setwd(“/Users/maycheung/Documents/Research/After BC/Social Media/Results”)

Load packages and data set

Cronbach’s alpha for food groups

## Vegetable 
full.df %>% 
  select(starts_with("veg"))%>%
  select(!"vegetable.day") %>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 6
## Sample units: 142
## alpha: 0.76
## Fruit 
full.df %>% 
  select(starts_with("fruit"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 6
## Sample units: 143
## alpha: 0.688
## Salty/fat 
full.df %>% 
  select(starts_with("saltyfat"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 8
## Sample units: 127
## alpha: 0.671
## Alcohol 
full.df %>% 
  select(starts_with("alcohol"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 5
## Sample units: 122
## alpha: 0.777
## Whole grain 
full.df %>% 
  select(starts_with("wg"))%>%
  select(!c("wg.day", "wg.freq"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 4
## Sample units: 142
## alpha: 0.76
## Carbs
full.df %>% 
  select(starts_with("carbs"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 5
## Sample units: 143
## alpha: 0.536
## Healthy fats
full.df %>% 
  select(starts_with("healthyfat"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 4
## Sample units: 141
## alpha: 0.64
## Sweets
full.df %>% 
  select(starts_with("sweets"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 5
## Sample units: 144
## alpha: 0.74
## Sugar-sweetened beverages and sweets
full.df %>% 
  select(starts_with(c("ssb", "sweet")))%>%
  select(!c("ssb.day", "ssb.freq")) %>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 9
## Sample units: 128
## alpha: 0.666
## Unhealthy fat
full.df %>% 
  select(starts_with("unhealthyfat"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 5
## Sample units: 144
## alpha: 0.529
## Protein
full.df %>% 
  select(starts_with("protein"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 5
## Sample units: 114
## alpha: 0.528
## Spicy
full.df %>% 
  select(starts_with("spicy"))%>%
  na.omit() %>%
  cronbach.alpha(.)
## 
## Cronbach's alpha for the '.' data-set
## 
## Items: 3
## Sample units: 137
## alpha: 0.694

Scores decoding

## Sweet liking score
liking.df <- full.df %>% 
  select(starts_with(c("ID", "ssb", "sweets", "veg", "fruit", "saltyfat", "fatprotein", "alcohol", "wg", "carbs", "healthyfat", "unhealthyfat", "protein", "spicy")))%>%
  select(!c("ssb.day", "ssb.freq", "vegetable.day", "fruit.day", "wg.day", "wg.freq")) %>%
  mutate(sweet.liking = rowMeans(select(., "ssb.soda":"sweets.chocolate"), na.rm = TRUE), 
         veg.liking = rowMeans(select(., "veg.greens":"veg.carrots"), na.rm = TRUE), 
         fruit.liking = rowMeans(select(., "fruit.citrus":"fruit.melon"), na.rm = TRUE), 
         saltyfat.liking = rowMeans(select(., "saltyfat.snacks":"saltyfat.delimeats"), na.rm = TRUE), 
         fatprotein.liking = fatprotein.friedmeats, 
         alcohol.liking = rowMeans(select(., "alcohol.beer":"alcohol.cocktails"), na.rm = TRUE), 
         wg.liking = rowMeans(select(., "wg.bread":"wg.brownrice"), na.rm = TRUE), 
         carbs.liking = rowMeans(select(., "carbs.rice":"carbs.cereal"), na.rm = TRUE), 
         healthyfat.liking = rowMeans(select(., "healthyfat.nuts":"healthyfat.avocado"), na.rm = TRUE), 
         unhealthyfat.liking = rowMeans(select(., "unhealthyfat.cheese":"unhealthyfat.oil"), na.rm = TRUE),
         protein.liking = rowMeans(select(., "protein.chicken":"protein.fish"), na.rm = TRUE), 
         spicy.liking = rowMeans(select(., "spicy.hotsauce":"spicy.mustard"), na.rm = TRUE)) %>%
  select(ends_with(".liking")) 

## Body appreciation scale 
BAS.df <- full.df %>% 
  select("ID", starts_with("BAS")) %>%
  mutate(BAS = rowSums(select(., 2:11), na.rm = TRUE)) 

## Three factor questionnaire
TFQ.df <- full.df %>% 
  select("ID", starts_with("TFQ")) %>%
  mutate(uncontrolled = rowSums(select(., "TFQ.03", "TFQ.06", "TFQ.08", "TFQ.09", "TFQ.12", "TFQ.13", "TFQ.15", "TFQ.19", "TFQ.20"), na.rm = TRUE)) %>%
  mutate(restraint = rowSums(select(., "TFQ.01", "TFQ.05", "TFQ.11", "TFQ.17", "TFQ.18", "TFQ.21"), na.rm = TRUE)) %>%
  mutate(emotional = rowSums(select(., "TFQ.02", "TFQ.04", "TFQ.07", "TFQ.10", "TFQ.14", "TFQ.16"), na.rm = TRUE))

## Adult eating behavior questionnaire
AEBQ.df <- full.df %>% 
  select("ID", starts_with("AEBQ")) %>%
  mutate(EF = rowSums(select(., "AEBQ.01", "AEBQ.03", "AEBQ.04"), na.rm = TRUE)) %>%
  mutate(EOE = rowSums(select(., "AEBQ.05", "AEBQ.08", "AEBQ.10", "AEBQ.16"), na.rm = TRUE)) %>%
  mutate(EUE = rowSums(select(., "AEBQ.15", "AEBQ.20", "AEBQ.27", "AEBQ.35"), na.rm = TRUE)) %>%
  mutate(FF = rowSums(select(., "AEBQ.02", "AEBQ.07", "AEBQ.12", "AEBQ.19", "AEBQ.24"), na.rm = TRUE)) %>%
  mutate(FR = rowSums(select(., "AEBQ.13", "AEBQ.22", "AEBQ.33"), na.rm = TRUE)) %>%
  mutate(SE = rowSums(select(., "AEBQ.14", "AEBQ.25", "AEBQ.26", "AEBQ.29"), na.rm = TRUE)) %>%
  mutate(H = rowSums(select(., "AEBQ.06", "AEBQ.09", "AEBQ.28", "AEBQ.32", "AEBQ.34"), na.rm = TRUE)) %>%
  mutate(SR = rowSums(select(., "AEBQ.11", "AEBQ.23", "AEBQ.30", "AEBQ.31"), na.rm = TRUE)) 

## BMI
BMI.df <- full.df %>%
  select("ID", "weight", "height") %>%
  mutate(BMI = weight/(height^2)*703)

## sHEI score
HEI.df <- full.df %>%
  select("ID", "sex", ends_with(c(".day", ".freq", ".amount"))) %>%
  mutate(fruit.1 = case_when(
    fruit.day == 1 ~ 0,
    fruit.day == 2 ~ 2, 
    fruit.day == 3 ~ 3.5,
    fruit.day >= 4 ~ 5)) %>%
  mutate(fruit.2 = case_when (
    juice.day == 1 ~ 0,
    juice.day == 2 ~ 2,
    juice.day == 3 ~ 3.5,
    juice.day >= 4 ~ 5)) %>% 
  mutate(tfruitHEI = case_when(
    fruit.1 + fruit.2 <5 ~ 0,
    fruit.1 + fruit.2 >= 5 ~ 5)) %>%
  mutate(wfruitHEI = case_when(
    fruit.day == 1 ~ 0,
    fruit.day == 2 ~ 2.5, 
    fruit.day >= 3 ~ 5)) %>%
  mutate(vegHEI = case_when(
    greens.day == 1 ~ 1.6,
    greens.day == 2 & starchy.day >= 2 ~ 2.46,
    greens.day >= 2 & starchy.day >= 2 ~ 3.24,
    greens.day >= 2 & starchy.day == 1 ~ 3.56)) %>%
  mutate(bean.1 = case_when(
    greens.day == 1 ~ 0,
    greens.day >= 2 ~5)) %>%
  mutate(bean.2 = case_when(
    beans.day == 1 ~ 0,
    beans.day >= 2 ~ 5)) %>%
  mutate(beanHEI = case_when(
    bean.1 + bean.2 < 5 ~ 0,
    bean.1 + bean.2 >= 5 ~ 5)) %>%
  mutate(wgHEI = case_when(
    wg.day == 1 ~ 0.51,
    sex == 1 & wg.day >= 2 ~ 2.97,
    sex == 2 & wg.day >= 2 & wg.day <= 3 ~ 5.20,
    sex == 2 & wg.day >= 4 ~ 6.94)) %>%
  mutate(dairyHEI = case_when(
    sex == 1 & milk.day <= 3 ~ 3.22,
    sex == 2 & milk.day <= 3 & lfmilk.day == 1 ~ 3.32,
    sex == 2 & milk.day <= 3 & lfmilk.day >= 2 ~ 4.81,
    milk.day >= 4 ~ 6.51)) %>%
  mutate(tproteinHEI = case_when(
    sex == 1 & seafood.freq <= 4 ~ 4.11,
    sex == 1 & seafood.freq >= 5 ~ 4.98,
    sex == 1 & is.na(seafood.freq) ~ 4.11,
    sex == 2 ~ 4.97)) %>%
  mutate(sfpproteinHEI = case_when(
    sex == 1 & nuts.day <= 2 ~ 0.49,
    sex == 2 & nuts.day <= 2 ~ 1.50,
    nuts.day >= 3 ~ 4.20)) %>%
  mutate(farHEI = case_when(
    milk.day >= 4 ~ 2.56,
    fat.amount >= 2 & fat.amount <= 3 & milk.freq >= 1 & lfmilk.freq <= 2 ~ 2.63,
    fat.amount >= 2 & fat.amount <= 3 & is.na(milk.freq) | is.na(lfmilk.freq) ~ 2.63,
    fat.amount >= 2 & fat.amount <= 3 & milk.freq >= 1 & lfmilk.freq >= 3 ~ 4.54,
    fat.amount == 1 & milk.freq >= 1 ~ 5.93,
    fat.amount == 1 & is.na(milk.freq) ~ 5.93)) %>%
  mutate(grainHEI = case_when(
    greens.day == 1 ~ 2.13,
    grains.day >= 3 & seafood.day >= 2 & greens.day >= 2 ~ 2.27,
    grains.day >= 3 & nuts.day >= 1 & nuts.day <= 2 & seafood.day == 1 & greens.day >= 2 ~ 4.73,
    grains.day >= 3 & nuts.day >= 3 & seafood.day == 1 & greens.day >= 2 ~ 8.45,
    grains.day >= 1 & grains.day <= 2 & greens.day >= 2 ~ 9.25)) %>%
  mutate(sodiumHEI = case_when(
    fruit.day >= 1 & fruit.day <= 2 & grains.day >= 3 & water.amount == 3 ~ 0.70,
    fruit.day >= 3 & grains.day >= 3 & water.amount == 3 ~ 2.30,
    grains.day >= 3 & water.amount >= 1 & water.amount <= 2 ~ 4.94,
    grains.day >= 1 & grains.day <= 2 ~ 6.07)) %>%
  mutate(ssb.day.cal = case_when(
    ssb.day == 1  ~ 0,
    ssb.day == 2 ~ 156,
    ssb.day == 3 ~ 312,
    ssb.day == 4 ~ 468,
    ssb.day == 5 ~ 624,
    ssb.day == 6 ~ 780,
    ssb.day == 7 ~ 936),
    sugar.cal = case_when(
    sugars.amount == 1 ~ 130,
    sugars.amount == 2 ~ 260,
    sugars.amount == 3 ~ 520)) %>%
  mutate(sugar.intake = (ssb.day.cal + sugar.cal)) %>%
  mutate(sugarHEI = case_when(
    sugar.intake <= 130 ~ 10,
    sugar.intake > 130 & sugar.intake < 520 ~ 5,
    sugar.intake >= 520 ~ 0)) %>%
  mutate(fatHEI = case_when(
    ssb.day >= 3 ~ 1.82,
    ssb.day <= 2 & grains.day <= 2 ~ 3.20,
    ssb.day <= 2 & grains.day >= 3 & nuts.day <= 2 ~ 4.64,
    ssb.day <= 2 & grains.day >= 3 & nuts.day >= 3 ~ 6.56)) %>%
  select("ID", "sugar.intake", "sugars.amount",ends_with("HEI")) %>%
  mutate(sHEI = rowSums(select(., "tfruitHEI":"fatHEI"), na.rm = TRUE)) %>%
  mutate(SuFatHEI = rowSums(select(., c("sugarHEI", "fatHEI")))) 
  
## Social media usage
SM.df <- full.df %>%
  select("ID", "instagram")

## Putting scores together
EB.df <- bind_cols(select(full.df, 1:17, "ssb.day", "sugars.amount"), select(BMI.df, "BMI"), select(liking.df, "sweet.liking"), select(HEI.df, c("sugar.intake", "sugarHEI", "fatHEI", "SuFatHEI", "sHEI")), select(BAS.df, "BAS"), select(TFQ.df, c("uncontrolled", "restraint", "emotional")), select(AEBQ.df, c("EF", "EOE", "EUE", "FF", "FR", "SE", "H", "SR")), select(SM.df, "instagram")) %>%
  mutate(emo = rowSums(select(., c("emotional", "EOE")))) 

## EB: females only
EB.fem.df <- EB.df %>% filter(sex == "2")

## EB: males only
EB.mal.df <- EB.df %>% filter(sex == "1")

QQ plots

## Distribution
qqfunc <- function(data, sample, title) {
  ggplot(data = data, aes(sample = {{sample}})) +
  stat_qq() +
  stat_qq_line() +
    ggtitle(title) +
    theme_light()
}

