In epidemiological studies exposure is often categorized and modeled with indicator variables, so no specific trend is assumed. Results are typically reported in a tabular way as a series of dose-specific relative risks (RR), with one category serving as referent. Orsini et al. (2006) described how to estimate a trend from such summarized dose-response data.

A particular feature of the analysis is the covariance that arises from presenting the outcome using one reference category. The authors explained how to reconstruct the covariance matrix for the outcome variable and use it to efficiently estimate the exposure-disease association. Different types of dose–response data arising from published case-??control, incidence-rate, and cumulative incidence data were used to demonstrate the methodology.


1. Case-control data: Alcohol and breast cancer risk

The first example is a case-control data on alcohol and breast cancer (Rohan and McMichael 1988). The data is included in the dosresmeta package.

require("dosresmeta")   ##Load dosresmeta package
data("cc_ex")  ##Load the data
cc_ex ##Print the data
     gday dose case control   n crudeor adjrr   lb   ub      logrr
1    Ref.    0  165     172 337    1.00  1.00 1.00 1.00  0.0000000
2    <2.5    2   74      93 167    0.83  0.80 0.51 1.27 -0.2231435
3 2.5-9.3    6   90      96 186    0.98  1.16 0.73 1.85  0.1484200
4    >9.3   11  122      90 212    1.41  1.57 0.99 2.51  0.4510757

A naive analysis would regard the data as independent ignoring the correlation among log RRs

modCc0 <- dosresmeta(formula = logrr ~ dose, lb = lb, ub = ub, 
                     covariance = "indep", data = cc_ex)
summary(modCc0)
Call:  dosresmeta(formula = logrr ~ dose, data = cc_ex, lb = lb, ub = ub, 
    covariance = "indep")

One-stage fixed-effects meta-analysis
Covariance approximation: Independent

Chi2 model: X2 = 3.1987 (df = 1), p-value = 0.0737

Fixed-effects coefficients
      Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
dose    0.0334      0.0187  1.7885    0.0737   -0.0032    0.0701  .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

1 study 3 values, 1 fixed and 0 random-effects parameters
 logLik      AIC      BIC  
 0.7159   0.5681  -0.3333  

The dosresmeta function, instead, approximates the covariance matrix and applies generalized least square to efficiently estimate the trend. By default the intercept is already omitted (see help(dosresmeta)).

modCc <- dosresmeta(formula = logrr ~ dose, type = "cc", cases = case, n = n,
   lb = lb, ub = ub, data = cc_ex)
summary(modCc)
Call:  dosresmeta(formula = logrr ~ dose, type = "cc", cases = case, 
    n = n, data = cc_ex, lb = lb, ub = ub)

One-stage fixed-effects meta-analysis
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 4.8333 (df = 1), p-value = 0.0279

Fixed-effects coefficients
      Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
dose    0.0454      0.0207  2.1985    0.0279    0.0049    0.0859  *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

1 study 3 values, 1 fixed and 0 random-effects parameters
 logLik      AIC      BIC  
 0.7835   0.4330  -0.4684  

The results can be expressed on the exponential scale for any increment (delta) in the exposure

predict(modCc, delta = 11, expo = TRUE)
 delta     pred    ci.lb    ci.ub
    11 1.648255 1.055709 2.573384

The reconstruct covariance matrix can be obtained either from the the dosresmeta object or using the the covar.logrr function.

modCc$Slist
$`1`
           [,1]       [,2]       [,3]
[1,] 0.05417235 0.01881768 0.01943145
[2,] 0.01881768 0.05627467 0.02068682
[3,] 0.01943145 0.02068682 0.05632754
se <- with(cc_ex, (log(ub) - log(lb))/(2*qnorm(.975)))
covar.logrr(cases = case, n = n, y = logrr, v = I(se)^2, type = "cc", 
            data = cc_ex)
           [,1]       [,2]       [,3]
[1,] 0.05417235 0.01881768 0.01943145
[2,] 0.01881768 0.05627467 0.02068682
[3,] 0.01943145 0.02068682 0.05632754

2. Incidence-rate data: Fiber intake and coronary heart disease

The second example includes incidence-rate data on long-term intake of dietary fiber and risk of coronary heart disease among women (Wolk A et al. 1999).

