest:  93  94  96  98 100
describe(F$ATNS3)
## F$ATNS3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       38    0.998    60.84    34.51     6.25    16.90 
##      .25      .50      .75      .90      .95 
##    37.75    68.50    85.00   100.00   100.00 
## 
## lowest :   0   4   9  16  17, highest:  90  91  92  97 100
describe(F$ATNS4)
## F$ATNS4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       30    0.991     73.9    28.52    15.95    37.50 
##      .25      .50      .75      .90      .95 
##    64.25    79.00    96.50   100.00   100.00 
## 
## lowest :   2   9  11  22  24, highest:  92  95  97  99 100
describe(F$ATNS5)
## F$ATNS5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       36    0.997     71.4    28.34     22.5     34.9 
##      .25      .50      .75      .90      .95 
##     56.5     78.0     91.5    100.0    100.0 
## 
## lowest :   0   2  18  28  34, highest:  92  93  94  95 100
range(F$ATNS1, na.rm=TRUE)
## [1]   0 100
range(F$ATNS2R, na.rm=TRUE)
## [1]   0 100
range(F$ATNS3, na.rm=TRUE)
## [1]   0 100
range(F$ATNS4, na.rm=TRUE)
## [1]   2 100
range(F$ATNS5, na.rm=TRUE)
## [1]   0 100
hist(F$ATNS1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks.')

hist(F$ATNS2R, main = 'ATNS #2: People who say we shouldn’t tamper with nature are just being naïve.')

hist(F$ATNS3, main = 'ATNS #3: Human beings have no right to meddle with the natural environment.')

hist(F$ATNS4, main = 'ATNS #4: I would prefer to live in a world where humans leave nature alone.')

hist(F$ATNS5, main = 'ATNS #5: Altering nature will be our downfall as a species.')

F$ATNS_Scale <- data.frame(F$ATNS1, F$ATNS2R, F$ATNS3, F$ATNS4, F$ATNS5)
psych::alpha(F$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(F$ATNS_Scale): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( F.ATNS2R ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = F$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.48      0.53     0.6      0.19 1.1 0.12   64 17     0.26
## 
##  lower alpha upper     95% confidence boundaries
## 0.25 0.48 0.71 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## F.ATNS1       0.45      0.51    0.56      0.21 1.04    0.133 0.096  0.29
## F.ATNS2R      0.71      0.71    0.67      0.38 2.48    0.066 0.014  0.40
## F.ATNS3       0.31      0.37    0.43      0.13 0.60    0.165 0.071  0.16
## F.ATNS4       0.25      0.33    0.43      0.11 0.50    0.179 0.116  0.14
## F.ATNS5       0.25      0.32    0.42      0.10 0.46    0.177 0.090  0.16
## 
##  Item statistics 
##           n raw.r std.r r.cor r.drop mean sd
## F.ATNS1  50  0.52  0.55  0.37   0.22   63 28
## F.ATNS2R 50  0.26  0.19 -0.11  -0.15   51 34
## F.ATNS3  50  0.69  0.71  0.65   0.41   61 30
## F.ATNS4  50  0.74  0.75  0.67   0.53   74 27
## F.ATNS5  50  0.73  0.76  0.70   0.52   71 26
describe(F$ATNS_Scale)
## F$ATNS_Scale 
## 
##  5  Variables      50  Observations
## --------------------------------------------------------------------------------
## F.ATNS1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       37    0.999    63.48    30.64     4.45    15.80 
##      .25      .50      .75      .90      .95 
##    50.50    72.00    83.50    91.60   100.00 
## 
## lowest :   0   4   5  14  16, highest:  87  89  91  97 100
## --------------------------------------------------------------------------------
## F.ATNS2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       33    0.998    50.64    39.43     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    13.50    61.00    75.75    94.20    99.10 
## 
## lowest :   0   5   8  11  12, highest:  93  94  96  98 100
## --------------------------------------------------------------------------------
## F.ATNS3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       38    0.998    60.84    34.51     6.25    16.90 
##      .25      .50      .75      .90      .95 
##    37.75    68.50    85.00   100.00   100.00 
## 
## lowest :   0   4   9  16  17, highest:  90  91  92  97 100
## --------------------------------------------------------------------------------
## F.ATNS4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       30    0.991     73.9    28.52    15.95    37.50 
##      .25      .50      .75      .90      .95 
##    64.25    79.00    96.50   100.00   100.00 
## 
## lowest :   2   9  11  22  24, highest:  92  95  97  99 100
## --------------------------------------------------------------------------------
## F.ATNS5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       36    0.997     71.4    28.34     22.5     34.9 
##      .25      .50      .75      .90      .95 
##     56.5     78.0     91.5    100.0    100.0 
## 
## lowest :   0   2  18  28  34, highest:  92  93  94  95 100
## --------------------------------------------------------------------------------
F$ATNS_Score <- rowMeans(F [, c("ATNS1", "ATNS2R", "ATNS3", "ATNS4", "ATNS5")], na.rm=TRUE)
describe(F$ATNS_Score)
## F$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       45    0.999    64.05    17.83    44.07    46.76 
##      .25      .50      .75      .90      .95 
##    54.25    67.40    76.90    80.00    82.23 
## 
## lowest :  1.8 24.0 43.8 44.4 46.4, highest: 80.0 80.8 83.4 85.4 92.8