## Age qqplot
qqfunc(EB.df, age, "QQ plot - Age")

## BMI qqplot
qqfunc(EB.df, BMI, "QQ plot - BMI")

## Sweet liking qqplot
qqfunc(EB.df, sweet.liking, "QQ plot - Sweet Liking")

## Sweet intake qqplot
qqfunc(EB.df, sugar.intake, "QQ plot - Sugar Intake")

## Sugar and fat intake score qqplot 
qqfunc(EB.df, SuFatHEI, "QQ plot - Emotional Eating")

## sHEI
qqfunc(EB.df, sHEI, "QQ plot - sHEI")

## BAS
qqfunc(EB.df, BAS, "QQ plot - BAS")

## Uncontrolled eating 
qqfunc(EB.df, uncontrolled, "QQ plot - Uncontrolled Eating")

## Emotional eating 
qqfunc(EB.df, emotional, "QQ plot - Emotional Eating")

Participant charateristics

## summary stat
EB.df %>%
  get_summary_stats()
## # A tibble: 36 × 13
##    variable     n   min   max median    q1    q3   iqr   mad   mean     sd    se
##    <fct>    <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl>
##  1 age        145    18    68     24    21    28     7  4.45  27.2   9.64  0.801
##  2 height     145    53    76     65    63    68     5  4.08  65.3   3.90  0.324
##  3 weight     145    80   320    145   126   175    49 34.1  154.   38.5   3.20 
##  4 sex        145     1     2      2     1     2     1  0      1.70  0.461 0.038
##  5 race       141     1     7      4     3     5     2  1.48   4.25  1.50  0.126
##  6 ethnici…   145     1     2      2     2     2     0  0      1.75  0.434 0.036
##  7 us.born    145     1     2      1     1     2     1  0      1.34  0.477 0.04 
##  8 agetous    145     1     7      1     1     4     3  0      2.44  2.20  0.183
##  9 timeinus   145     1     8      1     1     3     2  0      2.32  2.19  0.182
## 10 educati…   145     5    12      9     6     9     3  1.48   7.96  1.95  0.162
## # … with 26 more rows, and 1 more variable: ci <dbl>
EB.df %>%
  count(race) 
##   race  n
## 1    1  6
## 2    2  2
## 3    3 36
## 4    4 48
## 5    5 27
## 6    7 22
## 7   NA  4
EB.df %>%
  count(ethnicity) 
##   ethnicity   n
## 1         1  36
## 2         2 109
EB.df %>%
  count(sex) 
##   sex   n
## 1   1  44
## 2   2 101
EB.df %>%
  group_by(race) %>%
  select(race, sweet.liking, sugar.intake) %>%
  get_summary_stats()
## # A tibble: 14 × 14
##     race variable         n    min    max median    q1    q3    iqr    mad  mean
##    <dbl> <fct>        <dbl>  <dbl>  <dbl>  <dbl> <dbl> <dbl>  <dbl>  <dbl> <dbl>
##  1     1 sweet.liking     6   7.44   42.3   29.3  27.7  31.5   3.83   3.71  28.0
##  2     1 sugar.intake     6 130     728    416   299   416   117    116.   394. 
##  3     2 sweet.liking     2  46.4    73.6   60    53.2  66.8  13.6   20.1   60  
##  4     2 sugar.intake     2 260    1144    702   481   923   442    655.   702  
##  5     3 sweet.liking    36 -22.9    85     32.6  18.1  49.0  30.9   22.8   31.3
##  6     3 sugar.intake    36 130    1300    416   260   520   260    231.   405. 
##  7     4 sweet.liking    48 -40.1    77.8   37.8  12.6  50.9  38.4   24.7   32.0
##  8     4 sugar.intake    48 130    1144    260   260   520   260    193.   387. 
##  9     5 sweet.liking    27 -12      66.9   40.1  22.2  51.8  29.7   22.7   35.1
## 10     5 sugar.intake    27 130     754    260   260   416   156    193.   351. 
## 11     7 sweet.liking    22 -62.1    92     40.3  22.1  53.9  31.9   25.2   36.5
## 12     7 sugar.intake    22 130    1300    416   260   572   312    231.   488. 
## 13    NA sweet.liking     4  15.1    39.1   27.2  18.7  35.6  16.9   14.3   27.1
## 14    NA sugar.intake     4 130     832    338   228.  520   292.   212.   410. 
## # … with 3 more variables: sd <dbl>, se <dbl>, ci <dbl>
## differences by race
race.liking.aov <- aov(sweet.liking ~ race, EB.df)
summary(race.liking.aov)
##              Df Sum Sq Mean Sq F value Pr(>F)
## race          1    321   320.7   0.484  0.488
## Residuals   139  92174   663.1               
## 4 observations deleted due to missingness
race.intake.aov <- aov(sugar.intake ~ race, EB.df)
summary(race.intake.aov)
##              Df  Sum Sq Mean Sq F value Pr(>F)
## race          1   29015   29015   0.458    0.5
## Residuals   139 8803573   63335               
## 4 observations deleted due to missingness
race.sHEI.aov <- aov(sHEI ~ race, EB.df)
summary(race.sHEI.aov)
##              Df Sum Sq Mean Sq F value Pr(>F)
## race          1    160  159.98   1.887  0.172
## Residuals   139  11786   84.79               
## 4 observations deleted due to missingness
## Models
sugar.M1 <- lm(sugar.intake ~ sweet.liking, EB.df)
summary(sugar.M1)
## 
## Call:
## lm(formula = sugar.intake ~ sweet.liking, data = EB.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -428.62 -144.70  -21.13   83.98  743.90 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  255.0349    30.6945   8.309 6.75e-14 ***
## sweet.liking   4.5387     0.7354   6.172 6.58e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 224.3 on 143 degrees of freedom
## Multiple R-squared:  0.2103, Adjusted R-squared:  0.2048 
## F-statistic: 38.09 on 1 and 143 DF,  p-value: 6.582e-09
sugar.M2 <- lm(sugar.intake ~ sweet.liking + sweet.liking*race + race, EB.df)
summary(sugar.M2)
## 
## Call:
## lm(formula = sugar.intake ~ sweet.liking + sweet.liking * race + 
##     race, data = EB.df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -439.44 -152.86  -16.04   77.66  782.72 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       326.3580    95.8449   3.405 0.000868 ***
## sweet.liking        1.7593     2.3184   0.759 0.449242    
## race              -15.9746    21.0991  -0.757 0.450275    
## sweet.liking:race   0.6138     0.4927   1.246 0.215012    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 223.8 on 137 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.2232, Adjusted R-squared:  0.2062 
## F-statistic: 13.12 on 3 and 137 DF,  p-value: 1.396e-07
sHEI.M1 <- lm(sHEI ~ sweet.liking, EB.df)
summary(sHEI.M1)
## 
## Call:
## lm(formula = sHEI ~ sweet.liking, data = EB.df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.0825  -5.5327   0.7146   5.4522  20.4391 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  50.69812    1.20984  41.905  < 2e-16 ***
## sweet.liking -0.10777    0.02899  -3.718 0.000288 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.841 on 143 degrees of freedom
## Multiple R-squared:  0.08814,    Adjusted R-squared:  0.08177 
## F-statistic: 13.82 on 1 and 143 DF,  p-value: 0.0002876
sHEI.M2 <- lm(sHEI ~ sweet.liking + sweet.liking*race + race, EB.df)
summary(sHEI.M2)
## 
## Call:
## lm(formula = sHEI ~ sweet.liking + sweet.liking * race + race, 
##     data = EB.df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -26.0646  -5.6944   0.8049   6.0326  19.1088 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       48.31229    3.77252  12.806   <2e-16 ***
## sweet.liking       0.03538    0.09125   0.388    0.699    
## race               0.44579    0.83047   0.537    0.592    
## sweet.liking:race -0.03081    0.01939  -1.589    0.114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.809 on 137 degrees of freedom
##   (4 observations deleted due to missingness)
## Multiple R-squared:  0.1102, Adjusted R-squared:  0.09067 
## F-statistic: 5.653 on 3 and 137 DF,  p-value: 0.001109

Correlations - demographics

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_point()+
  geom_smooth(method = lm, se = FALSE)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - the purpose is to determine covariates
    ## Age X BMI
    corrfunc(EB.df, age, BMI, "Correlation - Age X BMI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Age X personal income
    corrfunc(EB.df, age, income.personal, "Correlation - Age X Personal Income") ## don't use personal income as a covariate - use age instead to avoid multicolinearity
## `geom_smooth()` using formula = 'y ~ x'

    ## Age X household income
    corrfunc(EB.df, age, income.household, "Correlation - Age X Household Income")
## `geom_smooth()` using formula = 'y ~ x'

    ## Age X instagram usage
    corrfunc(EB.df, age, instagram, "Correlation - Age X Instagram Usage")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sweet liking

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sugar intake and traits
    ## Age X sweet liking
    corrfunc(EB.df, age, sweet.liking, "Correlation - Age X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sex X sweet liking
    corrfunc(EB.df, sex, sweet.liking, "Correlation - Sex X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X sweet liking
    corrfunc(EB.df, BMI, sweet.liking, "Correlation - BMI X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Race X sweet liking
    corrfunc(EB.df, race, sweet.liking, "Correlation - Race X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

    ## Household income X sweet liking
    corrfunc(EB.df, income.household, sweet.liking, "Correlation - Income X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X sweet liking
    corrfunc(EB.df, instagram, sweet.liking, "Correlation - Instagram Usage X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sugar intake X sweet liking
    corrfunc(EB.df, sugar.intake, sweet.liking, "Correlation - Sugar Intake X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## SSB X sweet liking
    corrfunc(EB.df, ssb.day, sweet.liking, "Correlation - SSB X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X sweet liking
    corrfunc(EB.df, emotional, sweet.liking, "Correlation - Emotional Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X sweet liking
    corrfunc(EB.df, uncontrolled, sweet.liking, "Correlation - Uncontrolled Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X sweet liking
    corrfunc(EB.df, restraint, sweet.liking, "Correlation - Dietary Restraint X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X sweet liking
    corrfunc(EB.df, EF, sweet.liking, "Correlation - Enjoyment of Food X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X sweet liking
    corrfunc(EB.df, EOE, sweet.liking, "Correlation - Emotional Over-Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sweet liking
    corrfunc(EB.df, EUE, sweet.liking, "Correlation - Emotional Under-Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X sweet liking
    corrfunc(EB.df, FF, sweet.liking, "Correlation - Food fussiness X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X sweet liking
    corrfunc(EB.df, FR, sweet.liking, "Correlation - Food Responsiveness X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X sweet liking
    corrfunc(EB.df, SE, sweet.liking, "Correlation - Slowness in Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X sweet liking
    corrfunc(EB.df, H, sweet.liking, "Correlation - Hunger X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X sweet liking
    corrfunc(EB.df, SR, sweet.liking, "Correlation - Satiety Responsiveness X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

   ## Emotional Satiety Responsiveness X sweet liking
    corrfunc(EB.df, restraint, emotional, "Correlation - Satiety Responsiveness X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sweet liking: females only

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sugar intake and traits
    ## Age X sweet liking
    corrfunc(EB.fem.df, age, sweet.liking, "Correlation - Age X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X sweet liking
    corrfunc(EB.fem.df, BMI, sweet.liking, "Correlation - BMI X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Race X sweet liking
    corrfunc(EB.fem.df, race, sweet.liking, "Correlation - Race X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 3 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 3 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 3 rows containing missing values (`geom_point()`).

    ## Household income X sweet liking
    corrfunc(EB.fem.df, income.household, sweet.liking, "Correlation - Income X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X sweet liking
    corrfunc(EB.fem.df, instagram, sweet.liking, "Correlation - Instagram Usage X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sugar intake X sweet liking
    corrfunc(EB.fem.df, sugar.intake, sweet.liking, "Correlation - Sugar Intake X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## SSB X sweet liking
    corrfunc(EB.fem.df, ssb.day, sweet.liking, "Correlation - SSB X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X sweet liking
    corrfunc(EB.fem.df, emotional, sweet.liking, "Correlation - Emotional Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X sweet liking
    corrfunc(EB.fem.df, uncontrolled, sweet.liking, "Correlation - Uncontrolled Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X sweet liking
    corrfunc(EB.fem.df, restraint, sweet.liking, "Correlation - Dietary Restraint X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X sweet liking
    corrfunc(EB.fem.df, EF, sweet.liking, "Correlation - Enjoyment of Food X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X sweet liking
    corrfunc(EB.fem.df, EOE, sweet.liking, "Correlation - Emotional Over-Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sweet liking
    corrfunc(EB.fem.df, EUE, sweet.liking, "Correlation - Emotional Under-Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X sweet liking
    corrfunc(EB.fem.df, FF, sweet.liking, "Correlation - Food fussiness X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X sweet liking
    corrfunc(EB.fem.df, FR, sweet.liking, "Correlation - Food Responsiveness X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X sweet liking
    corrfunc(EB.fem.df, SE, sweet.liking, "Correlation - Slowness in Eating X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X sweet liking
    corrfunc(EB.fem.df, H, sweet.liking, "Correlation - Hunger X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X sweet liking
    corrfunc(EB.fem.df, SR, sweet.liking, "Correlation - Satiety Responsiveness X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X sweet liking
    corrfunc(EB.fem.df, emo, sweet.liking, "Correlation - Emo X Sweet Liking")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sugar intake

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sugar intake and traits
    ## Age X sugar intake
    corrfunc(EB.df, age, sugar.intake, "Correlation - Age X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sex X sugar intake
    corrfunc(EB.df, sex, sugar.intake, "Correlation - Sex X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X sugar intake
    corrfunc(EB.df, BMI, sugar.intake, "Correlation - BMI X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Race X sweet liking
    corrfunc(EB.df, race, sugar.intake, "Correlation - Race X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

    ## Household income X sweet liking
    corrfunc(EB.df, income.household, sugar.intake, "Correlation - Income X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X sweet liking
    corrfunc(EB.df, instagram, sugar.intake, "Correlation - Instagram Usage X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sugar intake X sweet liking
    corrfunc(EB.df, sugar.intake, sweet.liking, "Correlation - Sweet Liking X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## SSB X sugar intake
    corrfunc(EB.df, ssb.day, sugar.intake, "Correlation - SSB X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X sugar intake
    corrfunc(EB.df, emotional, sugar.intake, "Correlation - Emotional Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X sugar intake
    corrfunc(EB.df, uncontrolled, sugar.intake, "Correlation - Uncontrolled Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X sugar intake
    corrfunc(EB.df, restraint, sugar.intake, "Correlation - Dietary Restraint X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X sugar intake
    corrfunc(EB.df, EF, sugar.intake, "Correlation - Enjoyment of Food X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X sugar intake
    corrfunc(EB.df, EOE, sugar.intake, "Correlation - Emotional Over-Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sugar intake
    corrfunc(EB.df, EUE, sugar.intake, "Correlation - Emotional Under-Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X sugar intake
    corrfunc(EB.df, FF, sugar.intake, "Correlation - Food fussiness X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X sugar intake
    corrfunc(EB.df, FR, sugar.intake, "Correlation - Food Responsiveness X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X sugar intake
    corrfunc(EB.df, SE, sugar.intake, "Correlation - Slowness in Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X sugar intake
    corrfunc(EB.df, H, sugar.intake, "Correlation - Hunger X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X sugar intake
    corrfunc(EB.df, SR, sugar.intake, "Correlation - Satiety Responsiveness X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X sweet liking
    corrfunc(EB.df, emo, sugar.intake, "Correlation - Emo X Sweet Intake")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sugar intake: females only

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sugar intake and traits
    ## Age X sugar intake
    corrfunc(EB.fem.df, age, sugar.intake, "Correlation - Age X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X sugar intake
    corrfunc(EB.fem.df, BMI, sugar.intake, "Correlation - BMI X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Race X sweet liking
    corrfunc(EB.fem.df, race, sugar.intake, "Correlation - Race X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 3 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 3 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 3 rows containing missing values (`geom_point()`).

    ## Household income X sweet liking
    corrfunc(EB.fem.df, income.household, sugar.intake, "Correlation - Income X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X sweet liking
    corrfunc(EB.fem.df, instagram, sugar.intake, "Correlation - Instagram Usage X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X sugar intake
    corrfunc(EB.fem.df, sweet.liking, sugar.intake, "Correlation - Sweet Liking X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X sugar intake
    corrfunc(EB.fem.df, emotional, sugar.intake, "Correlation - Emotional Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X sugar intake
    corrfunc(EB.fem.df, uncontrolled, sugar.intake, "Correlation - Uncontrolled Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X sugar intake
    corrfunc(EB.fem.df, restraint, sugar.intake, "Correlation - Dietary Restraint X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X sugar intake
    corrfunc(EB.fem.df, EF, sugar.intake, "Correlation - Enjoyment of Food X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X sugar intake
    corrfunc(EB.fem.df, EOE, sugar.intake, "Correlation - Emotional Over-Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sugar intake
    corrfunc(EB.fem.df, EUE, sugar.intake, "Correlation - Emotional Under-Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X sugar intake
    corrfunc(EB.fem.df, FF, sugar.intake, "Correlation - Food fussiness X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X sugar intake
    corrfunc(EB.fem.df, FR, sugar.intake, "Correlation - Food Responsiveness X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X sugar intake
    corrfunc(EB.fem.df, SE, sugar.intake, "Correlation - Slowness in Eating X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X sugar intake
    corrfunc(EB.fem.df, H, sugar.intake, "Correlation - Hunger X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X sugar intake
    corrfunc(EB.fem.df, SR, sugar.intake, "Correlation - Satiety Responsiveness X Sugar Intake")
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X sugar intake
    corrfunc(EB.fem.df, emo, sugar.intake, "Correlation - Emo X Sweet Intake")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - SSB

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - SSB and traits
    ## Age X SSB
    corrfunc(EB.df, age, ssb.day, "Correlation - Age X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X SSB
    corrfunc(EB.df, BMI, ssb.day, "Correlation - BMI X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Race X SSB
    corrfunc(EB.df, race, ssb.day, "Correlation - Race X SSB")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

    ## Household income X SSB
    corrfunc(EB.df, income.household, ssb.day, "Correlation - Income X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X SSB
    corrfunc(EB.df, instagram, ssb.day, "Correlation - Instagram Usage X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sugar intake X SSB
    corrfunc(EB.df, ssb.day, sweet.liking, "Correlation - Sugar Intake X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X SSB
    corrfunc(EB.df, emotional, ssb.day, "Correlation - Emotional Eating X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X SSB
    corrfunc(EB.df, uncontrolled, ssb.day, "Correlation - Uncontrolled Eating X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X SSB
    corrfunc(EB.df, restraint, ssb.day, "Correlation - Dietary Restraint X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X SSB
    corrfunc(EB.df, EF, ssb.day, "Correlation - Enjoyment of Food X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X SSB
    corrfunc(EB.df, EOE, ssb.day, "Correlation - Emotional Over-Eating X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X SSB
    corrfunc(EB.df, EUE, ssb.day, "Correlation - Emotional Under-Eating X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X SSB
    corrfunc(EB.df, FF, ssb.day, "Correlation - Food fussiness X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X SSB
    corrfunc(EB.df, FR, ssb.day, "Correlation - Food Responsiveness X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X SSB
    corrfunc(EB.df, SE, ssb.day, "Correlation - Slowness in Eating X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X SSB
    corrfunc(EB.df, H, ssb.day, "Correlation - Hunger X SSB")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X SSB
    corrfunc(EB.df, SR, ssb.day, "Correlation - Satiety Responsiveness X SSB")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - fat sHEI score

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - fatHEI and traits
    ## Age X fatHEI
    corrfunc(EB.df, age, fatHEI, "Correlation - Age X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X fatHEI
    corrfunc(EB.df, BMI, fatHEI, "Correlation - BMI X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Race X fatHEI
    corrfunc(EB.df, race, fatHEI, "Correlation - Race X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
## Warning: Removed 4 rows containing non-finite values (`stat_cor()`).
## Warning: Removed 4 rows containing missing values (`geom_point()`).