ir_ex <- read.table("http://alessiocrippa.altervista.org/data/ir_ex.txt")
ir_ex
  dose cases      n adjrr   lb   ub       logrr      loglb      logub     doser
1 11.5   148 134707  1.00 1.00 1.00  0.00000000  0.0000000 0.00000000  0.000000
2 14.3   127 133824  0.98 0.77 1.24 -0.02020269 -0.2613648 0.21511139  2.800000
3 16.4   114 130654  0.92 0.71 1.18 -0.08338159 -0.3424903 0.16551439  4.900000
4 18.8   107 124522  0.87 0.66 1.15 -0.13926206 -0.4155154 0.13976192  7.299999
5 22.9    95 117808  0.77 0.57 1.04 -0.26136479 -0.5621189 0.03922068 11.400000
modIr <- dosresmeta(formula = logrr ~ dose, type = "ir", cases = cases, n = n,
            lb = lb, ub = ub, data = ir_ex)
summary(modIr)
Call:  dosresmeta(formula = logrr ~ dose, type = "ir", cases = cases, 
    n = n, data = ir_ex, lb = lb, ub = ub)

One-stage fixed-effects meta-analysis
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 3.4667 (df = 1), p-value = 0.0626

Fixed-effects coefficients
      Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
dose   -0.0232      0.0125  -1.8619    0.0626   -0.0476    0.0012  .
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

1 study 4 values, 1 fixed and 0 random-effects parameters
 logLik      AIC      BIC  
 4.6916  -7.3832  -7.9969  
predict(modIr, delta = 10, expo = TRUE)
 delta      pred     ci.lb    ci.ub
    10 0.7928775 0.6210185 1.012296

3. Cumulative incidence data: High-fat dairy food intake and colorectal cancer risk

The third example considers cumulative incidence data on high-fat dairy food intake and colorectal cancer risk (Larsson, Bergkvist, and Wolk 2005).

ci_ex <- read.table("http://alessiocrippa.altervista.org/data/ci_ex.txt")
ci_ex
  dose cases     n adjrr   lb   ub      logrr      loglb       logub
1  0.0   110  8103  1.00 1.00 1.00  0.0000000  0.0000000  0.00000000
2  1.5   212 17538  0.75 0.60 0.96 -0.2876821 -0.5108256 -0.04082202
3  2.5   211 15304  0.74 0.58 0.95 -0.3011051 -0.5447272 -0.05129331
4  3.5   132  9078  0.68 0.52 0.90 -0.3856625 -0.6539265 -0.10536054
5  6.5   133 10685  0.59 0.44 0.79 -0.5276328 -0.8209806 -0.23572231
modCi <- dosresmeta(formula = logrr ~ dose, type = "ci", cases = cases, n = n,
   lb = lb, ub = ub, data = ci_ex)
summary(modCi)
Call:  dosresmeta(formula = logrr ~ dose, type = "ci", cases = cases, 
    n = n, data = ci_ex, lb = lb, ub = ub)

One-stage fixed-effects meta-analysis
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 11.8170 (df = 1), p-value = 0.0006

Fixed-effects coefficients
      Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub     
dose   -0.0736      0.0214  -3.4376    0.0006   -0.1155   -0.0316  ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

1 study 4 values, 1 fixed and 0 random-effects parameters
 logLik      AIC      BIC  
 3.7380  -5.4760  -6.0897  
predict(modCi, delta = 2, expo = TRUE)
 delta      pred     ci.lb     ci.ub
     2 0.8631999 0.7937519 0.9387241

4. Meta-analysis: Lactose intake and ovarian cancer risk

In the last example the authors show how to estimate a summary linear trend across multiple studies. The meta-analysis includes nine studies (six case–control and three cohort studies) on the association between lactose intake and ovarian cancer risk (Larsson, Orsini, and Wolk 2006).