Climate Change Belief

# Climate Change Belief: How much do you agree or disagree with the following statements?
## Item #1: Climate change is happening. 
## Item #2: Climate change poses a risk to human health, safety, and prosperity.
## Item #3: Human activity is largely responsible for recent climate change. 
## Item #4: Reducing greenhouse gas emissions will reduce global warming and climate change.

F$CCB1 <- F$CCB_48
F$CCB2 <- F$CCB_49
F$CCB3 <- F$CCB_50
F$CCB4 <- F$CCB_51

#Climate Change Belief Descriptives
describe(F$CCB1)
## F$CCB1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       22    0.972    84.14    19.35     43.2     68.7 
##      .25      .50      .75      .90      .95 
##     77.0     86.0    100.0    100.0    100.0 
## 
## lowest :   7  21  36  52  66, highest:  90  93  97  99 100
range(F$CCB1, na.rm=TRUE)
## [1]   7 100
describe(F$CCB2)
## F$CCB2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       28    0.978    74.66    30.81    15.00    23.10 
##      .25      .50      .75      .90      .95 
##    65.25    83.00   100.00   100.00   100.00 
## 
## lowest :   2   4  15  24  29, highest:  92  94  96  99 100
range(F$CCB2, na.rm=TRUE)
## [1]   2 100
describe(F$CCB3)
## F$CCB3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       30    0.982    76.02    28.87    17.45    25.20 
##      .25      .50      .75      .90      .95 
##    68.00    84.50    99.75   100.00   100.00 
## 
## lowest :   3  14  17  18  26, highest:  90  96  97  99 100
range(F$CCB3, na.rm=TRUE)
## [1]   3 100
describe(F$CCB4)
## F$CCB4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       34    0.989    73.64    28.43    16.60    33.30 
##      .25      .50      .75      .90      .95 
##    64.50    79.50    93.75   100.00   100.00 
## 
## lowest :   0  10  13  21  27, highest:  91  93  94  99 100
range(F$CCB4, na.rm=TRUE)
## [1]   0 100
#Climate Change Belief Histograms
hist(F$CCB1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(F$CCB2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')

hist(F$CCB3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')

hist(F$CCB4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')

F$CCB_Score <- rowMeans(F[, c('CCB1', 'CCB2', 'CCB3','CCB4')], na.rm=T)
describe(F$CCB_Score)
## F$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       40    0.997    77.11    22.52    34.60    51.98 
##      .25      .50      .75      .90      .95 
##    66.81    79.88    96.88   100.00   100.00 
## 
## lowest :  17.25  22.25  28.75  41.75  51.75, highest:  97.00  98.00  98.50  99.75 100.00
F$CCB_Scale <- data.frame(F$CCB1, F$CCB2, F$CCB3, F$CCB4)
psych::alpha(F$CCB_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = F$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.8       0.8    0.77      0.51 4.1 0.044   77 21     0.48
## 
##  lower alpha upper     95% confidence boundaries
## 0.71 0.8 0.89 
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## F.CCB1      0.78      0.78    0.73      0.53 3.4    0.055 0.02466  0.47
## F.CCB2      0.70      0.72    0.63      0.46 2.5    0.071 0.00251  0.44
## F.CCB3      0.71      0.72    0.63      0.46 2.6    0.068 0.00057  0.47
## F.CCB4      0.80      0.80    0.75      0.57 4.0    0.046 0.01571  0.51
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean sd
## F.CCB1 50  0.73  0.77  0.63   0.57   84 20
## F.CCB2 50  0.86  0.84  0.80   0.71   75 29
## F.CCB3 50  0.85  0.83  0.79   0.69   76 28
## F.CCB4 50  0.73  0.73  0.58   0.52   74 27
cor(F$CCB_Scale, use= "complete.obs")
##           F.CCB1    F.CCB2    F.CCB3    F.CCB4
## F.CCB1 1.0000000 0.4827780 0.5138911 0.4365292
## F.CCB2 0.4827780 1.0000000 0.7137441 0.4706329
## F.CCB3 0.5138911 0.7137441 1.0000000 0.4199783
## F.CCB4 0.4365292 0.4706329 0.4199783 1.0000000