    ## Household income X fatHEI
    corrfunc(EB.df, income.household, fatHEI, "Correlation - Income X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X fatHEI
    corrfunc(EB.df, instagram, fatHEI, "Correlation - Instagram Usage X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X fatHEI
    corrfunc(EB.df, sweet.liking, fatHEI, "Correlation - Sweet Liking X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X fatHEI
    corrfunc(EB.df, emotional, fatHEI, "Correlation - Emotional Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X fatHEI
    corrfunc(EB.df, uncontrolled, fatHEI, "Correlation - Uncontrolled Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X fatHEI
    corrfunc(EB.df, restraint, fatHEI, "Correlation - Dietary Restraint X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X fatHEI
    corrfunc(EB.df, EF, fatHEI, "Correlation - Enjoyment of Food X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X fatHEI
    corrfunc(EB.df, EOE, fatHEI, "Correlation - Emotional Over-Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X fatHEI
    corrfunc(EB.df, EUE, fatHEI, "Correlation - Emotional Under-Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X fatHEI
    corrfunc(EB.df, FF, fatHEI, "Correlation - Food fussiness X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X fatHEI
    corrfunc(EB.df, FR, fatHEI, "Correlation - Food Responsiveness X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X fatHEI
    corrfunc(EB.df, SE, fatHEI, "Correlation - Slowness in Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X fatHEI
    corrfunc(EB.df, H, fatHEI, "Correlation - Hunger X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X fatHEI
    corrfunc(EB.df, SR, fatHEI, "Correlation - Satiety Responsiveness X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X fatHEI
    corrfunc(EB.df, emo, fatHEI, "Correlation - Emo X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - fat sHEI score: females only

## Correlation Function
## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - fatHEI and traits
    ## Age X fatHEI
    corrfunc(EB.fem.df, age, fatHEI, "Correlation - Age X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X fatHEI
    corrfunc(EB.fem.df, BMI, fatHEI, "Correlation - BMI X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Household income X fatHEI
    corrfunc(EB.fem.df, income.household, fatHEI, "Correlation - Income X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X fatHEI
    corrfunc(EB.fem.df, instagram, fatHEI, "Correlation - Instagram Usage X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X fatHEI
    corrfunc(EB.fem.df, sweet.liking, fatHEI, "Correlation - Sweet Liking X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X fatHEI
    corrfunc(EB.fem.df, sweet.liking, fatHEI, "Correlation - Sweet Liking X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X fatHEI
    corrfunc(EB.fem.df, emotional, fatHEI, "Correlation - Emotional Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X fatHEI
    corrfunc(EB.fem.df, uncontrolled, fatHEI, "Correlation - Uncontrolled Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X fatHEI
    corrfunc(EB.fem.df, restraint, fatHEI, "Correlation - Dietary Restraint X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X fatHEI
    corrfunc(EB.fem.df, EF, fatHEI, "Correlation - Enjoyment of Food X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X fatHEI
    corrfunc(EB.fem.df, EOE, fatHEI, "Correlation - Emotional Over-Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X fatHEI
    corrfunc(EB.fem.df, EUE, fatHEI, "Correlation - Emotional Under-Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X fatHEI
    corrfunc(EB.fem.df, FF, fatHEI, "Correlation - Food fussiness X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X fatHEI
    corrfunc(EB.fem.df, FR, fatHEI, "Correlation - Food Responsiveness X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X fatHEI
    corrfunc(EB.fem.df, SE, fatHEI, "Correlation - Slowness in Eating X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X fatHEI
    corrfunc(EB.fem.df, H, fatHEI, "Correlation - Hunger X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X fatHEI
    corrfunc(EB.fem.df, SR, fatHEI, "Correlation - Satiety Responsiveness X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X fatHEI
    corrfunc(EB.fem.df, emo, fatHEI, "Correlation - Emo X Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sweet + fat sHEI score

## Correlation Function
## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sugarHEI + fatHEI and traits
    ## Age X (sugarHEI + fatHEI)
    corrfunc(EB.df, age, (sugarHEI + fatHEI), "Correlation - Age X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sex X (sugarHEI + fatHEI)
    corrfunc(EB.df, sex, (sugarHEI + fatHEI), "Correlation - Sex X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X (sugarHEI + fatHEI)
    corrfunc(EB.df, BMI, (sugarHEI + fatHEI), "Correlation - BMI X Sweet +Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Household income X (sugarHEI + fatHEI)
    corrfunc(EB.df, income.household, (sugarHEI + fatHEI), "Correlation - Income X Sweet +Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X (sugarHEI + fatHEI)
    corrfunc(EB.df, instagram, (sugarHEI + fatHEI), "Correlation - Instagram Usage X Sweet +Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X (sugarHEI + fatHEI)
    corrfunc(EB.df, sweet.liking, (sugarHEI + fatHEI), "Correlation - Sweet Liking X Sweet +Fat Score")    
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X (sugarHEI + fatHEI)
    corrfunc(EB.df, emotional, (sugarHEI + fatHEI), "Correlation - Emotional Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X (sugarHEI + fatHEI)
    corrfunc(EB.df, uncontrolled, (sugarHEI + fatHEI), "Correlation - Uncontrolled Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X (sugarHEI + fatHEI)
    corrfunc(EB.df, restraint, (sugarHEI + fatHEI), "Correlation - Dietary Restraint X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X (sugarHEI + fatHEI)
    corrfunc(EB.df, EF, (sugarHEI + fatHEI), "Correlation - Enjoyment of Food X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X (sugarHEI + fatHEI)
    corrfunc(EB.df, EOE, (sugarHEI + fatHEI), "Correlation - Emotional Over-Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X (sugarHEI + fatHEI)
    corrfunc(EB.df, EUE, (sugarHEI + fatHEI), "Correlation - Emotional Under-Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X (sugarHEI + fatHEI)
    corrfunc(EB.df, FF, (sugarHEI + fatHEI), "Correlation - Food fussiness X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X (sugarHEI + fatHEI)
    corrfunc(EB.df, FR, (sugarHEI + fatHEI), "Correlation - Food Responsiveness X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X (sugarHEI + fatHEI)
    corrfunc(EB.df, SE, (sugarHEI + fatHEI), "Correlation - Slowness in Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X (sugarHEI + fatHEI)
    corrfunc(EB.df, H, (sugarHEI + fatHEI), "Correlation - Hunger X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X (sugarHEI + fatHEI)
    corrfunc(EB.df, SR, (sugarHEI + fatHEI), "Correlation - Satiety Responsiveness X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X (sugarHEI + fatHEI)
    corrfunc(EB.df, emo, (sugarHEI + fatHEI), "Correlation - Emo X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sweet + fat sHEI score: females only

## Correlation Function
## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sugarHEI + fatHEI and traits
    ## Age X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, age, (sugarHEI + fatHEI), "Correlation - Age X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, BMI, (sugarHEI + fatHEI), "Correlation - BMI X Sweet +Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Household income X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, income.household, (sugarHEI + fatHEI), "Correlation - Income X Sweet +Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, instagram, (sugarHEI + fatHEI), "Correlation - Instagram Usage X Sweet +Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, sweet.liking, (sugarHEI + fatHEI), "Correlation - Sweet Liking X Sweet +Fat Score")    
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, sweet.liking, (sugarHEI + fatHEI), "Correlation - Sweet Liking X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, emotional, (sugarHEI + fatHEI), "Correlation - Emotional Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, uncontrolled, (sugarHEI + fatHEI), "Correlation - Uncontrolled Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, restraint, (sugarHEI + fatHEI), "Correlation - Dietary Restraint X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, EF, (sugarHEI + fatHEI), "Correlation - Enjoyment of Food X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, EOE, (sugarHEI + fatHEI), "Correlation - Emotional Over-Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, EUE, (sugarHEI + fatHEI), "Correlation - Emotional Under-Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, FF, (sugarHEI + fatHEI), "Correlation - Food fussiness X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, FR, (sugarHEI + fatHEI), "Correlation - Food Responsiveness X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, SE, (sugarHEI + fatHEI), "Correlation - Slowness in Eating X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, H, (sugarHEI + fatHEI), "Correlation - Hunger X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, SR, (sugarHEI + fatHEI), "Correlation - Satiety Responsiveness X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X (sugarHEI + fatHEI)
    corrfunc(EB.fem.df, emo, (sugarHEI + fatHEI), "Correlation - Emo X Sweet + Fat Score")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sHEI

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sHEI and traits
    ## Age X sHEI
    corrfunc(EB.df, age, sHEI, "Correlation - Age X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X sHEI
    corrfunc(EB.df, BMI, sHEI, "Correlation - BMI X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Household income X sHEI
    corrfunc(EB.df, income.household, sHEI, "Correlation - Income X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X sHEI
    corrfunc(EB.df, instagram, sHEI, "Correlation - Instagram Usage X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X sHEI
    corrfunc(EB.df, sweet.liking, sHEI, "Correlation - Sweet Liking X sHEI")    
## `geom_smooth()` using formula = 'y ~ x'

    ## SSB X sugar intake
    corrfunc(EB.df, ssb.day, sHEI, "Correlation - SSB X sHEI")   
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X sHEI
    corrfunc(EB.df, emotional, sHEI, "Correlation - Emotional Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X sHEI
    corrfunc(EB.df, uncontrolled, sHEI, "Correlation - Uncontrolled Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X sHEI
    corrfunc(EB.df, restraint, sHEI, "Correlation - Dietary Restraint X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X sHEI
    corrfunc(EB.df, EF, sHEI, "Correlation - Enjoyment of Food X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X sHEI
    corrfunc(EB.df, EOE, sHEI, "Correlation - Emotional Over-Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sHEI
    corrfunc(EB.df, EUE, sHEI, "Correlation - Emotional Under-Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X sHEI
    corrfunc(EB.df, FF, sHEI, "Correlation - Food fussiness X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X sHEI
    corrfunc(EB.df, FR, sHEI, "Correlation - Food Responsiveness X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X sHEI
    corrfunc(EB.df, SE, sHEI, "Correlation - Slowness in Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X sHEI
    corrfunc(EB.df, H, sHEI, "Correlation - Hunger X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X sHEI
    corrfunc(EB.df, SR, sHEI, "Correlation - Satiety Responsiveness X sHEI")    
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X sHEI
    corrfunc(EB.df, emo, sHEI, "Correlation - Emo X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - sHEI: females only

## Correlation Function
## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - sHEI and traits
    ## Age X sHEI
    corrfunc(EB.fem.df, age, sHEI, "Correlation - Age X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X sHEI
    corrfunc(EB.fem.df, BMI, sHEI, "Correlation - BMI X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Household income X sHEI
    corrfunc(EB.fem.df, income.household, sHEI, "Correlation - Income X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X sHEI
    corrfunc(EB.fem.df, instagram, sHEI, "Correlation - Instagram Usage X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X sHEI
    corrfunc(EB.fem.df, sweet.liking, sHEI, "Correlation - Sweet Liking X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X sHEI
    corrfunc(EB.fem.df, sweet.liking, sHEI, "Correlation - Sweet Liking X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## SSB X sHEI
    corrfunc(EB.fem.df, ssb.day, sHEI, "Correlation - SSB X sHEI") 
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X sHEI
    corrfunc(EB.fem.df, emotional, sHEI, "Correlation - Emotional Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X sHEI
    corrfunc(EB.fem.df, uncontrolled, sHEI, "Correlation - Uncontrolled Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X sHEI
    corrfunc(EB.fem.df, restraint, sHEI, "Correlation - Dietary Restraint X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X sHEI
    corrfunc(EB.fem.df, EF, sHEI, "Correlation - Enjoyment of Food X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X sHEI
    corrfunc(EB.fem.df, EOE, sHEI, "Correlation - Emotional Over-Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sHEI
    corrfunc(EB.fem.df, EUE, sHEI, "Correlation - Emotional Under-Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X sHEI
    corrfunc(EB.fem.df, FF, sHEI, "Correlation - Food fussiness X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X sHEI
    corrfunc(EB.fem.df, FR, sHEI, "Correlation - Food Responsiveness X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sHEI
    corrfunc(EB.fem.df, SE, sHEI, "Correlation - Slowness in Eating X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sHEI
    corrfunc(EB.fem.df, H, sHEI, "Correlation - Hunger X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X sHEI
    corrfunc(EB.fem.df, SR, sHEI, "Correlation - Satiety Responsiveness X sHEI")    
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X sHEI
    corrfunc(EB.fem.df, emo, sHEI, "Correlation - Emo X sHEI")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - body appreciation

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - BAS and traits
    ## Age X BAS
    corrfunc(EB.df, age, BAS, "Correlation - Age X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X BAS
    corrfunc(EB.df, BMI, BAS, "Correlation - BMI X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Household income X BAS
    corrfunc(EB.df, income.household, BAS, "Correlation - Income X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X BAS
    corrfunc(EB.df, instagram, BAS, "Correlation - Instagram Usage X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X BAS
    corrfunc(EB.df, sweet.liking, BAS, "Correlation - Sweet Liking X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X BAS
    corrfunc(EB.df, BAS, sweet.liking, "Correlation - Sweet Liking X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## SSB X BAS
    corrfunc(EB.df, ssb.day, BAS, "Correlation - SSB X BAS") 
## `geom_smooth()` using formula = 'y ~ x'

    ## Sugar intake X BAS
    corrfunc(EB.df, BAS, sugar.intake, "Correlation - Sugar Intake X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X BAS
    corrfunc(EB.df,  BAS, emotional, "Correlation - Emotional Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X BAS
    corrfunc(EB.df, BAS, uncontrolled,  "Correlation - Uncontrolled Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X BAS
    corrfunc(EB.df, BAS, restraint,  "Correlation - Dietary Restraint X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X BAS
    corrfunc(EB.df, BAS, EF, "Correlation - Enjoyment of Food X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X BAS
    corrfunc(EB.df, BAS, EOE, "Correlation - Emotional Over-Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X BAS
    corrfunc(EB.df, BAS, EUE, "Correlation - Emotional Under-Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X BAS
    corrfunc(EB.df, BAS, FF, "Correlation - Food fussiness X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X BAS
    corrfunc(EB.df, BAS, FR, "Correlation - Food Responsiveness X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X BAS
    corrfunc(EB.df, BAS, SE, "Correlation - Slowness in Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X BAS
    corrfunc(EB.df, BAS, H, "Correlation - Hunger X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X BAS
    corrfunc(EB.df, BAS, SR, "Correlation - Satiety Responsiveness X BAS")    
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X BAS
    corrfunc(EB.df, BAS, emo, "Correlation - Emo X BAS")
## `geom_smooth()` using formula = 'y ~ x'

Correlations - body appreciation: female only

## Correlation Function
corrfunc <- function(data, Cor1, Cor2, title) {
  ggplot(data = data, aes(x = {{Cor1}}, y = {{Cor2}})) +
  geom_jitter()+
  geom_smooth(method = lm)+
  ggtitle(title) +
  stat_cor(method = "pearson") +
  theme_light() 
}

## Correlations - BAS and traits
    ## Age X BMI
    corrfunc(EB.fem.df, age, BMI, "Correlation - Age X BMI")
## `geom_smooth()` using formula = 'y ~ x'