ovarian <- read.table("http://alessiocrippa.altervista.org/data/ovarian.txt")
ovarian
   id    author year type adjrr    lb    ub dose case      n        logrr        se
1   1     Engle 1991   cc 1.000 1.000 1.000 0.00   15     50  0.000000000 0.0000000
2   1     Engle 1991   cc 0.900 0.400 2.200 0.55   21     56 -0.105360542 0.4348927
3   1     Engle 1991   cc 1.300 0.600 2.900 1.15   35     54  0.262364228 0.4019299
4   1     Engle 1991   cc 0.900 0.400 2.000 1.80   16     52 -0.105360542 0.4105784
5   2     Risch 1994   cc 1.000 1.000 1.000 0.00   97    232  0.000000000 0.0000000
6   2     Risch 1994   cc 1.040 0.710 1.530 0.90  107    250  0.039220676 0.1958602
7   2     Risch 1994   cc 0.860 0.580 1.280 1.60  102    243 -0.150822873 0.2019392
8   2     Risch 1994   cc 1.070 0.720 1.590 2.40  143    284  0.067658697 0.2021053
9   3      Webb 1998   cc 1.000 1.000 1.000 0.00  128    292  0.000000000 0.0000000
10  3      Webb 1998   cc 1.010 0.710 1.430 1.10  133    297  0.009950321 0.1786167
11  3      Webb 1998   cc 1.060 0.740 1.510 1.60  134    296  0.058268854 0.1819459
12  3      Webb 1998   cc 1.400 0.980 2.000 2.40  177    328  0.336472220 0.1819804
13  3      Webb 1998   cc 0.970 0.670 1.410 3.80  149    317 -0.030459178 0.1898166
14  4   Goodman 2002   cc 1.000 1.000 1.000 0.00  140    292  0.000000000 0.0000000
15  4   Goodman 2002   cc 0.550 0.550 1.090 0.60  140    292 -0.597836979 0.1744968
16  4   Goodman 2002   cc 0.670 0.470 0.950 1.20  140    292 -0.400477542 0.1795261
17  4   Goodman 2002   cc 0.610 0.420 0.890 1.90  140    292 -0.494296298 0.1915767
18  5   Salazar 2002   cc 1.000 1.000 1.000 0.00   35    243  0.000000000 0.0000000
19  5   Salazar 2002   cc 0.770 0.440 1.370 2.80   28    241 -0.261364789 0.2897480
20  5   Salazar 2002   cc 0.540 0.290 0.990 3.70   21    229 -0.616186100 0.3132262
21  6     Cozen 2002   cc 1.000 1.000 1.000 0.00   78    183  0.000000000 0.0000000
22  6     Cozen 2002   cc 0.900 0.579 1.399 0.75   57    150 -0.105360542 0.2250578
23  6     Cozen 2002   cc 0.940 0.629 1.406 1.50   83    212 -0.061875406 0.2052009
24  6     Cozen 2002   cc 1.001 0.656 1.523 2.50   72    173  0.000999547 0.2148704
25  7     Kushi 1999   ir 1.000 1.000 1.000 0.50   29  67800  0.000000000 0.0000000
26  7     Kushi 1999   ir 1.380 0.800 2.390 1.07   36  67800  0.322083496 0.2791982
27  7     Kushi 1999   ir 1.250 0.720 2.180 1.95   34  67800  0.223143551 0.2826146
28  7     Kushi 1999   ir 1.600 0.950 2.700 3.09   40  67800  0.470003644 0.2664705
29  8 Fairfield 2004   ir 1.000 1.000 1.000 0.32   51 228537  0.000000000 0.0000000
30  8 Fairfield 2004   ir 1.360 0.940 1.960 0.70   66 228537  0.307484710 0.1874575
31  8 Fairfield 2004   ir 0.930 0.620 1.390 1.11   46 228537 -0.072570685 0.2059577
32  8 Fairfield 2004   ir 1.300 0.900 1.880 1.61   65 228537  0.262364228 0.1879199
33  8 Fairfield 2004   ir 1.400 0.980 2.010 2.60   73 228537  0.336472220 0.1832527
34  9   Larsson 2005   ir 1.000 1.000 1.000 0.59   54 227238  0.000000000 0.0000000
35  9   Larsson 2005   ir 1.300 0.900 1.880 1.26   68 219977  0.262364228 0.1879199
36  9   Larsson 2005   ir 1.230 0.860 1.760 1.81   74 222101  0.207014185 0.1826913
37  9   Larsson 2005   ir 1.480 1.050 2.090 2.77   92 225412  0.392042101 0.1756088

Fixed-effects analysis

fixedOvarian <- dosresmeta(formula = logrr ~ dose, id = id, type = type,
                         cases = case, n = n, se = se, data = ovarian,
                         method = "fixed", proc = "1stage")
summary(fixedOvarian)
Call:  dosresmeta(formula = logrr ~ dose, id = id, type = type, cases = case, 
    n = n, data = ovarian, se = se, method = "fixed", proc = "1stage")