Demographics

## Gender ("What is your gender identity?" [ 1 = woman, 2 = man, 3 = prefer to self-describe, 4 = non-binary])

F$Dem_Gender <- as.numeric(as.character(F$Dem_Gen))
F$Gender <- factor(F$Dem_Gender, levels = c(1, 2, 3, 4), 
                   labels = c("Woman", "Man", "Prefer to self-describe", "Non-binary"))
table(F$Gender)
## 
##                   Woman                     Man Prefer to self-describe 
##                      31                      18                       1 
##              Non-binary 
##                       0
## Age ("How old are you?")
range(F$Dem_Age, na.rm = T)
## [1] 18 62
describe(F$Dem_Age, na.rm = T)
## F$Dem_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       49        1       24    0.998     34.9    12.42     20.8     22.0 
##      .25      .50      .75      .90      .95 
##     26.0     34.0     40.0     49.8     56.8 
## 
## lowest : 18 20 22 24 25, highest: 49 53 55 58 62
sd(F$Dem_Age, na.rm = T)
## [1] 10.97961
# Education: "Please indicate the highest level of education you have completed" (1 = Elementary/Grammar School, 2 = Middle School, 3 = High School or Equivalent, 4 = Vocational/Technical School (2 years), 5 = Some College, 6 = College or University (4 years), 7 = Master's Degree (MS, MA, MBA, etc.), 8 = Doctoral Degree (PhD), 9 = Professional Degree (MD, JD, etc.). 
F$EdNum <- as.numeric(as.character(F$Dem_Edu))
hist(F$EdNum)

F$EDU <- factor(F$EdNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 
                     labels = c("Elementary/Grammar School", "Middle School", "High School or Equivalent", "Vocational/Technical School (2 years)", "Some College", "College or University (4 years)", "Master's Degree (MS, MA, MBA, etc.)", "Doctoral Degree (PhD)", "Doctoral Degree (PhD)", "Other"))
table(F$EDU)
## 
##             Elementary/Grammar School                         Middle School 
##                                     0                                     0 
##             High School or Equivalent Vocational/Technical School (2 years) 
##                                    21                                     3 
##                          Some College       College or University (4 years) 
##                                    17                                     6 
##   Master's Degree (MS, MA, MBA, etc.)                 Doctoral Degree (PhD) 
##                                     2                                     1 
##                                 Other 
##                                     0
# Living Environment: "Which of the following best describes the area you live in?" (1 = Urban, 2 = Suburban, 3 = Rural)
F$LivNum <- as.numeric(as.character(F$Dem_Living))
F$LIVING <- factor(F$LivNum, levels = c(1, 2, 3), 
                     labels = c("Urban", "Suburban", "Rural"))
table(F$LIVING)
## 
##    Urban Suburban    Rural 
##       17       18       15
# Primary Language Spoken 
F$Dem_Lang
##  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [39] 1 1 1 1 1 1 1 1 1 1 1 1
F$Dem_Lang_10_TEXT
##  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
# Ethnicity: "Which racial or ethnic group best describes you?" (1 = Asian, Asian-American, 2 = Black, Black American, 3 = Hispanic/Latino-American, 4 = Native American, 5 = Native Pacific Islander, 6 = White/Caucasian-American, 7 = Other)
F$Ethnicity <- NA
F$Ethnicity[F$Dem_Ethnicity == 1] <- 'Asian'
F$Ethnicity[F$Dem_Ethnicity == 2] <- 'Black'
F$Ethnicity[F$Dem_Ethnicity == 3] <- 'Hispanic'
F$Ethnicity[F$Dem_Ethnicity == 4] <- 'Nat Amer'
F$Ethnicity[F$Dem_Ethnicity == 5] <- 'Nat Pac'
F$Ethnicity[F$Dem_Ethnicity == 6] <- 'White'
F$Ethnicity[F$Dem_Ethnicity == 7] <- 'Other'
table(F$Ethnicity)
## 
##    Asian    Black Hispanic    Other    White 
##        1       12        4        3       30
print(F$Dem_Ethnicity_7_TEXT)
##  [1] NA          NA          "Mixed"     NA          NA          NA         
##  [7] NA          NA          NA          NA          NA          NA         
## [13] NA          NA          NA          NA          NA          NA         
## [19] NA          NA          NA          NA          NA          NA         
## [25] NA          NA          NA          NA          "Hispanic " NA         
## [31] NA          NA          NA          NA          NA          NA         
## [37] NA          NA          NA          NA          NA          NA         
## [43] NA          NA          NA          NA          NA          NA         
## [49] NA          "Mixed"
# Subjective Social Status
F$SSS <- F$SSS_US
describe(F$SSS)
## F$SSS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       50        0       10    0.977     5.06    2.848     1.00     1.00 
##      .25      .50      .75      .90      .95 
##     3.25     5.00     7.00     8.10     9.00 
## 
## lowest :  1  2  3  4  5, highest:  6  7  8  9 10
##                                                             
## Value         1    2    3    4    5    6    7    8    9   10
## Frequency     8    1    4    4   11    8    7    2    3    2
## Proportion 0.16 0.02 0.08 0.08 0.22 0.16 0.14 0.04 0.06 0.04
range(F$SSS)
## [1]  1 10
hist(F$SSS)