    ## Age X BAS
    corrfunc(EB.fem.df, age, BAS, "Correlation - Age X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## BMI X BAS
    corrfunc(EB.fem.df, BMI, BAS, "Correlation - BMI X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Household income X BAS
    corrfunc(EB.fem.df, income.household, BAS, "Correlation - Income X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Instagram usage X BAS
    corrfunc(EB.fem.df, instagram, BAS, "Correlation - Instagram Usage X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X BAS
    corrfunc(EB.fem.df, sweet.liking, BAS, "Correlation - Sweet Liking X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Sweet liking X BAS
    corrfunc(EB.fem.df, BAS, sweet.liking, "Correlation - Sweet Liking X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## SSB X BAS
    corrfunc(EB.fem.df, ssb.day, BAS, "Correlation - SSB X BAS") 
## `geom_smooth()` using formula = 'y ~ x'

    ## Sugar intake X BAS
    corrfunc(EB.fem.df, BAS, sugar.intake, "Correlation - Sugar Intake X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional eating X BAS
    corrfunc(EB.fem.df,  BAS, emotional, "Correlation - Emotional Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Uncontrolled eating X BAS
    corrfunc(EB.fem.df, BAS, uncontrolled,  "Correlation - Uncontrolled Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Restraint X BAS
    corrfunc(EB.fem.df, BAS, restraint,  "Correlation - Dietary Restraint X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Enjoyment of food X BAS
    corrfunc(EB.fem.df, BAS, EF, "Correlation - Enjoyment of Food X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional over-eating X BAS
    corrfunc(EB.fem.df, BAS, EOE, "Correlation - Emotional Over-Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional under-eating X BAS
    corrfunc(EB.fem.df, BAS, EUE, "Correlation - Emotional Under-Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Food fussiness X BAS
    corrfunc(EB.fem.df, BAS, FF, "Correlation - Food fussiness X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional food responsiveness X BAS
    corrfunc(EB.fem.df, BAS, FR, "Correlation - Food Responsiveness X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Slowness in Eating X BAS
    corrfunc(EB.fem.df, BAS, SE, "Correlation - Slowness in Eating X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Hunger X BAS
    corrfunc(EB.fem.df, BAS, H, "Correlation - Hunger X BAS")
## `geom_smooth()` using formula = 'y ~ x'

    ## Emotional Satiety Responsiveness X BAS
    corrfunc(EB.fem.df, BAS, SR, "Correlation - Satiety Responsiveness X BAS")    
## `geom_smooth()` using formula = 'y ~ x'

    ## (Emotional eating + emotional overeating) X BAS
    corrfunc(EB.fem.df, BAS, emo, "Correlation - Emo X BAS")
## `geom_smooth()` using formula = 'y ~ x'

Partial correlation - controlling for age

EB.df %>%
  ggplot(aes(age, BMI)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() ## age and BMI are not correlationed - enter both as covariates
## `geom_smooth()` using formula = 'y ~ x'

## Sweet liking and sugar intake
pcor.test(EB.df$sweet.liking, EB.df$sugar.intake, EB.df[,c("age", "sex", "BMI")])
##    estimate      p.value statistic   n gp  Method
## 1 0.4637036 6.185701e-09  6.192634 145  3 pearson
## Emotional eating 
pcor.test(EB.df$emotional, EB.df$sweet.liking, EB.df[,c("age", "sex", "BMI")])
##      estimate   p.value  statistic   n gp  Method
## 1 -0.04176439 0.6216617 -0.4945945 145  3 pearson
pcor.test(EB.df$emotional, EB.df$sugar.intake, EB.df[,c("age", "sex", "BMI")])
##      estimate   p.value  statistic   n gp  Method
## 1 -0.03173641 0.7077089 -0.3756996 145  3 pearson
pcor.test(EB.df$emotional, EB.df$fatHEI, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.09451567 0.2632101  1.123353 145  3 pearson
pcor.test(EB.df$emotional, EB.df$SuFatHEI, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.05741082 0.4973646 0.6804163 145  3 pearson
pcor.test(EB.df$emotional, EB.df$sHEI, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.04417137 0.6016946 0.5231533 145  3 pearson
pcor.test(EB.df$emotional, EB.df$instagram, EB.df[,c("age", "sex", "BMI")])
##      estimate   p.value statistic   n gp  Method
## 1 -0.03343014 0.6928757 -0.395772 145  3 pearson
## Uncontrolled eating 
pcor.test(EB.df$uncontrolled, EB.df$sweet.liking, EB.df[,c("age", "sex")])
##   estimate    p.value statistic   n gp  Method
## 1 0.167956 0.04495225  2.023106 145  2 pearson
pcor.test(EB.df$uncontrolled, EB.df$sugar.intake, EB.df[,c("age", "sex")])
##     estimate   p.value statistic   n gp  Method
## 1 0.04095831 0.6271832 0.4867615 145  2 pearson
pcor.test(EB.df$uncontrolled, EB.df$fatHEI, EB.df[,c("age", "sex")])
##     estimate   p.value statistic   n gp  Method
## 1 0.05675599 0.5007633 0.6750281 145  2 pearson
pcor.test(EB.df$uncontrolled, EB.df$SuFatHEI, EB.df[,c("age", "sex")])
##       estimate   p.value   statistic   n gp  Method
## 1 -0.001751895 0.9834325 -0.02080264 145  2 pearson
pcor.test(EB.df$uncontrolled, EB.df$sHEI, EB.df[,c("age", "sex")])
##      estimate   p.value  statistic   n gp  Method
## 1 -0.01453138 0.8632378 -0.1725688 145  2 pearson
pcor.test(EB.df$uncontrolled, EB.df$instagram, EB.df[,c("age", "sex")])
##     estimate   p.value statistic   n gp  Method
## 1 0.06018715 0.4751873 0.7159808 145  2 pearson
## Dietary restraint
pcor.test(EB.df$restraint, EB.df$sweet.liking, EB.df[,c("age", "sex", "BMI")])
##     estimate    p.value statistic   n gp  Method
## 1 -0.1803144 0.03176655 -2.169062 145  3 pearson
pcor.test(EB.df$restraint, EB.df$sugar.intake, EB.df[,c("age", "sex", "BMI")])
##     estimate    p.value statistic   n gp  Method
## 1 -0.1466795 0.08153072 -1.754512 145  3 pearson
pcor.test(EB.df$restraint, EB.df$fatHEI, EB.df[,c("age", "sex", "BMI")])
##       estimate   p.value  statistic   n gp  Method
## 1 -0.008913662 0.9161522 -0.1054721 145  3 pearson
pcor.test(EB.df$restraint, EB.df$SuFatHEI, EB.df[,c("age", "sex", "BMI")])
##    estimate    p.value statistic   n gp  Method
## 1 0.1674257 0.04642004   2.00937 145  3 pearson
pcor.test(EB.df$restraint, EB.df$sHEI, EB.df[,c("age", "sex", "BMI")])
##    estimate      p.value statistic   n gp  Method
## 1 0.3046779 0.0002272581  3.784952 145  3 pearson
pcor.test(EB.df$restraint, EB.df$instagram, EB.df[,c("age", "sex", "BMI")])
##      estimate   p.value  statistic   n gp  Method
## 1 -0.07301537 0.3878398 -0.8662417 145  3 pearson
## EOE
pcor.test(EB.df$EOE, EB.df$sweet.liking, EB.df[,c("age", "sex", "BMI")])
##      estimate  p.value  statistic   n gp  Method
## 1 -0.03626836 0.668281 -0.4294156 145  3 pearson
pcor.test(EB.df$EOE, EB.df$sugar.intake, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.01481488 0.8610884 0.1753113 145  3 pearson
pcor.test(EB.df$EOE, EB.df$fatHEI, EB.df[,c("age", "sex", "BMI")])
##    estimate   p.value statistic   n gp  Method
## 1 0.1035156 0.2202271  1.231429 145  3 pearson
pcor.test(EB.df$EOE, EB.df$SuFatHEI, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.01261463 0.8815553 0.1492701 145  3 pearson
pcor.test(EB.df$EOE, EB.df$sHEI, EB.df[,c("age", "sex", "BMI")])
##     estimate  p.value statistic   n gp  Method
## 1 0.01933191 0.819373 0.2287809 145  3 pearson
pcor.test(EB.df$EOE, EB.df$instagram, EB.df[,c("age", "sex", "BMI")])
##       estimate   p.value   statistic   n gp  Method
## 1 0.0007297134 0.9931234 0.008634087 145  3 pearson
## BAS
pcor.test(EB.df$BAS, EB.df$sweet.liking, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.02288683 0.7868888 0.2708716 145  3 pearson
pcor.test(EB.df$BAS, EB.df$sugar.intake, EB.df[,c("age", "sex", "BMI")])
##      estimate   p.value  statistic   n gp  Method
## 1 -0.05415029 0.5221455 -0.6416563 145  3 pearson
pcor.test(EB.df$BAS, EB.df$fatHEI, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.09037246 0.2848066  1.073695 145  3 pearson
pcor.test(EB.df$BAS, EB.df$SuFatHEI, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 0.06841025 0.4185467 0.8113417 145  3 pearson
pcor.test(EB.df$BAS, EB.df$sHEI, EB.df[,c("age", "sex", "BMI")])
##      estimate   p.value  statistic   n gp  Method
## 1 -0.02678668 0.7516719 -0.3170581 145  3 pearson
pcor.test(EB.df$BAS, EB.df$instagram, EB.df[,c("age", "sex", "BMI")])
##    estimate   p.value statistic   n gp  Method
## 1 0.1435251 0.0883781  1.715978 145  3 pearson
## BAS with eating behavior traits
pcor.test(EB.df$BAS, EB.df$emotional, EB.df[,c("age", "sex", "BMI")])
##     estimate    p.value statistic   n gp  Method
## 1 -0.1789932 0.03306102 -2.152641 145  3 pearson
pcor.test(EB.df$BAS, EB.df$uncontrolled, EB.df[,c("age", "sex", "BMI")])
##      estimate   p.value   statistic   n gp  Method
## 1 -0.00124547 0.9882633 -0.01473661 145  3 pearson
pcor.test(EB.df$BAS, EB.df$restraint, EB.df[,c("age", "sex", "BMI")])
##     estimate  p.value statistic   n gp  Method
## 1 -0.1401252 0.096264 -1.674504 145  3 pearson
pcor.test(EB.df$BAS, EB.df$EOE, EB.df[,c("age", "sex", "BMI")])
##     estimate   p.value statistic   n gp  Method
## 1 -0.1201339 0.1544262 -1.431813 145  3 pearson

Models: interactions - sugar intake

summary(glm(sugar.intake ~ sweet.liking, data = EB.df)) ## sweet liking predicts sugar intake
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -428.62  -144.70   -21.13    83.98   743.90  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  255.0349    30.6945   8.309 6.75e-14 ***
## sweet.liking   4.5387     0.7354   6.172 6.58e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50315.42)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7195106  on 143  degrees of freedom
## AIC: 1985.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ age, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ age, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -298.34  -158.49   -67.39    99.05   891.36  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  472.656     62.710   7.537 5.03e-12 ***
## age           -2.462      2.171  -1.134    0.259    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63150.14)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 9030470  on 143  degrees of freedom
## AIC: 2018.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ as.factor(sex), data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ as.factor(sex), data = EB.df)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -306.7  -132.1  -106.1   127.9   863.3  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       436.68      37.93  11.514   <2e-16 ***
## as.factor(sex)2   -44.62      45.44  -0.982    0.328    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63291.21)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 9050643  on 143  degrees of freedom
## AIC: 2018.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*sex, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -455.08  -143.24   -21.23    82.09   717.62  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      267.4872   129.3488   2.068   0.0405 *
## sweet.liking       5.3396     2.9944   1.783   0.0767 .
## sex               -7.2400    71.6306  -0.101   0.9196  
## sweet.liking:sex  -0.4833     1.6750  -0.289   0.7734  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50872.52)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7173025  on 141  degrees of freedom
## AIC: 1988.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*emotional, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * emotional, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -389.31  -153.39   -22.32    80.16   766.71  
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            252.8874   101.0340   2.503   0.0135 *
## sweet.liking             5.7798     2.2526   2.566   0.0113 *
## emotional                0.2327     8.2130   0.028   0.9774  
## sweet.liking:emotional  -0.1006     0.1799  -0.559   0.5771  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50612.75)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7136398  on 141  degrees of freedom
## AIC: 1988.1
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*uncontrolled, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * uncontrolled, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -418.56  -154.15   -23.36    80.52   745.86  
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)  
## (Intercept)               303.33438  126.66675   2.395   0.0179 *
## sweet.liking                4.07112    3.20964   1.268   0.2067  
## uncontrolled               -2.75581    6.92042  -0.398   0.6911  
## sweet.liking:uncontrolled   0.02893    0.16551   0.175   0.8615  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50949.84)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7183927  on 141  degrees of freedom
## AIC: 1989
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*restraint, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * restraint, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -378.39  -151.75   -18.89    79.52   793.70  
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            241.2727   128.8720   1.872   0.0633 .
## sweet.liking             7.2804     3.0659   2.375   0.0189 *
## restraint                0.8653     8.5132   0.102   0.9192  
## sweet.liking:restraint  -0.1955     0.2056  -0.951   0.3433  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50247.29)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7084868  on 141  degrees of freedom
## AIC: 1987
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*EF, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * EF, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -412.64  -141.78   -13.09    88.03   742.36  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     462.95934  156.04063   2.967  0.00353 **
## sweet.liking      3.65575    4.21416   0.867  0.38715   
## EF              -17.04104   12.47093  -1.366  0.17397   
## sweet.liking:EF   0.08549    0.32854   0.260  0.79508   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 49817.07)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7024207  on 141  degrees of freedom
## AIC: 1985.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*EOE, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * EOE, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -400.51  -143.86   -21.48    85.17   731.47  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      200.2259    88.0437   2.274  0.02447 * 
## sweet.liking       6.3857     2.0242   3.155  0.00196 **
## EOE                5.7606     8.6213   0.668  0.50511   
## sweet.liking:EOE  -0.1910     0.1959  -0.975  0.33117   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50650.27)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7141688  on 141  degrees of freedom
## AIC: 1988.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*EUE, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * EUE, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -435.20  -167.66   -11.61    85.37   748.03  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      140.3413   113.2442   1.239  0.21730   
## sweet.liking       6.5142     2.4473   2.662  0.00867 **
## EUE                9.3099     8.8562   1.051  0.29495   
## sweet.liking:EUE  -0.1624     0.1933  -0.840  0.40219   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50628.8)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7138661  on 141  degrees of freedom
## AIC: 1988.1
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*FF, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * FF, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -415.88  -154.79   -18.68    87.34   709.24  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     187.60815   92.89357   2.020   0.0453 *
## sweet.liking      4.07855    2.23015   1.829   0.0695 .
## FF                6.65384    9.02818   0.737   0.4623  
## sweet.liking:FF   0.04249    0.21796   0.195   0.8457  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50093.54)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7063189  on 141  degrees of freedom
## AIC: 1986.6
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*FR, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * FR, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -478.48  -143.18   -24.08    72.28   720.97  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     410.7735   149.7694   2.743  0.00688 **
## sweet.liking      0.1884     3.6390   0.052  0.95878   
## FR              -15.8837    15.0952  -1.052  0.29449   
## sweet.liking:FR   0.4351     0.3560   1.222  0.22368   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50493.36)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7119563  on 141  degrees of freedom
## AIC: 1987.7
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*SE, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * SE, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -403.75  -159.67   -28.07    89.17   739.24  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     204.53880   90.92720   2.249   0.0260 *
## sweet.liking      4.70084    2.24667   2.092   0.0382 *
## SE                4.30313    7.12198   0.604   0.5467  
## sweet.liking:SE  -0.00909    0.17842  -0.051   0.9594  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50737.33)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7153964  on 141  degrees of freedom
## AIC: 1988.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*H, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * H, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -414.60  -156.72   -14.84    74.58   710.10  
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    438.3106   145.0530   3.022  0.00299 **
## sweet.liking    -2.0291     3.6852  -0.551  0.58278   
## H              -12.1856     9.5124  -1.281  0.20229   
## sweet.liking:H   0.4234     0.2345   1.805  0.07318 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 49803.47)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7022290  on 141  degrees of freedom
## AIC: 1985.7
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*SR, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * SR, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -417.25  -157.90   -17.47    87.63   741.53  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)      69.7642   106.0225   0.658  0.51160   
## sweet.liking      6.9994     2.3267   3.008  0.00311 **
## SR               16.1048     8.8302   1.824  0.07030 . 
## sweet.liking:SR  -0.2060     0.1971  -1.045  0.29783   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 49674.37)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7004086  on 141  degrees of freedom
## AIC: 1985.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*BAS, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * BAS, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -423.65  -164.52   -18.44    86.07   743.70  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      335.55312  152.89656   2.195   0.0298 *
## sweet.liking       2.60181    3.78304   0.688   0.4927  
## BAS               -2.15073    4.01929  -0.535   0.5934  
## sweet.liking:BAS   0.05153    0.09902   0.520   0.6036  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50918.24)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7179472  on 141  degrees of freedom
## AIC: 1988.9
## 
## Number of Fisher Scoring iterations: 2