One-stage fixed-effects meta-analysis
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 0.5689 (df = 1), p-value = 0.4507

Fixed-effects coefficients
      Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
dose    0.0192      0.0254  0.7543    0.4507   -0.0307    0.0691   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

9 studies, 28 values, 1 fixed and 0 random-effects parameters
 logLik      AIC      BIC  
-0.3316   2.6631   3.9953  
predict(fixedOvarian, delta = 1, expo = T)
 delta     pred     ci.lb    ci.ub
     1 1.019377 0.9697886 1.071501

Since the estimated association of lactose intake with ovarian cancer risk might depend on the study design, we can present run two separate analyses depending on the study design

fixedSplit <- lapply(split(ovarian, ovarian$type), function(x)
   dosresmeta(formula = logrr ~ dose, id = id, type = type,
              cases = case, n = n, se = se, data = x,
              method = "fixed", proc = "1stage"))
lapply(fixedSplit, function(x) predict(x, delta = 1, expo = T))
$cc
 delta      pred     ci.lb    ci.ub
     1 0.9665253 0.9097986 1.026789

$ir
 delta     pred    ci.lb    ci.ub
     1 1.141353 1.045074 1.246502

Random-effects analysis

remlOvarian <- dosresmeta(formula = logrr ~ dose, id = id, type = type,
                         cases = case, n = n, se = se, data = ovarian,
                         method = "reml", proc = "1stage")
summary(remlOvarian)
Call:  dosresmeta(formula = logrr ~ dose, id = id, type = type, cases = case, 
    n = n, data = ovarian, se = se, method = "reml", proc = "1stage")

One-stage random-effects meta-analysis
Estimation method: REML
Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 0.1434 (df = 1), p-value = 0.7050

Fixed-effects coefficients
      Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
dose    0.0151      0.0400  0.3786    0.7050   -0.0633    0.0936   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Between-study random-effects (co)variance components
  Std. Dev
    0.0855

9 studies, 28 values, 1 fixed and 1 random-effects parameters
 logLik      AIC      BIC  
-1.8726   7.7453  10.3369  
predict(remlOvarian, delta = 1, expo = T)
 delta     pred     ci.lb    ci.ub
     1 1.015263 0.9386969 1.098075
remlSplit <- lapply(split(ovarian, ovarian$type), function(x)
   dosresmeta(formula = logrr ~ dose, id = id, type = type,
              cases = case, n = n, se = se, data = x,
              method = "reml", proc = "1stage"))
lapply(remlSplit, function(x) predict(x, delta = 1, expo = T))
$cc
 delta      pred     ci.lb    ci.ub
     1 0.9559864 0.8832893 1.034667

$ir
 delta     pred    ci.lb    ci.ub
     1 1.141353 1.045074 1.246502

Final table

OBS: The formulas for the variances of the log relative risks for incidence rate and cumulative incidence data have been corrected after the paper was published (Orsini et al. 2012). This explains differences for the numbers in the table (the results are the same up to the third decimal place).

modIr0 <- dosresmeta(formula = logrr ~ dose, lb = lb, ub = ub, 
                     covariance = "indep", data = ir_ex)
modCi0 <- dosresmeta(formula = logrr ~ dose, lb = lb, ub = ub,
                     covariance = "indep", data = ci_ex)
fixedOvarian0 <- dosresmeta(formula = logrr ~ dose, id = id, se = se, 
                            data = ovarian, method = "fixed", proc = "1stage",
                            covariance = "indep")
fixedSplit0 <- lapply(split(ovarian, ovarian$type), function(x)
   dosresmeta(formula = logrr ~ dose, id = id, 
              se = se, data = x, method = "fixed", proc = "1stage",
              covariance = "indep"))
fixedCc <- fixedSplit[[1]]
fixedIr <- fixedSplit[[2]]
fixedCc0 <- fixedSplit0[[1]]
fixedIr0 <- fixedSplit0[[2]]

models <- list("modCc", "modIr", "modCi", "fixedCc", "fixedIr", "fixedOvarian")
table <- do.call("rbind", lapply(models, function(y){
   y <- list(eval(as.name(y)), eval(as.name(paste0(y, "0"))))   
   do.call("c", lapply(y, function(x) 
      c(b = x$coef, se = x$vcov^.5, Q = summary(x)$qtest[[1]])))   
}))
table <- cbind(table, round(100*(table[, 1:2] - table[, 3:4])/table[, 1:2], 1))
rownames <- c("Case–control", "Incidence-rate", "Cumulative-incidence", 
              "Case–control", "Incidence-rate", "Overall")