sd(F$SSS)
## [1] 2.510468

Political Ideology

# Political Party 
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)
F$Party <- F$PolParty
F$DemStrength <- F$PolDemStrength
F$RepStrength <- F$PolRepStrength
F$PartyClose <- F$PolCloserTo

describe(F$Party)
## F$Party 
##        n  missing distinct     Info     Mean      Gmd 
##       50        0        4    0.887     1.94   0.9984 
##                               
## Value         1    2    3    5
## Frequency    20   15   14    1
## Proportion 0.40 0.30 0.28 0.02
describe(F$DemStrength)
## F$DemStrength 
##        n  missing distinct     Info     Mean      Gmd 
##       15       35        1        0        1        0 
##              
## Value       1
## Frequency  15
## Proportion  1
describe(F$RepStrength)
## F$RepStrength 
##        n  missing distinct     Info     Mean      Gmd 
##       20       30        2    0.383     1.15   0.2684 
##                     
## Value         1    2
## Frequency    17    3
## Proportion 0.85 0.15
describe(F$PartyClose)
## F$PartyClose 
##        n  missing distinct     Info     Mean      Gmd 
##       15       35        3    0.696    2.533   0.7238 
##                             
## Value          1     2     3
## Frequency      2     3    10
## Proportion 0.133 0.200 0.667
F$PartyFull <- NA
F$PartyFull[F$DemStrength == 1] <- -3
F$PartyFull[F$DemStrength == 2] <- -2
F$PartyFull[F$PartyClose == 1] <- -1
F$PartyFull[F$PartyClose == 3] <- 0
F$PartyFull[F$PartyClose == 2] <- 1
F$PartyFull[F$RepStrength == 2] <- 2
F$PartyFull[F$RepStrength == 1] <- 3

describe(F$PartyFull)
## F$PartyFull 
##        n  missing distinct     Info     Mean      Gmd 
##       50        0        6    0.926     0.26     2.77 
## 
## lowest : -3 -1  0  1  2, highest: -1  0  1  2  3
##                                         
## Value        -3   -1    0    1    2    3
## Frequency    15    2   10    3    3   17
## Proportion 0.30 0.04 0.20 0.06 0.06 0.34
hist(F$PartyFull , main = 'Party Identification')

describe(F$PolImportance)
## F$PolImportance 
##        n  missing distinct     Info     Mean      Gmd 
##       50        0        6    0.948     4.22    2.615 
## 
## lowest : 1 3 4 5 6, highest: 3 4 5 6 7
##                                         
## Value         1    3    4    5    6    7
## Frequency    13    7    2   12    3   13
## Proportion 0.26 0.14 0.04 0.24 0.06 0.26
# Political Orientation: Which of the following describes your political orientation? (1 = Strongly Conservative, 2 = Moderately Conservative, 3 = Slightly Conservative, 4 = Neither Conservative Nor Liberal, 5 = Slightly Liberal, 6 = Moderately Liberal, 7 = Strongly Liberal)
F$polOR <- factor(F$PolOrientation, levels = c(1, 2, 3, 4, 5, 6, 7), 
                     labels = c("Strongly Conservative", "Moderately Conservative", "Slightly Conservative", "Neither Conservative Nor Liberal", "Slightly Liberal", "Moderately Liberal", "Strongly Liberal"))
table(F$polOR)
## 
##            Strongly Conservative          Moderately Conservative 
##                                4                                8 
##            Slightly Conservative Neither Conservative Nor Liberal 
##                                6                               18 
##                 Slightly Liberal               Moderately Liberal 
##                                5                                5 
##                 Strongly Liberal 
##                                4