Models: mediation - sugar intake

summary(glm(sugar.intake ~ sweet.liking, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -428.62  -144.70   -21.13    83.98   743.90  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  255.0349    30.6945   8.309 6.75e-14 ***
## sweet.liking   4.5387     0.7354   6.172 6.58e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50315.42)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7195106  on 143  degrees of freedom
## AIC: 1985.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ age, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ age, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -298.34  -158.49   -67.39    99.05   891.36  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  472.656     62.710   7.537 5.03e-12 ***
## age           -2.462      2.171  -1.134    0.259    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63150.14)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 9030470  on 143  degrees of freedom
## AIC: 2018.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ as.factor(sex), data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ as.factor(sex), data = EB.df)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -306.7  -132.1  -106.1   127.9   863.3  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       436.68      37.93  11.514   <2e-16 ***
## as.factor(sex)2   -44.62      45.44  -0.982    0.328    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63291.21)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 9050643  on 143  degrees of freedom
## AIC: 2018.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + sex, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -444.27  -145.67   -21.19    78.50   728.23  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  297.3113    77.5160   3.835 0.000188 ***
## sweet.liking   4.5025     0.7396   6.088 1.01e-08 ***
## sex          -24.2120    40.7481  -0.594 0.553331    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50544.09)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7177260  on 142  degrees of freedom
## AIC: 1986.9
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + emotional, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + emotional, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -390.18  -152.64   -21.70    77.57   756.10  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  299.4326    57.0763   5.246 5.53e-07 ***
## sweet.liking   4.5905     0.7379   6.221 5.22e-09 ***
## emotional     -3.7526     4.0664  -0.923    0.358    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50367.68)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7152211  on 142  degrees of freedom
## AIC: 1986.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + uncontrolled, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + uncontrolled, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -405.77  -150.85   -22.69    80.75   748.99  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  285.7837    76.9391   3.714 0.000292 ***
## sweet.liking   4.6161     0.7585   6.086 1.02e-08 ***
## uncontrolled  -1.7813     4.0848  -0.436 0.663447    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50601.99)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7185483  on 142  degrees of freedom
## AIC: 1987.1
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + restraint, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + restraint, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -403.36  -136.30   -24.59    80.75   769.12  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  337.9515    79.1705   4.269 3.58e-05 ***
## sweet.liking   4.4508     0.7387   6.025 1.38e-08 ***
## restraint     -5.6836     5.0033  -1.136    0.258    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50213.43)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7130308  on 142  degrees of freedom
## AIC: 1985.9
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + EF, data = EB.df)) ## Enjoyment of food = partial mediator
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + EF, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -419.25  -140.48   -13.68    88.87   742.79  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  432.0652   100.9208   4.281 3.40e-05 ***
## sweet.liking   4.7353     0.7371   6.424 1.87e-09 ***
## EF           -14.5358     7.9006  -1.840   0.0679 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 49490)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7027580  on 142  degrees of freedom
## AIC: 1983.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + EOE, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + EOE, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -415.80  -149.17   -24.58    84.02   740.93  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  268.8783    52.8578   5.087 1.13e-06 ***
## sweet.liking   4.5479     0.7383   6.160 7.07e-09 ***
## EOE           -1.4358     4.4559  -0.322    0.748    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50632.74)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7189849  on 142  degrees of freedom
## AIC: 1987.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + EUE, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + EUE, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -412.97  -160.67   -12.73    84.91   738.62  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  217.4417    66.2992   3.280  0.00131 ** 
## sweet.liking   4.5536     0.7373   6.176 6.53e-09 ***
## EUE            2.9918     4.6742   0.640  0.52316    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50523.99)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7174406  on 142  degrees of freedom
## AIC: 1986.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + FF, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + FF, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -416.93  -155.16   -18.61    88.23   714.99  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  173.6344    58.8842   2.949  0.00373 ** 
## sweet.liking   4.4891     0.7319   6.133 8.09e-09 ***
## FF             8.1145     5.0197   1.617  0.10820    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 49754.17)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7065093  on 142  degrees of freedom
## AIC: 1984.6
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + FR, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + FR, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -427.07  -142.50   -21.74    83.99   744.66  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  258.8302    83.6597   3.094  0.00238 ** 
## sweet.liking   4.5426     0.7424   6.119 8.69e-09 ***
## FR            -0.4012     8.2231  -0.049  0.96115    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50668.91)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7194985  on 142  degrees of freedom
## AIC: 1987.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + SE, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + SE, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -401.28  -159.80   -27.24    88.59   739.11  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  207.9862    60.5209   3.437 0.000773 ***
## sweet.liking   4.5928     0.7383   6.221 5.23e-09 ***
## SE             4.0208     4.4565   0.902 0.368470    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50380.96)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7154096  on 142  degrees of freedom
## AIC: 1986.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + H, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + H, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -425.91  -159.11   -20.11    83.71   739.58  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  220.7050    81.3173   2.714  0.00747 ** 
## sweet.liking   4.4879     0.7458   6.018 1.43e-08 ***
## H              2.3344     5.1182   0.456  0.64901    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50595.63)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7184580  on 142  degrees of freedom
## AIC: 1987
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + SR, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + SR, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -424.09  -162.81   -18.60    86.62   746.78  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  155.2744    67.4350   2.303   0.0228 *  
## sweet.liking   4.6932     0.7368   6.369 2.47e-09 ***
## SR             8.6629     5.2223   1.659   0.0994 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 49706.54)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7058328  on 142  degrees of freedom
## AIC: 1984.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + BAS, data = EB.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + BAS, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -429.20  -151.84   -19.01    84.75   745.08  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  271.0021    89.1616   3.039  0.00282 ** 
## sweet.liking   4.5324     0.7386   6.136 7.96e-09 ***
## BAS           -0.4403     2.3076  -0.191  0.84893    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 50656.77)
## 
##     Null deviance: 9111669  on 144  degrees of freedom
## Residual deviance: 7193261  on 142  degrees of freedom
## AIC: 1987.2
## 
## Number of Fisher Scoring iterations: 2

Models: interactions - sugar intake (females)

summary(glm(sugar.intake ~ sweet.liking, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -365.46  -128.32   -13.41    76.08   680.61  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  253.0073    30.1417   8.394 3.41e-13 ***
## sweet.liking   4.3730     0.7352   5.948 4.11e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36559.28)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3619368  on  99  degrees of freedom
## AIC: 1351.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*emotional, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * emotional, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -367.97  -123.50   -11.55    71.45   681.18  
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)  
## (Intercept)            300.9874   120.5545   2.497   0.0142 *
## sweet.liking             2.7622     2.7963   0.988   0.3257  
## emotional               -3.7997     9.3349  -0.407   0.6849  
## sweet.liking:emotional   0.1250     0.2109   0.593   0.5548  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 37154.63)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3603999  on  97  degrees of freedom
## AIC: 1355.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*uncontrolled, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * uncontrolled, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -369.09  -128.17   -13.61    66.84   696.39  
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)               186.805552 133.443052   1.400    0.165
## sweet.liking                4.276941   3.450916   1.239    0.218
## uncontrolled                3.903112   7.353805   0.531    0.597
## sweet.liking:uncontrolled  -0.002623   0.178314  -0.015    0.988
## 
## (Dispersion parameter for gaussian family taken to be 37030.57)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3591966  on  97  degrees of freedom
## AIC: 1355
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*restraint, data = EB.fem.df)) 
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * restraint, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -295.97  -130.04    -3.50    63.38   650.94  
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)            144.7288   133.5750   1.084  0.28127   
## sweet.liking             8.6519     3.0686   2.819  0.00583 **
## restraint                6.9620     8.5517   0.814  0.41757   
## sweet.liking:restraint  -0.2960     0.2011  -1.472  0.14423   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36357.57)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3526684  on  97  degrees of freedom
## AIC: 1353.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*EF, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * EF, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -365.59  -123.64    -6.44    71.77   682.21  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     533.4244   180.5810   2.954  0.00394 **
## sweet.liking     -0.5422     4.8207  -0.112  0.91068   
## EF              -22.3087    14.1285  -1.579  0.11760   
## sweet.liking:EF   0.3883     0.3752   1.035  0.30323   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36270.05)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3518195  on  97  degrees of freedom
## AIC: 1352.9
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*EOE, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * EOE, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -375.96  -117.27   -14.02    61.70   674.09  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      256.22628  100.47595   2.550   0.0123 *
## sweet.liking       3.46166    2.45794   1.408   0.1622  
## EOE               -0.24632    9.20872  -0.027   0.9787  
## sweet.liking:EOE   0.08464    0.22142   0.382   0.7031  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 37122.55)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3600887  on  97  degrees of freedom
## AIC: 1355.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*EUE, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * EUE, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -342.95  -122.16   -10.43    61.95   656.70  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      223.9026   121.8508   1.838   0.0692 .
## sweet.liking       6.0793     3.0107   2.019   0.0462 *
## EUE                2.3395     9.5326   0.245   0.8066  
## sweet.liking:EUE  -0.1304     0.2289  -0.570   0.5701  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 37111.82)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3599846  on  97  degrees of freedom
## AIC: 1355.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*FF, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * FF, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -396.93  -138.32    -7.73    68.76   603.99  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)   
## (Intercept)     259.1996    91.9436   2.819  0.00584 **
## sweet.liking      1.8091     2.3029   0.786  0.43403   
## FF               -0.9628     8.7318  -0.110  0.91243   
## sweet.liking:FF   0.2497     0.2186   1.142  0.25615   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36099.12)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3501615  on  97  degrees of freedom
## AIC: 1352.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*FR, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * FR, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -363.65  -126.91   -18.46    74.33   685.68  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     309.5826   156.9059   1.973   0.0513 .
## sweet.liking      2.8740     4.0319   0.713   0.4777  
## FR               -5.7171    15.7051  -0.364   0.7166  
## sweet.liking:FR   0.1477     0.3882   0.380   0.7045  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 37254.56)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3613692  on  97  degrees of freedom
## AIC: 1355.6
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*SE, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * SE, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -362.67  -125.80   -12.01    76.15   681.27  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)     261.48135  101.62517   2.573   0.0116 *
## sweet.liking      3.71284    2.63810   1.407   0.1625  
## SE               -0.58569    7.48283  -0.078   0.9378  
## sweet.liking:SE   0.05209    0.19609   0.266   0.7911  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 37269.29)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3615121  on  97  degrees of freedom
## AIC: 1355.7
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*H, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * H, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -380.46  -124.13    -9.36    70.21   706.03  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    388.45989  186.22951   2.086   0.0396 *
## sweet.liking     0.09682    4.64961   0.021   0.9834  
## H               -8.74406   11.96301  -0.731   0.4666  
## sweet.liking:H   0.26842    0.28963   0.927   0.3564  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36970.52)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3586141  on  97  degrees of freedom
## AIC: 1354.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*SR, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * SR, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -380.78  -124.71   -13.86    88.78   680.70  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      81.9238   125.5712   0.652   0.5157  
## sweet.liking      6.8044     2.9700   2.291   0.0241 *
## SR               14.6768    10.4186   1.409   0.1621  
## sweet.liking:SR  -0.2066     0.2432  -0.849   0.3978  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36449.62)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3535613  on  97  degrees of freedom
## AIC: 1353.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking*BAS, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking * BAS, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -348.43  -130.52   -15.86    73.08   671.23  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)      312.44997  140.58698   2.222   0.0286 *
## sweet.liking       2.49376    3.57386   0.698   0.4870  
## BAS               -1.57921    3.69182  -0.428   0.6698  
## sweet.liking:BAS   0.05120    0.09522   0.538   0.5920  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 37202.18)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3608612  on  97  degrees of freedom
## AIC: 1355.5
## 
## Number of Fisher Scoring iterations: 2

Models: mediation - sugar intake (females)

summary(glm(sugar.intake ~ sweet.liking, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -365.46  -128.32   -13.41    76.08   680.61  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  253.0073    30.1417   8.394 3.41e-13 ***
## sweet.liking   4.3730     0.7352   5.948 4.11e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36559.28)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3619368  on  99  degrees of freedom
## AIC: 1351.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + emotional, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + emotional, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -366.59  -126.13   -13.03    73.18   680.64  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  239.5970    61.4494   3.899 0.000177 ***
## sweet.liking   4.3597     0.7406   5.887 5.53e-08 ***
## emotional      1.0907     4.3486   0.251 0.802486    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36908.64)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3617047  on  98  degrees of freedom
## AIC: 1353.7
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + uncontrolled, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + uncontrolled, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -369.09  -128.00   -13.74    66.82   696.74  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  188.3649    80.6326   2.336   0.0215 *  
## sweet.liking   4.2274     0.7552   5.598 1.98e-07 ***
## uncontrolled   3.8169     4.4149   0.865   0.3894    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36652.79)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3591974  on  98  degrees of freedom
## AIC: 1353
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + restraint, data = EB.fem.df)) 
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + restraint, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -340.81  -123.73   -21.16    68.37   674.23  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  300.0908    82.3638   3.643 0.000432 ***
## sweet.liking   4.2720     0.7556   5.654 1.55e-07 ***
## restraint     -3.1493     5.1245  -0.615 0.540267    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36790.54)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3605473  on  98  degrees of freedom
## AIC: 1353.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + EF, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + EF, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -390.90  -116.55    -4.18    76.85   685.10  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  377.5487    99.6784   3.788 0.000262 ***
## sweet.liking   4.3893     0.7327   5.991 3.46e-08 ***
## EF           -10.0010     7.6325  -1.310 0.193149    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36296.42)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3557049  on  98  degrees of freedom
## AIC: 1352
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + EOE, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + EOE, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -372.32  -117.64   -14.77    64.73   676.62  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  224.5437    56.5498   3.971 0.000137 ***
## sweet.liking   4.3575     0.7381   5.904 5.11e-08 ***
## EOE            2.7826     4.6715   0.596 0.552775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36799.1)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3606312  on  98  degrees of freedom
## AIC: 1353.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + EUE, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + EUE, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -355.12  -117.51   -15.73    69.88   670.36  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  280.9879    69.1122   4.066 9.68e-05 ***
## sweet.liking   4.4176     0.7448   5.931 4.53e-08 ***
## EUE           -2.2667     5.0335  -0.450    0.653    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36856.06)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3611894  on  98  degrees of freedom
## AIC: 1353.6
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + FF, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + FF, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -381.18  -139.57   -14.18    78.43   643.81  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  179.8685    60.3451   2.981  0.00363 ** 
## sweet.liking   4.3030     0.7334   5.867 6.03e-08 ***
## FF             7.1337     5.1071   1.397  0.16562    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36211.39)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3548716  on  98  degrees of freedom
## AIC: 1351.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + FR, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + FR, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -365.47  -128.18   -14.55    75.59   679.80  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  260.2602    87.9848   2.958  0.00388 ** 
## sweet.liking   4.3812     0.7448   5.882 5.63e-08 ***
## FR            -0.7696     8.7656  -0.088  0.93021    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36929.43)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3619084  on  98  degrees of freedom
## AIC: 1353.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + SE, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + SE, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -364.69  -126.35   -17.31    75.87   680.37  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  240.8813    65.3710   3.685 0.000375 ***
## sweet.liking   4.3852     0.7411   5.917 4.82e-08 ***
## SE             0.9702     4.6350   0.209 0.834634    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36915.83)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3617751  on  98  degrees of freedom
## AIC: 1353.7
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + H, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + H, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -368.52  -128.94   -12.30    75.48   684.26  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  236.4636    88.1571   2.682  0.00858 ** 
## sweet.liking   4.3497     0.7479   5.816 7.57e-08 ***
## H              1.0992     5.5010   0.200  0.84203    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36917.29)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3617894  on  98  degrees of freedom
## AIC: 1353.7
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + SR, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + SR, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -397.59  -143.77   -14.12    78.07   685.35  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  168.0650    73.9410   2.273   0.0252 *  
## sweet.liking   4.3600     0.7331   5.947 4.22e-08 ***
## SR             7.3620     5.8553   1.257   0.2116    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36346.02)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3561910  on  98  degrees of freedom
## AIC: 1352.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sugar.intake ~ sweet.liking + BAS, data = EB.fem.df))
## 
## Call:
## glm(formula = sugar.intake ~ sweet.liking + BAS, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -365.45  -128.32   -13.41    76.08   680.61  
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.530e+02  8.644e+01   2.926  0.00426 ** 
## sweet.liking 4.373e+00  7.445e-01   5.873 5.86e-08 ***
## BAS          1.194e-03  2.226e+00   0.001  0.99957    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 36932.33)
## 
##     Null deviance: 4912740  on 100  degrees of freedom
## Residual deviance: 3619368  on  98  degrees of freedom
## AIC: 1353.8
## 
## Number of Fisher Scoring iterations: 2