require("Gmisc")
htmlTable(round(table, 3),
          cgroup = c("GLS", "WLS", "Difference %"), 
          n.cgroup = rep(2, 3), align = 'ccccccc',
          header = rep(c("b", "se"), 3),
          rgroup = c("Single study", "Multiple studies"),
          rnames = rownames, n.rgroup = c(rep(3, 2))
)
GLS   WLS   Difference %
b se   b se   b se
Single study
  Case–control 0.045 0.021   0.033 0.019   26.4 9.5
  Incidence-rate -0.023 0.012   -0.02 0.01   12.7 20.3
  Cumulative-incidence -0.074 0.021   -0.098 0.018   -32.9 15.7
Multiple studies
  Case–control -0.034 0.031   -0.042 0.026   -23.1 17.2
  Incidence-rate 0.132 0.045   0.176 0.042   -33.3 5.8
  Overall 0.019 0.025   0.016 0.022   15.2 14

Information about R session:

R version 3.2.1 (2015-06-18)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 7 (build 7600)

locale:
[1] LC_COLLATE=Swedish_Sweden.1252  LC_CTYPE=Swedish_Sweden.1252    LC_MONETARY=Swedish_Sweden.1252
[4] LC_NUMERIC=C                    LC_TIME=Swedish_Sweden.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] Gmisc_1.1        htmlTable_1.3    Rcpp_0.11.5      dosresmeta_2.0.0 mvmeta_0.4.5     kfigr_1.1.0     
[7] knitr_1.10.5    

loaded via a namespace (and not attached):
 [1] Formula_1.2-1       cluster_2.0.1       magrittr_1.5        MASS_7.3-40         splines_3.2.1      
 [6] munsell_0.4.2       colorspace_1.2-6    lattice_0.20-31     stringr_0.6.2       plyr_1.8.2         
[11] tools_3.2.1         nnet_7.3-9          grid_3.2.1          gtable_0.1.2        latticeExtra_0.6-26
[16] htmltools_0.2.6     forestplot_1.1      abind_1.4-3         yaml_2.1.13         survival_2.38-1    
[21] digest_0.6.8        RColorBrewer_1.1-2  reshape2_1.4.1      ggplot2_1.0.1       formatR_1.2        
[26] acepack_1.3-3.3     rpart_4.1-9         evaluate_0.7        rmarkdown_0.6.1     scales_0.2.4       
[31] Hmisc_3.15-0        foreign_0.8-63      proto_0.3-10       

References

Larsson, Susanna C., Leif Bergkvist, and Alicja Wolk. 2005. “High-Fat Dairy Food and Conjugated Linoleic Acid Intakes in Relation to Colorectal Cancer Incidence in the Swedish Mammography Cohort.” The American Journal of Clinical Nutrition 82 (4): 894–900. http://ajcn.nutrition.org/content/82/4/894.

Larsson, Susanna C., Nicola Orsini, and Alicja Wolk. 2006. “Milk, Milk Products and Lactose Intake and Ovarian Cancer Risk: A Meta-Analysis of Epidemiological Studies.” International Journal of Cancer 118 (2): 431–41. doi:10.1002/ijc.21305.

Orsini, Nicola, Ruifeng Li, Alicja Wolk, Polyna Khudyakov, and Donna Spiegelman. 2012. “Meta-Analysis for Linear and Nonlinear Dose-Response Relations: Examples, an Evaluation of Approximations, and Software.” American Journal of Epidemiology 175 (1): 66–73. doi:10.1093/aje/kwr265.

Rohan, Thomas E., and Anthony J. McMichael. 1988. “Alcohol Consumption and Risk Op Breast Cancer.” International Journal of Cancer 41 (5): 695–99. doi:10.1002/ijc.2910410510.

Wolk A, Manson JE, Stampfer MJ, and et al. 1999. “LOng-Term Intake of Dietary Fiber and Decreased Risk of Coronary Heart Disease Among Women.” JAMA 281 (21): 1998–2004. doi:10.1001/jama.281.21.1998.