Long Form

#Rename Variables to Switch to Long Format
F$Naturalness.BioClear <- F$NatScore_BioClear
length(F$Naturalness.BioClear)
## [1] 50
F$Naturalness.BioBlur <- F$NatScore_BioBlur
length(F$Naturalness.BioBlur)
## [1] 50
F$Naturalness.BFClear <- F$NatScore_BFClear
length(F$Naturalness.BFClear)
## [1] 50
F$Naturalness.BFBlur <- F$NatScore_BFBlur
length(F$Naturalness.BFBlur)
## [1] 50
F$Naturalness.EWClear <- F$NatScore_EWClear
length(F$Naturalness.EWClear)
## [1] 50
F$Naturalness.EWBlur <- F$NatScore_EWBlur
length(F$Naturalness.EWBlur)
## [1] 50
F$Naturalness.WEClear <- F$NatScore_WEClear
length(F$Naturalness.WEClear)
## [1] 50
F$Naturalness.WEBlur <- F$NatScore_WEBlur
length(F$Naturalness.WEBlur)
## [1] 50
F$Fluency.BioClear <- F$Fluency_BioClear
length(F$Fluency.BioClear)
## [1] 50
F$Fluency.BioBlur <- F$Fluency_BioBlur
length(F$Fluency.BioBlur)
## [1] 50
F$Fluency.BFClear <- F$Fluency_BFClear
length(F$Fluency.BFClear)
## [1] 50
F$Fluency.BFBlur <- F$Fluency_BFBlur
length(F$Fluency.BFBlur)
## [1] 50
F$Fluency.EWClear <- F$Fluency_EWClear
length(F$Fluency.EWClear)
## [1] 50
F$Fluency.EWBlur <- F$Fluency_EWBlur
length(F$Fluency.EWBlur)
## [1] 50
F$Fluency.WEClear <- F$Fluency_WEClear
length(F$Fluency.WEClear)
## [1] 50
F$Fluency.WEBlur <- F$Fluency_WEBlur
length(F$Fluency.WEBlur)
## [1] 50
F$Risk.BioClear <- F$RiskScore_BioClear
length(F$Risk.BioClear)
## [1] 50
F$Risk.BioBlur <- F$RiskScore_BioBlur
length(F$Risk.BioBlur)
## [1] 50
F$Risk.BFClear <- F$RiskScore_BFClear
length(F$Risk.BFClear)
## [1] 50
F$Risk.BFBlur <- F$RiskScore_BFBlur
length(F$Risk.BFBlur)
## [1] 50
F$Risk.EWClear <- F$RiskScore_EWClear
length(F$Risk.EWClear)
## [1] 50
F$Risk.EWBlur <- F$RiskScore_EWBlur
length(F$Risk.EWBlur)
## [1] 50
F$Risk.WEClear <- F$RiskScore_WEClear
length(F$Risk.WEClear)
## [1] 50
F$Risk.WEBlur <- F$RiskScore_WEBlur
length(F$Risk.WEBlur)
## [1] 50
F$Ben.BioClear <- F$BenScore_BioClear
length(F$Ben.BioClear)
## [1] 50
F$Ben.BioBlur <- F$BenScore_BioBlur
length(F$Ben.BioBlur)
## [1] 50
F$Ben.BFClear <- F$BenScore_BFClear
length(F$Ben.BFClear)
## [1] 50
F$Ben.BFBlur <- F$BenScore_BFBlur
length(F$Ben.BFBlur)
## [1] 50
F$Ben.EWClear <- F$BenScore_EWClear
length(F$Ben.EWClear)
## [1] 50
F$Ben.EWBlur <- F$BenScore_EWBlur
length(F$Ben.EWBlur)
## [1] 50
F$Ben.WEClear <- F$BenScore_WEClear
length(F$Ben.WEClear)
## [1] 50
F$Ben.WEBlur <- F$BenScore_WEBlur
length(F$Ben.WEBlur)
## [1] 50
F$Sup.BioClear <- F$SupScore_BioClear
length(F$Sup.BioClear)
## [1] 50
F$Sup.BioBlur <- F$SupScore_BioBlur
length(F$Sup.BioBlur)
## [1] 50
F$Sup.BFClear <- F$SupScore_BFClear
length(F$Sup.BFClear)
## [1] 50
F$Sup.BFBlur <- F$SupScore_BFBlur
length(F$Sup.BFBlur)
## [1] 50
F$Sup.EWClear <- F$SupScore_EWClear
length(F$Sup.EWClear)
## [1] 50
F$Sup.EWBlur <- F$SupScore_EWBlur
length(F$Sup.EWBlur)
## [1] 50
F$Sup.WEClear <- F$SupScore_WEClear
length(F$Sup.WEClear)
## [1] 50
F$Sup.WEBlur <- F$SupScore_WEBlur
length(F$Sup.WEBlur)
## [1] 50
F$Fam.BioClear <- F$Fam_BioClear
length(F$Fam.BioClear)
## [1] 50
F$Fam.BioBlur <- F$Fam_BioBlur
length(F$Fam.BioBlur)
## [1] 50
F$Fam.BFClear <- F$Fam_BFClear
length(F$Fam.BFClear)
## [1] 50
F$Fam.BFBlur <- F$Fam_BFBlur
length(F$Fam.BFBlur)
## [1] 50
F$Fam.EWClear <- F$Fam_EWClear
length(F$Fam.EWClear)
## [1] 50
F$Fam.EWBlur <- F$Fam_EWBlur
length(F$Fam.EWBlur)
## [1] 50
F$Fam.WEClear <- F$Fam_WEClear
length(F$Fam.WEClear)
## [1] 50
F$Fam.WEBlur <- F$Fam_WEBlur
length(F$Fam.WEBlur)
## [1] 50
F$Und.BioClear <- F$Und_BioClear
F$Und.BioBlur <- F$Und_BioBlur
F$Und.BFClear <- F$Und_BFClear
F$Und.BFBlur <- F$Und_BFBlur
F$Und.EWClear <- F$Und_EWClear
F$Und.EWBlur<- F$Und_EWBlur
F$Und.WEClear <- F$Und_WEClear
F$Und.WEBlur <- F$Und_WEBlur