Models: interactions - sHEI

## Sugar intake models
summary(glm(sHEI ~ sweet.liking, data = EB.df)) ## sweet liking predicts sHEI
## 
## Call:
## glm(formula = sHEI ~ sweet.liking, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -26.0825   -5.5327    0.7146    5.4522   20.4391  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  50.69812    1.20984  41.905  < 2e-16 ***
## sweet.liking -0.10777    0.02899  -3.718 0.000288 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 78.16872)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 11178  on 143  degrees of freedom
## AIC: 1047.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*sex, data = EB.df)) ## sex has a main and interaction effect on sHEI
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -21.588   -6.125    1.026    5.473   18.731  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      32.85280    4.81762   6.819 2.47e-10 ***
## sweet.liking      0.13584    0.11153   1.218   0.2252    
## sex              10.18966    2.66790   3.819   0.0002 ***
## sweet.liking:sex -0.13599    0.06239  -2.180   0.0309 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 70.57063)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9950.5  on 141  degrees of freedom
## AIC: 1034.6
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*emotional + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * emotional + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -21.722   -6.204    1.266    5.614   18.349  
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            39.9141317  4.4684618   8.932 2.15e-15 ***
## sweet.liking           -0.0903780  0.0857407  -1.054  0.29366    
## emotional               0.1347469  0.3149102   0.428  0.66939    
## sex                     5.2662373  1.5693664   3.356  0.00102 ** 
## sweet.liking:emotional -0.0009201  0.0068586  -0.134  0.89347    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 73.25502)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10256  on 140  degrees of freedom
## AIC: 1041
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*uncontrolled + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * uncontrolled + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.067   -6.050    1.211    5.936   18.984  
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               44.272617   5.724694   7.734 1.86e-12 ***
## sweet.liking              -0.216338   0.121452  -1.781  0.07704 .  
## uncontrolled              -0.174120   0.262847  -0.662  0.50878    
## sex                        5.489604   1.569638   3.497  0.00063 ***
## sweet.liking:uncontrolled  0.006124   0.006264   0.978  0.32990    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.95042)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10213  on 140  degrees of freedom
## AIC: 1040.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*restraint + sex, data = EB.df)) 
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * restraint + sex, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -23.0969   -6.4349   -0.0074    5.9223   15.9122  
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            33.391776   5.214434   6.404 2.14e-09 ***
## sweet.liking           -0.141968   0.114296  -1.242 0.216271    
## restraint               0.484235   0.315367   1.535 0.126927    
## sex                     5.877722   1.525014   3.854 0.000176 ***
## sweet.liking:restraint  0.003617   0.007701   0.470 0.639304    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 68.15472)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9541.7  on 140  degrees of freedom
## AIC: 1030.6
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*EF + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * EF + sex, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -21.6639   -5.8328    0.8237    6.0361   18.9135  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     42.97580    6.30666   6.814 2.59e-10 ***
## sweet.liking    -0.25247    0.16443  -1.535 0.126949    
## EF              -0.19060    0.48067  -0.397 0.692314    
## sex              5.78282    1.58730   3.643 0.000378 ***
## sweet.liking:EF  0.01197    0.01286   0.931 0.353579    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.88162)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10203  on 140  degrees of freedom
## AIC: 1040.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*EOE + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * EOE + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -21.637   -5.676    1.227    5.461   18.233  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      37.791271   4.022743   9.394  < 2e-16 ***
## sweet.liking     -0.015559   0.076686  -0.203  0.83951    
## EOE               0.407930   0.330789   1.233  0.21957    
## sex               5.158724   1.580900   3.263  0.00138 ** 
## sweet.liking:EOE -0.008833   0.007434  -1.188  0.23676    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.64555)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10170  on 140  degrees of freedom
## AIC: 1039.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*EUE + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * EUE + sex, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -21.8145   -5.8060    0.8636    6.0426   18.4180  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      43.239268   5.166344   8.369 5.34e-14 ***
## sweet.liking     -0.061740   0.093556  -0.660 0.510387    
## EUE              -0.277015   0.331725  -0.835 0.405099    
## sex               6.291024   1.591628   3.953 0.000122 ***
## sweet.liking:EUE -0.003200   0.007367  -0.434 0.664711    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 70.87507)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9922.5  on 140  degrees of freedom
## AIC: 1036.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*FF + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * FF + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -19.319   -5.669    1.077    5.475   23.546  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     45.0947248  4.2751750  10.548  < 2e-16 ***
## sweet.liking    -0.1032755  0.0838762  -1.231 0.220281    
## FF              -0.4718328  0.3398695  -1.388 0.167258    
## sex              5.9131712  1.5393229   3.841 0.000185 ***
## sweet.liking:FF  0.0007319  0.0081900   0.089 0.928918    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 70.70599)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9898.8  on 140  degrees of freedom
## AIC: 1035.9
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*FR + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * FR + sex, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -21.9429   -5.5685    0.8191    5.8961   18.8911  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     43.362792   6.386489   6.790 2.94e-10 ***
## sweet.liking    -0.078765   0.138551  -0.568 0.570612    
## FR              -0.225867   0.574311  -0.393 0.694709    
## sex              5.411540   1.549657   3.492 0.000642 ***
## sweet.liking:FR -0.001805   0.013547  -0.133 0.894202    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 73.0102)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10221  on 140  degrees of freedom
## AIC: 1040.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*SE + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * SE + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.643   -6.222    1.244    5.760   19.181  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     41.216493   4.073495  10.118  < 2e-16 ***
## sweet.liking    -0.026541   0.084072  -0.316    0.753    
## SE              -0.157819   0.270399  -0.584    0.560    
## sex              6.429815   1.600435   4.018 9.56e-05 ***
## sweet.liking:SE -0.006430   0.006672  -0.964    0.337    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 70.90685)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance:  9927  on 140  degrees of freedom
## AIC: 1036.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*H + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * H + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.655   -5.995    1.221    6.007   18.311  
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    33.880233   5.973458   5.672  7.8e-08 ***
## sweet.liking    0.113308   0.140340   0.807 0.420815    
## H               0.497655   0.363462   1.369 0.173127    
## sex             5.363934   1.554694   3.450 0.000741 ***
## sweet.liking:H -0.013873   0.008932  -1.553 0.122632    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.21918)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10111  on 140  degrees of freedom
## AIC: 1039
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*SR + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * SR + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.182   -6.574    1.020    6.183   18.870  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     39.382561   4.875678   8.077 2.76e-13 ***
## sweet.liking    -0.019597   0.090306  -0.217 0.828520    
## SR               0.056173   0.337528   0.166 0.868064    
## sex              6.113931   1.629721   3.752 0.000257 ***
## sweet.liking:SR -0.007396   0.007642  -0.968 0.334829    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.49715)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10150  on 140  degrees of freedom
## AIC: 1039.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*BAS + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * BAS + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.388   -5.882    1.240    5.619   18.645  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      44.088559   6.369796   6.922 1.48e-10 ***
## sweet.liking     -0.130443   0.144269  -0.904 0.367463    
## BAS              -0.073707   0.152520  -0.483 0.629665    
## sex               5.338526   1.578302   3.382 0.000932 ***
## sweet.liking:BAS  0.000800   0.003785   0.211 0.832887    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 73.29628)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10261  on 140  degrees of freedom
## AIC: 1041.1
## 
## Number of Fisher Scoring iterations: 2

Models: mediation - sHEI

summary(glm(sHEI ~ sweet.liking, data = EB.df)) 
## 
## Call:
## glm(formula = sHEI ~ sweet.liking, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -26.0825   -5.5327    0.7146    5.4522   20.4391  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  50.69812    1.20984  41.905  < 2e-16 ***
## sweet.liking -0.10777    0.02899  -3.718 0.000288 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 78.16872)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 11178  on 143  degrees of freedom
## AIC: 1047.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + sex, data = EB.df)) ## sex has a main on sHEI
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.280   -5.745    1.175    5.761   18.829  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  41.24435    2.93447   14.05  < 2e-16 ***
## sweet.liking -0.09968    0.02800   -3.56 0.000504 ***
## sex           5.41426    1.54258    3.51 0.000601 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.43507)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10286  on 142  degrees of freedom
## AIC: 1037.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + emotional + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + emotional + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -21.763   -6.199    1.281    5.633   18.401  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  40.31826    3.28897  12.259  < 2e-16 ***
## sweet.liking -0.10124    0.02817  -3.594 0.000449 ***
## emotional     0.09809    0.15600   0.629 0.530522    
## sex           5.28000    1.56055   3.383 0.000927 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.74483)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10257  on 141  degrees of freedom
## AIC: 1039
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + uncontrolled + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + uncontrolled + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.258   -5.899    1.283    5.751   18.926  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  40.60392    4.32279   9.393  < 2e-16 ***
## sweet.liking -0.10099    0.02882  -3.504 0.000615 ***
## uncontrolled  0.03181    0.15722   0.202 0.839934    
## sex           5.46652    1.56922   3.484 0.000659 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.92762)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10283  on 141  degrees of freedom
## AIC: 1039.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + restraint + sex, data = EB.df)) ## restraint has a positive effect on sHEI, after adjusting for sex
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + restraint + sex, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -23.1734   -6.3698    0.1704    5.7717   15.8014  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  31.84599    4.03347   7.895 7.37e-13 ***
## sweet.liking -0.08984    0.02725  -3.297 0.001236 ** 
## restraint     0.60428    0.18424   3.280 0.001309 ** 
## sex           5.74795    1.49563   3.843 0.000183 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 67.77799)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9556.7  on 141  degrees of freedom
## AIC: 1028.8
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + EF + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + EF + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -21.997   -5.905    1.419    5.626   18.902  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  39.25001    4.87112   8.058 2.98e-13 ***
## sweet.liking -0.10171    0.02835  -3.588 0.000459 ***
## EF            0.15603    0.30374   0.514 0.608259    
## sex           5.46811    1.55014   3.528 0.000567 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.81252)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10267  on 141  degrees of freedom
## AIC: 1039.2
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + EOE + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + EOE + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -21.952   -5.993    1.197    5.567   18.567  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  40.78061    3.14353  12.973  < 2e-16 ***
## sweet.liking -0.10035    0.02812  -3.568 0.000492 ***
## EOE           0.07246    0.17262   0.420 0.675283    
## sex           5.27971    1.57992   3.342 0.001066 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.85774)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10273  on 141  degrees of freedom
## AIC: 1039.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + EUE + sex, data = EB.df)) ## emotional undereating has a negative effect on sHEI, after adjusting for sex
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + EUE + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -21.924   -5.875    0.901    6.032   18.440  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  44.94850    3.33773  13.467  < 2e-16 ***
## sweet.liking -0.10055    0.02762  -3.641 0.000381 ***
## EUE          -0.39825    0.17872  -2.228 0.027442 *  
## sex           6.15878    1.55773   3.954 0.000121 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 70.46723)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9935.9  on 141  degrees of freedom
## AIC: 1034.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + FF + sex, data = EB.df)) ## food fussiness has a negative effect on sHEI, after adjusting for sex
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + FF + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -19.342   -5.778    1.122    5.422   23.500  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   44.8501     3.2725  13.705  < 2e-16 ***
## sweet.liking  -0.0962     0.0276  -3.485 0.000656 ***
## FF            -0.4467     0.1904  -2.346 0.020374 *  
## sex            5.9157     1.5336   3.857 0.000174 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 70.20853)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9899.4  on 141  degrees of freedom
## AIC: 1033.9
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + FR + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + FR + sex, data = EB.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -21.9244   -5.5991    0.7548    5.8577   18.9056  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  44.00562    4.16963  10.554  < 2e-16 ***
## sweet.liking -0.09684    0.02818  -3.437 0.000774 ***
## FR           -0.29009    0.31106  -0.933 0.352628    
## sex           5.40438    1.54332   3.502 0.000619 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.50159)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10223  on 141  degrees of freedom
## AIC: 1038.6
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + SE + sex, data = EB.df)) ## slowness in eating has a negative effect on sHEI, after adjusting for sex
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + SE + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.773   -6.438    1.583    6.280   19.141  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  43.70959    3.14569  13.895  < 2e-16 ***
## sweet.liking -0.10302    0.02774  -3.713 0.000294 ***
## SE           -0.35625    0.17522  -2.033 0.043909 *  
## sex           6.38980    1.59949   3.995 0.000104 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 70.87097)
## 
##     Null deviance: 12258.6  on 144  degrees of freedom
## Residual deviance:  9992.8  on 141  degrees of freedom
## AIC: 1035.3
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + H + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + H + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.332   -5.871    1.201    5.772   18.758  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  40.96978    3.87254  10.580  < 2e-16 ***
## sweet.liking -0.10018    0.02847  -3.519 0.000583 ***
## H             0.02141    0.19614   0.109 0.913221    
## sex           5.39116    1.56236   3.451 0.000738 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.94263)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10285  on 141  degrees of freedom
## AIC: 1039.4
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + SR + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + SR + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.580   -6.393    1.420    6.356   18.903  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  42.81077    3.34943  12.782  < 2e-16 ***
## sweet.liking -0.10263    0.02817  -3.644 0.000377 ***
## SR           -0.20142    0.20750  -0.971 0.333360    
## sex           5.84557    1.60560   3.641 0.000381 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.46454)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10217  on 141  degrees of freedom
## AIC: 1038.5
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + BAS + sex, data = EB.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + BAS + sex, data = EB.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -22.402   -5.989    1.334    5.659   18.681  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  43.16810    4.63341   9.317  < 2e-16 ***
## sweet.liking -0.10053    0.02811  -3.576 0.000478 ***
## BAS          -0.04747    0.08833  -0.537 0.591831    
## sex           5.29825    1.56144   3.393 0.000897 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 72.79968)
## 
##     Null deviance: 12259  on 144  degrees of freedom
## Residual deviance: 10265  on 141  degrees of freedom
## AIC: 1039.2
## 
## Number of Fisher Scoring iterations: 2