A (Blurry and Clear Conditions)

library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(lme4)

#Reshape to long form
Avector <- c("Naturalness.BioClear", "Naturalness.BioBlur", "Naturalness.BFClear", "Naturalness.BFBlur", "Naturalness.EWClear", "Naturalness.EWBlur", "Naturalness.WEClear", "Naturalness.WEBlur", "Fluency.BioClear", "Fluency.BioBlur", "Fluency.BFClear", "Fluency.BFBlur", "Fluency.EWClear", "Fluency.EWBlur", "Fluency.WEClear", "Fluency.WEBlur", "Risk.BioClear", "Risk.BioBlur", "Risk.BFClear", "Risk.BFBlur", "Risk.EWClear", "Risk.EWBlur", "Risk.WEClear", "Risk.WEBlur", "Ben.BioClear", "Ben.BioBlur", "Ben.BFClear", "Ben.BFBlur", "Ben.EWClear", "Ben.EWBlur", "Ben.WEClear", "Ben.WEBlur", "Sup.BioClear", "Sup.BioBlur", "Sup.BFClear", "Sup.BFBlur", "Sup.EWClear", "Sup.EWBlur", "Sup.WEClear", "Sup.WEBlur", "Fam.BioClear", "Fam.BioBlur", "Fam.BFClear", "Fam.BFBlur", "Fam.EWClear", "Fam.EWBlur", "Fam.WEClear", "Fam.WEBlur", "Und.BioClear", "Und.BioBlur", "Und.BFClear", "Und.BFBlur", "Und.EWClear", "Und.EWBlur", "Und.WEClear", "Und.WEBlur")

A <- reshape(data = F,
       varying = Avector,
       timevar = "Type",
       direction = "long")

B (Blurry Condition)

#Reshape to long form
Bvector <- c("Naturalness.BioBlur", "Naturalness.BFBlur", "Naturalness.EWBlur", "Naturalness.WEBlur",  "Fluency.BioBlur",  "Fluency.BFBlur",  "Fluency.EWBlur", "Fluency.WEBlur",  "Risk.BioBlur",  "Risk.BFBlur", "Risk.EWBlur",  "Risk.WEBlur",  "Ben.BioBlur",  "Ben.BFBlur", "Ben.EWBlur",  "Ben.WEBlur",  "Sup.BioBlur",  "Sup.BFBlur", "Sup.EWBlur", "Sup.WEBlur",  "Fam.BioBlur",  "Fam.BFBlur", "Fam.EWBlur",  "Fam.WEBlur",  "Und.BioBlur",  "Und.BFBlur", "Und.EWBlur",  "Und.WEBlur")

B <- reshape(data = F,
       varying = Bvector,
       timevar = "Type",
       direction = "long")

C (Clear Condition)

#Reshape to long form
Cvector <- c("Naturalness.BioClear",  "Naturalness.BFClear",  "Naturalness.EWClear",  "Naturalness.WEClear",  "Fluency.BioClear",  "Fluency.BFClear",  "Fluency.EWClear",  "Fluency.WEClear",  "Risk.BioClear", "Risk.BFClear", "Risk.EWClear",  "Risk.WEClear",  "Ben.BioClear",  "Ben.BFClear",  "Ben.EWClear",  "Ben.WEClear",  "Sup.BioClear",  "Sup.BFClear",  "Sup.EWClear",  "Sup.WEClear",  "Fam.BioClear",  "Fam.BFClear","Fam.EWClear", "Fam.WEClear", "Und.BioClear",  "Und.BFClear", "Und.EWClear",  "Und.WEClear")

C <- reshape(data = F,
       varying = Cvector,
       timevar = "Type",
       direction = "long")

Correlations

A (Blurry + Clear Conditions)

# Variable Length 
length(A$Naturalness)
## [1] 400
length(A$Fluency)
## [1] 400
length(A$Risk)
## [1] 400
length(A$Ben)
## [1] 400
length(A$Sup)
## [1] 400
length(A$Fam)
## [1] 400
length(A$Und)
## [1] 400
# Correlation: Benefit, Familiarity, Fluency, Naturalness, Risk, Support, and Understanding 
A$cor <- data.frame(A$Ben, A$Fam, A$Fluency, A$Naturalness, A$Risk, A$Sup, A$Und)
mydata.cor = cor(A$cor, use = "pairwise.complete.obs")
head(round(mydata.cor,2))
##               A.Ben A.Fam A.Fluency A.Naturalness A.Risk A.Sup A.Und
## A.Ben          1.00  0.54      0.35          0.14  -0.02  0.89  0.52
## A.Fam          0.54  1.00      0.43          0.06   0.22  0.52  0.64
## A.Fluency      0.35  0.43      1.00         -0.06   0.17  0.33  0.63
## A.Naturalness  0.14  0.06     -0.06          1.00  -0.50  0.13  0.01
## A.Risk        -0.02  0.22      0.17         -0.50   1.00  0.08  0.13
## A.Sup          0.89  0.52      0.33          0.13   0.08  1.00  0.55
library("Hmisc")
mydata.rcorr = rcorr(as.matrix(mydata.cor))
mydata.rcorr
##               A.Ben A.Fam A.Fluency A.Naturalness A.Risk A.Sup A.Und
## A.Ben          1.00  0.54      0.20          0.04  -0.33  0.98  0.53
## A.Fam          0.54  1.00      0.43         -0.30   0.08  0.53  0.75
## A.Fluency      0.20  0.43      1.00         -0.45   0.15  0.17  0.74
## A.Naturalness  0.04 -0.30     -0.45          1.00  -0.93 -0.03 -0.32
## A.Risk        -0.33  0.08      0.15         -0.93   1.00 -0.24  0.00
## A.Sup          0.98  0.53      0.17         -0.03  -0.24  1.00  0.53
## A.Und          0.53  0.75      0.74         -0.32   0.00  0.53  1.00
## 
## n= 7 
## 
## 
## P
##               A.Ben  A.Fam  A.Fluency A.Naturalness A.Risk A.Sup  A.Und 
## A.Ben                0.2086 0.6731    0.9370        0.4750 0.0001 0.2214
## A.Fam         0.2086        0.3297    0.5123        0.8633 0.2224 0.0544
## A.Fluency     0.6731 0.3297           0.3146        0.7512 0.7141 0.0566
## A.Naturalness 0.9370 0.5123 0.3146                  0.0028 0.9440 0.4812
## A.Risk        0.4750 0.8633 0.7512    0.0028               0.6070 0.9999
## A.Sup         0.0001 0.2224 0.7141    0.9440        0.6070        0.2231
## A.Und         0.2214 0.0544 0.0566    0.4812        0.9999 0.2231
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor, method="color")

corrplot(mydata.cor, addCoef.col = 1,  number.cex = 0.3, method = 'number')

B (Blurry Condition)

# Variable Length 
length(B$Naturalness)
## [1] 200
length(B$Fluency)
## [1] 200
length(B$Risk)
## [1] 200
length(B$Ben)
## [1] 200
length(B$Sup)
## [1] 200
length(B$Fam)
## [1] 200
length(B$Und)
## [1] 200
# Correlation: Benefit, Familiarity, Fluency, Naturalness, Risk, Support, and Understanding 
B$cor <- data.frame(B$Ben, B$Fam, B$Fluency, B$Naturalness, B$Risk, B$Sup, B$Und)
mydata.corB = cor(B$cor, use = "pairwise.complete.obs")
head(round(mydata.corB,2))
##               B.Ben B.Fam B.Fluency B.Naturalness B.Risk B.Sup B.Und
## B.Ben          1.00  0.57      0.39          0.17  -0.06  0.91  0.51
## B.Fam          0.57  1.00      0.45          0.19   0.22  0.59  0.61
## B.Fluency      0.39  0.45      1.00          0.01   0.20  0.40  0.58
## B.Naturalness  0.17  0.19      0.01          1.00  -0.50  0.13  0.07
## B.Risk        -0.06  0.22      0.20         -0.50   1.00  0.01  0.19
## B.Sup          0.91  0.59      0.40          0.13   0.01  1.00  0.58
library("Hmisc")
mydata.rcorrB = rcorr(as.matrix(mydata.corB))
mydata.rcorrB
##               B.Ben B.Fam B.Fluency B.Naturalness B.Risk B.Sup B.Und
## B.Ben          1.00  0.59      0.23          0.11  -0.42  0.99  0.52
## B.Fam          0.59  1.00      0.37         -0.09  -0.03  0.63  0.67
## B.Fluency      0.23  0.37      1.00         -0.37   0.16  0.27  0.66
## B.Naturalness  0.11 -0.09     -0.37          1.00  -0.93  0.02 -0.26
## B.Risk        -0.42 -0.03      0.16         -0.93   1.00 -0.33  0.04
## B.Sup          0.99  0.63      0.27          0.02  -0.33  1.00  0.59
## B.Und          0.52  0.67      0.66         -0.26   0.04  0.59  1.00
## 
## n= 7 
## 
## 
## P
##               B.Ben  B.Fam  B.Fluency B.Naturalness B.Risk B.Sup  B.Und 
## B.Ben                0.1592 0.6130    0.8196        0.3513 0.0000 0.2357
## B.Fam         0.1592        0.4082    0.8410        0.9452 0.1296 0.0986
## B.Fluency     0.6130 0.4082           0.4164        0.7308 0.5562 0.1067
## B.Naturalness 0.8196 0.8410 0.4164                  0.0022 0.9686 0.5757
## B.Risk        0.3513 0.9452 0.7308    0.0022               0.4658 0.9367
## B.Sup         0.0000 0.1296 0.5562    0.9686        0.4658        0.1624
## B.Und         0.2357 0.0986 0.1067    0.5757        0.9367 0.1624
library(corrplot)
corrplot(mydata.corB, method="color")