Models: interactions - sHEI (females)

summary(glm(sHEI ~ sweet.liking, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.8804   -6.1254    0.3665    5.8845   18.7310  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  53.23213    1.26330  42.137  < 2e-16 ***
## sweet.liking -0.13614    0.03081  -4.418 2.55e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.2206)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6357.8  on  99  degrees of freedom
## AIC: 711
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*emotional, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * emotional, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -16.2546   -5.5000    0.7599    5.7375   18.4182  
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            53.496559   5.050215  10.593   <2e-16 ***
## sweet.liking           -0.179847   0.117141  -1.535    0.128    
## emotional              -0.018788   0.391053  -0.048    0.962    
## sweet.liking:emotional  0.003314   0.008836   0.375    0.708    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 65.20279)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6324.7  on  97  degrees of freedom
## AIC: 714.47
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*uncontrolled, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * uncontrolled, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -16.0654   -5.9020    0.5373    5.6834   18.8719  
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               53.895137   5.610494   9.606 9.51e-16 ***
## sweet.liking              -0.178991   0.145091  -1.234    0.220    
## uncontrolled              -0.034282   0.309184  -0.111    0.912    
## sweet.liking:uncontrolled  0.002193   0.007497   0.293    0.770    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 65.4592)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6349.5  on  97  degrees of freedom
## AIC: 714.87
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*restraint, data = EB.fem.df)) 
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * restraint, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.5697   -6.1949   -0.5687    5.6351   16.6047  
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            46.422393   5.484792   8.464 2.75e-13 ***
## sweet.liking           -0.153951   0.126003  -1.222    0.225    
## restraint               0.457740   0.351144   1.304    0.195    
## sweet.liking:restraint  0.002371   0.008257   0.287    0.775    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 61.30063)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 5946.2  on  97  degrees of freedom
## AIC: 708.24
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*EF, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * EF, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.9419   -6.0739    0.0535    5.6501   18.7424  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     54.643540   7.673203   7.121 1.88e-10 ***
## sweet.liking    -0.192326   0.204838  -0.939    0.350    
## EF              -0.110954   0.600344  -0.185    0.854    
## sweet.liking:EF  0.004421   0.015943   0.277    0.782    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 65.48737)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6352.3  on  97  degrees of freedom
## AIC: 714.91
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*EOE, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * EOE, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -16.8270   -5.5524    0.7952    4.9135   17.8094  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      49.307647   4.189310  11.770   <2e-16 ***
## sweet.liking     -0.090625   0.102483  -0.884    0.379    
## EOE               0.380093   0.383954   0.990    0.325    
## sweet.liking:EOE -0.004417   0.009232  -0.478    0.633    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.53549)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6259.9  on  97  degrees of freedom
## AIC: 713.43
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*EUE, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * EUE, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -17.0576   -5.7092    0.1056    5.6263   18.4528  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      59.596433   5.044195  11.815   <2e-16 ***
## sweet.liking     -0.190934   0.124632  -1.532    0.129    
## EUE              -0.514902   0.394615  -1.305    0.195    
## sweet.liking:EUE  0.004832   0.009474   0.510    0.611    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63.59733)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6168.9  on  97  degrees of freedom
## AIC: 711.95
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*FF, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * FF, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.0429   -5.5550    0.6768    4.9658   21.9539  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     57.077508   3.878199  14.718   <2e-16 ***
## sweet.liking    -0.158097   0.097135  -1.628    0.107    
## FF              -0.378647   0.368308  -1.028    0.306    
## sweet.liking:FF  0.002491   0.009219   0.270    0.788    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.22645)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6230.0  on  97  degrees of freedom
## AIC: 712.95
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*FR, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * FR, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.8794   -6.0701    0.3254    5.6197   18.7387  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     53.231794   6.577081   8.094  1.7e-12 ***
## sweet.liking    -0.102989   0.169005  -0.609    0.544    
## FR              -0.006038   0.658317  -0.009    0.993    
## sweet.liking:FR -0.003133   0.016274  -0.192    0.848    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 65.4587)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6349.5  on  97  degrees of freedom
## AIC: 714.87
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*SE, data = EB.fem.df)) ## slowness in eating has a negative effect in sHEI
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * SE, data = EB.fem.df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -16.405   -6.494    1.015    5.766   18.985  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     59.785040   4.179255  14.305   <2e-16 ***
## sweet.liking    -0.209814   0.108490  -1.934   0.0560 .  
## SE              -0.514791   0.307725  -1.673   0.0976 .  
## sweet.liking:SE  0.005363   0.008064   0.665   0.5076    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63.02985)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6113.9  on  97  degrees of freedom
## AIC: 711.05
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*H, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * H, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.9672   -5.6441    0.6846    5.7163   17.0613  
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    38.75789    7.68888   5.041 2.15e-06 ***
## sweet.liking    0.13802    0.19197   0.719   0.4739    
## H               0.94485    0.49392   1.913   0.0587 .  
## sweet.liking:H -0.01770    0.01196  -1.480   0.1421    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63.02085)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6113.0  on  97  degrees of freedom
## AIC: 711.03
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*SR, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * SR, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.5336   -5.9735    0.7721    5.6429   18.8190  
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     57.128125   5.305399  10.768   <2e-16 ***
## sweet.liking    -0.186837   0.125485  -1.489    0.140    
## SR              -0.334514   0.440188  -0.760    0.449    
## sweet.liking:SR  0.004311   0.010275   0.420    0.676    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 65.06524)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6311.3  on  97  degrees of freedom
## AIC: 714.26
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking*BAS, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking * BAS, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.8346   -5.8190   -0.2086    5.4896   18.2315  
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      57.864783   5.790891   9.992   <2e-16 ***
## sweet.liking     -0.089400   0.147210  -0.607    0.545    
## BAS              -0.128963   0.152069  -0.848    0.398    
## sweet.liking:BAS -0.001467   0.003922  -0.374    0.709    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63.1203)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6122.7  on  97  degrees of freedom
## AIC: 711.19
## 
## Number of Fisher Scoring iterations: 2

Models: mediation - sHEI (females)

## Sugar intake models
summary(glm(sHEI ~ sweet.liking, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.8804   -6.1254    0.3665    5.8845   18.7310  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  53.23213    1.26330  42.137  < 2e-16 ***
## sweet.liking -0.13614    0.03081  -4.418 2.55e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.2206)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6357.8  on  99  degrees of freedom
## AIC: 711
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + emotional, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + emotional, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -16.7267   -5.5986    0.9343    5.7686   18.2487  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  51.86880    2.57143  20.171  < 2e-16 ***
## sweet.liking -0.13749    0.03099  -4.436  2.4e-05 ***
## emotional     0.11088    0.18197   0.609    0.544    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.63105)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6333.8  on  98  degrees of freedom
## AIC: 712.62
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + uncontrolled, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + uncontrolled, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.8972   -5.9994    0.4448    5.7709   18.8463  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  52.59113    3.39162  15.506  < 2e-16 ***
## sweet.liking -0.13758    0.03176  -4.331 3.58e-05 ***
## uncontrolled  0.03785    0.18570   0.204    0.839    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.84842)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6355.1  on  98  degrees of freedom
## AIC: 712.96
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + restraint, data = EB.fem.df)) ## restraint has a positive impact on sHEI in women, but not in men
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + restraint, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.4702   -6.1595   -0.4402    5.7638   16.0955  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   45.1778     3.3462  13.501  < 2e-16 ***
## sweet.liking  -0.1189     0.0307  -3.872 0.000195 ***
## restraint      0.5387     0.2082   2.588 0.011131 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 60.7267)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 5951.2  on  98  degrees of freedom
## AIC: 706.32
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + EF, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + EF, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.8669   -6.0815    0.2949    5.8711   18.7456  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  52.86909    4.21398  12.546  < 2e-16 ***
## sweet.liking -0.13619    0.03097  -4.397 2.79e-05 ***
## EF            0.02915    0.32267   0.090    0.928    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.87051)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6357.3  on  98  degrees of freedom
## AIC: 712.99
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + EOE, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + EOE, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -16.4884   -5.6223    0.8391    4.8232   17.9297  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  50.96103    2.35883  21.604  < 2e-16 ***
## sweet.liking -0.13737    0.03079  -4.462 2.17e-05 ***
## EOE           0.22202    0.19486   1.139    0.257    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.0277)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6274.7  on  98  degrees of freedom
## AIC: 711.67
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + EUE, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + EUE, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -17.0716   -5.8572    0.2833    5.7670   18.4153  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  57.48112    2.86005  20.098  < 2e-16 ***
## sweet.liking -0.12936    0.03082  -4.197 5.95e-05 ***
## EUE          -0.34422    0.20830  -1.652    0.102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63.11718)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6185.5  on  98  degrees of freedom
## AIC: 710.22
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + FF, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + FF, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -14.8040   -5.6798    0.7653    4.7766   21.8474  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  56.28610    2.52937  22.253  < 2e-16 ***
## sweet.liking -0.13322    0.03074  -4.334 3.56e-05 ***
## FF           -0.29788    0.21407  -1.392    0.167    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63.61891)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6234.7  on  98  degrees of freedom
## AIC: 711.02
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + FR, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + FR, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -16.0454   -6.2582    0.3243    5.5617   18.7606  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   54.2780     3.6860  14.725  < 2e-16 ***
## sweet.liking  -0.1350     0.0312  -4.325 3.67e-05 ***
## FR            -0.1110     0.3672  -0.302    0.763    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.81551)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6351.9  on  98  degrees of freedom
## AIC: 712.91
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + SE, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + SE, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -17.0885   -6.6838    0.6558    5.6732   19.0385  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  57.66408    2.69347  21.409  < 2e-16 ***
## sweet.liking -0.14059    0.03053  -4.604 1.24e-05 ***
## SE           -0.35460    0.19098  -1.857   0.0663 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 62.67118)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6141.8  on  98  degrees of freedom
## AIC: 709.51
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + H, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + H, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.6699   -5.6488    0.5955    5.0511   17.7447  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  48.77979    3.66443  13.312  < 2e-16 ***
## sweet.liking -0.14240    0.03109  -4.580 1.37e-05 ***
## H             0.29583    0.22866   1.294    0.199    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 63.78643)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6251.1  on  98  degrees of freedom
## AIC: 711.29
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + SR, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + SR, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.6309   -6.0518    0.7378    5.4056   18.8057  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  55.33023    3.11529  17.761  < 2e-16 ***
## sweet.liking -0.13582    0.03089  -4.397 2.79e-05 ***
## SR           -0.18184    0.24669  -0.737    0.463    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 64.5182)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6322.8  on  98  degrees of freedom
## AIC: 712.44
## 
## Number of Fisher Scoring iterations: 2
summary(glm(sHEI ~ sweet.liking + BAS, data = EB.fem.df))
## 
## Call:
## glm(formula = sHEI ~ sweet.liking + BAS, data = EB.fem.df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -15.9028   -5.6117   -0.0486    5.7217   18.1770  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  59.56971    3.55777  16.744  < 2e-16 ***
## sweet.liking -0.14326    0.03064  -4.675  9.4e-06 ***
## BAS          -0.17426    0.09162  -1.902   0.0601 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 62.56638)
## 
##     Null deviance: 7611.4  on 100  degrees of freedom
## Residual deviance: 6131.5  on  98  degrees of freedom
## AIC: 709.34
## 
## Number of Fisher Scoring iterations: 2

AEBQ emotional overeating analysis

## Emotional overeating
EB.df %>%
  summary()
##       ID                 age            height          weight   
##  Length:145         Min.   :18.00   Min.   :53.00   Min.   : 80  
##  Class :character   1st Qu.:21.00   1st Qu.:63.00   1st Qu.:126  
##  Mode  :character   Median :24.00   Median :65.00   Median :145  
##                     Mean   :27.23   Mean   :65.32   Mean   :154  
##                     3rd Qu.:28.00   3rd Qu.:68.00   3rd Qu.:175  
##                     Max.   :68.00   Max.   :76.00   Max.   :320  
##                                                                  
##       sex          sex.other        race         race.other    ethnicity    
##  Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   : NA   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.: NA   1st Qu.:3.000   1st Qu.: NA   1st Qu.:2.000  
##  Median :2.000   Median : NA   Median :4.000   Median : NA   Median :2.000  
##  Mean   :1.697   Mean   :NaN   Mean   :4.248   Mean   :NaN   Mean   :1.752  
##  3rd Qu.:2.000   3rd Qu.: NA   3rd Qu.:5.000   3rd Qu.: NA   3rd Qu.:2.000  
##  Max.   :2.000   Max.   : NA   Max.   :7.000   Max.   : NA   Max.   :2.000  
##                  NA's   :145   NA's   :4       NA's   :145                  
##     us.born        birthplace     agetous         timeinus       education     
##  Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   :1.000   Min.   : 5.000  
##  1st Qu.:1.000   1st Qu.: NA   1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 6.000  
##  Median :1.000   Median : NA   Median :1.000   Median :1.000   Median : 9.000  
##  Mean   :1.345   Mean   :NaN   Mean   :2.441   Mean   :2.324   Mean   : 7.959  
##  3rd Qu.:2.000   3rd Qu.: NA   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.: 9.000  
##  Max.   :2.000   Max.   : NA   Max.   :7.000   Max.   :8.000   Max.   :12.000  
##                  NA's   :145                                                   
##  income.personal income.household    exercise        ssb.day     
##  Min.   :1.000   Min.   :1.000    Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:4.000    1st Qu.:1.000   1st Qu.:1.000  
##  Median :3.000   Median :5.000    Median :3.000   Median :1.000  
##  Mean   :3.545   Mean   :5.269    Mean   :3.352   Mean   :1.876  
##  3rd Qu.:5.000   3rd Qu.:7.000    3rd Qu.:5.000   3rd Qu.:2.000  
##  Max.   :8.000   Max.   :8.000    Max.   :8.000   Max.   :7.000  
##                                                                  
##  sugars.amount        BMI         sweet.liking     sugar.intake   
##  Min.   :1.000   Min.   :16.16   Min.   :-62.11   Min.   : 130.0  
##  1st Qu.:2.000   1st Qu.:21.13   1st Qu.: 18.50   1st Qu.: 260.0  
##  Median :2.000   Median :24.54   Median : 36.44   Median : 286.0  
##  Mean   :1.931   Mean   :25.39   Mean   : 33.17   Mean   : 405.6  
##  3rd Qu.:2.000   3rd Qu.:28.32   3rd Qu.: 51.22   3rd Qu.: 520.0  
##  Max.   :3.000   Max.   :55.78   Max.   : 92.00   Max.   :1300.0  
##                                                                   
##     sugarHEI          fatHEI         SuFatHEI           sHEI      
##  Min.   : 0.000   Min.   :1.820   Min.   : 1.820   Min.   :21.45  
##  1st Qu.: 0.000   1st Qu.:3.200   1st Qu.: 4.640   1st Qu.:41.42  
##  Median : 5.000   Median :4.640   Median : 8.200   Median :47.62  
##  Mean   : 4.379   Mean   :3.932   Mean   : 8.311   Mean   :47.12  
##  3rd Qu.: 5.000   3rd Qu.:4.640   3rd Qu.: 9.640   3rd Qu.:54.13  
##  Max.   :10.000   Max.   :6.560   Max.   :16.560   Max.   :68.00  
##                                                                   
##       BAS         uncontrolled    restraint       emotional           EF       
##  Min.   :10.00   Min.   : 9.0   Min.   : 6.00   Min.   : 6.00   Min.   : 3.00  
##  1st Qu.:31.00   1st Qu.:16.0   1st Qu.:12.00   1st Qu.: 9.00   1st Qu.:12.00  
##  Median :36.00   Median :19.0   Median :14.00   Median :12.00   Median :13.00  
##  Mean   :35.79   Mean   :18.7   Mean   :14.08   Mean   :12.29   Mean   :12.63  
##  3rd Qu.:42.00   3rd Qu.:22.0   3rd Qu.:17.00   3rd Qu.:15.00   3rd Qu.:15.00  
##  Max.   :50.00   Max.   :34.0   Max.   :24.00   Max.   :24.00   Max.   :15.00  
##                                                                                
##       EOE              EUE             FF              FR        
##  Min.   : 4.000   Min.   : 4.0   Min.   : 5.00   Min.   : 3.000  
##  1st Qu.: 7.000   1st Qu.:10.0   1st Qu.: 7.00   1st Qu.: 8.000  
##  Median : 9.000   Median :12.0   Median :10.00   Median :10.000  
##  Mean   : 9.855   Mean   :12.4   Mean   :10.23   Mean   : 9.786  
##  3rd Qu.:13.000   3rd Qu.:16.0   3rd Qu.:13.00   3rd Qu.:11.000  
##  Max.   :20.000   Max.   :20.0   Max.   :21.00   Max.   :15.000  
##                                                                  
##        SE              H               SR          instagram    
##  Min.   : 4.00   Min.   : 5.00   Min.   : 4.00   Min.   :1.000  
##  1st Qu.: 8.00   1st Qu.:13.00   1st Qu.: 9.00   1st Qu.:5.000  
##  Median :11.00   Median :15.00   Median :11.00   Median :6.000  
##  Mean   :11.26   Mean   :15.43   Mean   :10.92   Mean   :5.428  
##  3rd Qu.:15.00   3rd Qu.:18.00   3rd Qu.:13.00   3rd Qu.:7.000  
##  Max.   :20.00   Max.   :24.00   Max.   :19.00   Max.   :7.000  
##                                                                 
##       emo       
##  Min.   :10.00  
##  1st Qu.:16.00  
##  Median :22.00  
##  Mean   :22.14  
##  3rd Qu.:28.00  
##  Max.   :42.00  
## 
EB.df <- EB.df %>% 
  mutate(EOE.level = case_when(
    EOE < 9 ~ "Low",
    EOE >= 9 ~ "High"))
    