corrplot(mydata.corB, addCoef.col = 1,  number.cex = 0.3, method = 'number')

C (Clear Condition)

# Variable Length 
length(C$Naturalness)
## [1] 200
length(C$Fluency)
## [1] 200
length(C$Risk)
## [1] 200
length(C$Ben)
## [1] 200
length(C$Sup)
## [1] 200
length(C$Fam)
## [1] 200
length(C$Und)
## [1] 200
# Correlation: Benefit, Familiarity, Fluency, Naturalness, Risk, Support, and Understanding 
C$cor <- data.frame(C$Ben, C$Fam, C$Fluency, C$Naturalness, C$Risk, C$Sup, C$Und)
mydata.corC = cor(C$cor, use = "pairwise.complete.obs")
head(round(mydata.corC,2))
##               C.Ben C.Fam C.Fluency C.Naturalness C.Risk C.Sup C.Und
## C.Ben          1.00  0.52      0.32          0.10   0.02  0.87  0.53
## C.Fam          0.52  1.00      0.40         -0.08   0.21  0.46  0.67
## C.Fluency      0.32  0.40      1.00         -0.14   0.14  0.27  0.67
## C.Naturalness  0.10 -0.08     -0.14          1.00  -0.50  0.13 -0.05
## C.Risk         0.02  0.21      0.14         -0.50   1.00  0.14  0.09
## C.Sup          0.87  0.46      0.27          0.13   0.14  1.00  0.51
library("Hmisc")
mydata.rcorrC = rcorr(as.matrix(mydata.corC))
mydata.rcorrC
##               C.Ben C.Fam C.Fluency C.Naturalness C.Risk C.Sup C.Und
## C.Ben          1.00  0.52      0.19         -0.03  -0.22  0.97  0.54
## C.Fam          0.52  1.00      0.50         -0.48   0.16  0.44  0.79
## C.Fluency      0.19  0.50      1.00         -0.52   0.13  0.09  0.80
## C.Naturalness -0.03 -0.48     -0.52          1.00  -0.89 -0.05 -0.40
## C.Risk        -0.22  0.16      0.13         -0.89   1.00 -0.13 -0.02
## C.Sup          0.97  0.44      0.09         -0.05  -0.13  1.00  0.45
## C.Und          0.54  0.79      0.80         -0.40  -0.02  0.45  1.00
## 
## n= 7 
## 
## 
## P
##               C.Ben  C.Fam  C.Fluency C.Naturalness C.Risk C.Sup  C.Und 
## C.Ben                0.2298 0.6890    0.9536        0.6297 0.0004 0.2154
## C.Fam         0.2298        0.2587    0.2793        0.7283 0.3203 0.0331
## C.Fluency     0.6890 0.2587           0.2324        0.7849 0.8508 0.0315
## C.Naturalness 0.9536 0.2793 0.2324                  0.0066 0.9111 0.3785
## C.Risk        0.6297 0.7283 0.7849    0.0066               0.7825 0.9590
## C.Sup         0.0004 0.3203 0.8508    0.9111        0.7825        0.3138
## C.Und         0.2154 0.0331 0.0315    0.3785        0.9590 0.3138
library(corrplot)
corrplot(mydata.corC, method="color")

corrplot(mydata.corC, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Center Variables

describe(A$Naturalness)
## A$Naturalness 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      200      200      132        1    41.47    19.89    18.14    24.73 
##      .25      .50      .75      .90      .95 
##    29.12    39.75    51.25    65.28    73.80 
## 
## lowest :  0.00  0.75  4.50  7.00 12.50, highest: 77.50 79.50 80.00 80.50 89.50
A$Naturalness.c <- (A$Naturalness - 41.47)

describe(A$Fluency)
## A$Fluency 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      200      200       61    0.973    76.44    28.55     12.9     27.9 
##      .25      .50      .75      .90      .95 
##     66.0     83.0    100.0    100.0    100.0 
## 
## lowest :   0   7   9  11  13, highest:  95  97  98  99 100
A$Fluency.c <- (A$Fluency - 76.44)