EB.df %>%
  group_by(EOE.level) %>%
  count()
## # A tibble: 2 × 2
## # Groups:   EOE.level [2]
##   EOE.level     n
##   <chr>     <int>
## 1 High         82
## 2 Low          63
EB.df %>% ggplot(aes(sweet.liking, sugar.intake, color = EOE.level)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## Emotional overeating: females only
EB.fem.df %>%
  summary()
##       ID                 age            height          weight           sex   
##  Length:101         Min.   :18.00   Min.   :53.00   Min.   : 80.0   Min.   :2  
##  Class :character   1st Qu.:21.00   1st Qu.:62.00   1st Qu.:124.0   1st Qu.:2  
##  Mode  :character   Median :24.00   Median :64.00   Median :138.0   Median :2  
##                     Mean   :26.57   Mean   :63.81   Mean   :144.6   Mean   :2  
##                     3rd Qu.:28.00   3rd Qu.:66.00   3rd Qu.:160.0   3rd Qu.:2  
##                     Max.   :63.00   Max.   :71.00   Max.   :320.0   Max.   :2  
##                                                                                
##    sex.other        race         race.other    ethnicity        us.born     
##  Min.   : NA   Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   :1.000  
##  1st Qu.: NA   1st Qu.:3.000   1st Qu.: NA   1st Qu.:2.000   1st Qu.:1.000  
##  Median : NA   Median :4.000   Median : NA   Median :2.000   Median :1.000  
##  Mean   :NaN   Mean   :4.306   Mean   :NaN   Mean   :1.752   Mean   :1.327  
##  3rd Qu.: NA   3rd Qu.:5.000   3rd Qu.: NA   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   : NA   Max.   :7.000   Max.   : NA   Max.   :2.000   Max.   :2.000  
##  NA's   :101   NA's   :3       NA's   :101                                  
##    birthplace     agetous         timeinus       education      income.personal
##  Min.   : NA   Min.   :1.000   Min.   :1.000   Min.   : 5.000   Min.   :1.000  
##  1st Qu.: NA   1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 6.000   1st Qu.:2.000  
##  Median : NA   Median :1.000   Median :1.000   Median : 8.000   Median :3.000  
##  Mean   :NaN   Mean   :2.307   Mean   :2.396   Mean   : 7.782   Mean   :3.248  
##  3rd Qu.: NA   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.: 9.000   3rd Qu.:4.000  
##  Max.   : NA   Max.   :7.000   Max.   :8.000   Max.   :12.000   Max.   :8.000  
##  NA's   :101                                                                   
##  income.household    exercise        ssb.day      sugars.amount 
##  Min.   :1.000    Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:4.000    1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :5.000    Median :3.000   Median :1.000   Median :2.00  
##  Mean   :5.139    Mean   :3.168   Mean   :1.772   Mean   :1.96  
##  3rd Qu.:7.000    3rd Qu.:5.000   3rd Qu.:2.000   3rd Qu.:2.00  
##  Max.   :8.000    Max.   :8.000   Max.   :7.000   Max.   :3.00  
##                                                                 
##       BMI         sweet.liking     sugar.intake       sugarHEI     
##  Min.   :16.16   Min.   :-62.11   Min.   : 130.0   Min.   : 0.000  
##  1st Qu.:21.03   1st Qu.: 16.44   1st Qu.: 260.0   1st Qu.: 5.000  
##  Median :24.36   Median : 36.89   Median : 286.0   Median : 5.000  
##  Mean   :25.07   Mean   : 31.80   Mean   : 392.1   Mean   : 4.356  
##  3rd Qu.:27.92   3rd Qu.: 51.11   3rd Qu.: 442.0   3rd Qu.: 5.000  
##  Max.   :55.06   Max.   : 85.00   Max.   :1196.0   Max.   :10.000  
##                                                                    
##      fatHEI         SuFatHEI          sHEI            BAS       
##  Min.   :1.820   Min.   : 1.82   Min.   :29.55   Min.   :10.00  
##  1st Qu.:3.200   1st Qu.: 6.82   1st Qu.:42.23   1st Qu.:30.00  
##  Median :4.640   Median : 8.20   Median :49.71   Median :35.00  
##  Mean   :4.024   Mean   : 8.38   Mean   :48.90   Mean   :35.07  
##  3rd Qu.:4.640   3rd Qu.: 9.64   3rd Qu.:55.63   3rd Qu.:42.00  
##  Max.   :6.560   Max.   :16.56   Max.   :68.00   Max.   :50.00  
##                                                                 
##   uncontrolled     restraint       emotional           EF            EOE       
##  Min.   : 9.00   Min.   : 6.00   Min.   : 6.00   Min.   : 3.0   Min.   : 4.00  
##  1st Qu.:15.00   1st Qu.:11.00   1st Qu.: 9.00   1st Qu.:11.0   1st Qu.: 7.00  
##  Median :18.00   Median :14.00   Median :13.00   Median :13.0   Median :11.00  
##  Mean   :18.15   Mean   :13.93   Mean   :12.68   Mean   :12.5   Mean   :10.41  
##  3rd Qu.:21.00   3rd Qu.:17.00   3rd Qu.:16.00   3rd Qu.:15.0   3rd Qu.:13.00  
##  Max.   :32.00   Max.   :22.00   Max.   :24.00   Max.   :15.0   Max.   :19.00  
##                                                                                
##       EUE              FF              FR               SE      
##  Min.   : 4.00   Min.   : 5.00   Min.   : 4.000   Min.   : 4.0  
##  1st Qu.:10.00   1st Qu.: 8.00   1st Qu.: 8.000   1st Qu.: 9.0  
##  Median :13.00   Median :10.00   Median :10.000   Median :12.0  
##  Mean   :12.97   Mean   :10.56   Mean   : 9.762   Mean   :12.1  
##  3rd Qu.:16.00   3rd Qu.:13.00   3rd Qu.:11.000   3rd Qu.:16.0  
##  Max.   :20.00   Max.   :21.00   Max.   :15.000   Max.   :20.0  
##                                                                 
##        H               SR          instagram          emo       
##  Min.   : 5.00   Min.   : 4.00   Min.   :1.000   Min.   :10.00  
##  1st Qu.:14.00   1st Qu.: 9.00   1st Qu.:5.000   1st Qu.:16.00  
##  Median :16.00   Median :12.00   Median :6.000   Median :23.00  
##  Mean   :15.72   Mean   :11.59   Mean   :5.663   Mean   :23.09  
##  3rd Qu.:18.00   3rd Qu.:14.00   3rd Qu.:7.000   3rd Qu.:29.00  
##  Max.   :23.00   Max.   :19.00   Max.   :7.000   Max.   :42.00  
## 
EB.fem.df <- EB.fem.df %>% 
  mutate(EOE.level = case_when(
    EOE < 11 ~ "Low",
    EOE >= 11 ~ "High"))
    
EB.fem.df %>%
  group_by(EOE.level) %>%
  count()
## # A tibble: 2 × 2
## # Groups:   EOE.level [2]
##   EOE.level     n
##   <chr>     <int>
## 1 High         51
## 2 Low          50
EB.fem.df %>% ggplot(aes(sweet.liking, sugar.intake, color = EOE.level)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

TFEQ emotional analysis

## TFEQ Emotional 
EB.df %>%
  summary()
##       ID                 age            height          weight   
##  Length:145         Min.   :18.00   Min.   :53.00   Min.   : 80  
##  Class :character   1st Qu.:21.00   1st Qu.:63.00   1st Qu.:126  
##  Mode  :character   Median :24.00   Median :65.00   Median :145  
##                     Mean   :27.23   Mean   :65.32   Mean   :154  
##                     3rd Qu.:28.00   3rd Qu.:68.00   3rd Qu.:175  
##                     Max.   :68.00   Max.   :76.00   Max.   :320  
##                                                                  
##       sex          sex.other        race         race.other    ethnicity    
##  Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   : NA   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.: NA   1st Qu.:3.000   1st Qu.: NA   1st Qu.:2.000  
##  Median :2.000   Median : NA   Median :4.000   Median : NA   Median :2.000  
##  Mean   :1.697   Mean   :NaN   Mean   :4.248   Mean   :NaN   Mean   :1.752  
##  3rd Qu.:2.000   3rd Qu.: NA   3rd Qu.:5.000   3rd Qu.: NA   3rd Qu.:2.000  
##  Max.   :2.000   Max.   : NA   Max.   :7.000   Max.   : NA   Max.   :2.000  
##                  NA's   :145   NA's   :4       NA's   :145                  
##     us.born        birthplace     agetous         timeinus       education     
##  Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   :1.000   Min.   : 5.000  
##  1st Qu.:1.000   1st Qu.: NA   1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 6.000  
##  Median :1.000   Median : NA   Median :1.000   Median :1.000   Median : 9.000  
##  Mean   :1.345   Mean   :NaN   Mean   :2.441   Mean   :2.324   Mean   : 7.959  
##  3rd Qu.:2.000   3rd Qu.: NA   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.: 9.000  
##  Max.   :2.000   Max.   : NA   Max.   :7.000   Max.   :8.000   Max.   :12.000  
##                  NA's   :145                                                   
##  income.personal income.household    exercise        ssb.day     
##  Min.   :1.000   Min.   :1.000    Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:4.000    1st Qu.:1.000   1st Qu.:1.000  
##  Median :3.000   Median :5.000    Median :3.000   Median :1.000  
##  Mean   :3.545   Mean   :5.269    Mean   :3.352   Mean   :1.876  
##  3rd Qu.:5.000   3rd Qu.:7.000    3rd Qu.:5.000   3rd Qu.:2.000  
##  Max.   :8.000   Max.   :8.000    Max.   :8.000   Max.   :7.000  
##                                                                  
##  sugars.amount        BMI         sweet.liking     sugar.intake   
##  Min.   :1.000   Min.   :16.16   Min.   :-62.11   Min.   : 130.0  
##  1st Qu.:2.000   1st Qu.:21.13   1st Qu.: 18.50   1st Qu.: 260.0  
##  Median :2.000   Median :24.54   Median : 36.44   Median : 286.0  
##  Mean   :1.931   Mean   :25.39   Mean   : 33.17   Mean   : 405.6  
##  3rd Qu.:2.000   3rd Qu.:28.32   3rd Qu.: 51.22   3rd Qu.: 520.0  
##  Max.   :3.000   Max.   :55.78   Max.   : 92.00   Max.   :1300.0  
##                                                                   
##     sugarHEI          fatHEI         SuFatHEI           sHEI      
##  Min.   : 0.000   Min.   :1.820   Min.   : 1.820   Min.   :21.45  
##  1st Qu.: 0.000   1st Qu.:3.200   1st Qu.: 4.640   1st Qu.:41.42  
##  Median : 5.000   Median :4.640   Median : 8.200   Median :47.62  
##  Mean   : 4.379   Mean   :3.932   Mean   : 8.311   Mean   :47.12  
##  3rd Qu.: 5.000   3rd Qu.:4.640   3rd Qu.: 9.640   3rd Qu.:54.13  
##  Max.   :10.000   Max.   :6.560   Max.   :16.560   Max.   :68.00  
##                                                                   
##       BAS         uncontrolled    restraint       emotional           EF       
##  Min.   :10.00   Min.   : 9.0   Min.   : 6.00   Min.   : 6.00   Min.   : 3.00  
##  1st Qu.:31.00   1st Qu.:16.0   1st Qu.:12.00   1st Qu.: 9.00   1st Qu.:12.00  
##  Median :36.00   Median :19.0   Median :14.00   Median :12.00   Median :13.00  
##  Mean   :35.79   Mean   :18.7   Mean   :14.08   Mean   :12.29   Mean   :12.63  
##  3rd Qu.:42.00   3rd Qu.:22.0   3rd Qu.:17.00   3rd Qu.:15.00   3rd Qu.:15.00  
##  Max.   :50.00   Max.   :34.0   Max.   :24.00   Max.   :24.00   Max.   :15.00  
##                                                                                
##       EOE              EUE             FF              FR        
##  Min.   : 4.000   Min.   : 4.0   Min.   : 5.00   Min.   : 3.000  
##  1st Qu.: 7.000   1st Qu.:10.0   1st Qu.: 7.00   1st Qu.: 8.000  
##  Median : 9.000   Median :12.0   Median :10.00   Median :10.000  
##  Mean   : 9.855   Mean   :12.4   Mean   :10.23   Mean   : 9.786  
##  3rd Qu.:13.000   3rd Qu.:16.0   3rd Qu.:13.00   3rd Qu.:11.000  
##  Max.   :20.000   Max.   :20.0   Max.   :21.00   Max.   :15.000  
##                                                                  
##        SE              H               SR          instagram    
##  Min.   : 4.00   Min.   : 5.00   Min.   : 4.00   Min.   :1.000  
##  1st Qu.: 8.00   1st Qu.:13.00   1st Qu.: 9.00   1st Qu.:5.000  
##  Median :11.00   Median :15.00   Median :11.00   Median :6.000  
##  Mean   :11.26   Mean   :15.43   Mean   :10.92   Mean   :5.428  
##  3rd Qu.:15.00   3rd Qu.:18.00   3rd Qu.:13.00   3rd Qu.:7.000  
##  Max.   :20.00   Max.   :24.00   Max.   :19.00   Max.   :7.000  
##                                                                 
##       emo         EOE.level        
##  Min.   :10.00   Length:145        
##  1st Qu.:16.00   Class :character  
##  Median :22.00   Mode  :character  
##  Mean   :22.14                     
##  3rd Qu.:28.00                     
##  Max.   :42.00                     
## 
EB.df <- EB.df %>% 
  mutate(emo.level = case_when(
    emotional <= 12 ~ "Low",
    emotional > 12 ~ "High"))
    
EB.df %>%
  group_by(emo.level) %>%
  count()
## # A tibble: 2 × 2
## # Groups:   emo.level [2]
##   emo.level     n
##   <chr>     <int>
## 1 High         69
## 2 Low          76
EB.df %>% ggplot(aes(sweet.liking, sugar.intake, color = emo.level)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## TFEQ Emotional: females only
EB.fem.df %>%
  summary()
##       ID                 age            height          weight           sex   
##  Length:101         Min.   :18.00   Min.   :53.00   Min.   : 80.0   Min.   :2  
##  Class :character   1st Qu.:21.00   1st Qu.:62.00   1st Qu.:124.0   1st Qu.:2  
##  Mode  :character   Median :24.00   Median :64.00   Median :138.0   Median :2  
##                     Mean   :26.57   Mean   :63.81   Mean   :144.6   Mean   :2  
##                     3rd Qu.:28.00   3rd Qu.:66.00   3rd Qu.:160.0   3rd Qu.:2  
##                     Max.   :63.00   Max.   :71.00   Max.   :320.0   Max.   :2  
##                                                                                
##    sex.other        race         race.other    ethnicity        us.born     
##  Min.   : NA   Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   :1.000  
##  1st Qu.: NA   1st Qu.:3.000   1st Qu.: NA   1st Qu.:2.000   1st Qu.:1.000  
##  Median : NA   Median :4.000   Median : NA   Median :2.000   Median :1.000  
##  Mean   :NaN   Mean   :4.306   Mean   :NaN   Mean   :1.752   Mean   :1.327  
##  3rd Qu.: NA   3rd Qu.:5.000   3rd Qu.: NA   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   : NA   Max.   :7.000   Max.   : NA   Max.   :2.000   Max.   :2.000  
##  NA's   :101   NA's   :3       NA's   :101                                  
##    birthplace     agetous         timeinus       education      income.personal
##  Min.   : NA   Min.   :1.000   Min.   :1.000   Min.   : 5.000   Min.   :1.000  
##  1st Qu.: NA   1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 6.000   1st Qu.:2.000  
##  Median : NA   Median :1.000   Median :1.000   Median : 8.000   Median :3.000  
##  Mean   :NaN   Mean   :2.307   Mean   :2.396   Mean   : 7.782   Mean   :3.248  
##  3rd Qu.: NA   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.: 9.000   3rd Qu.:4.000  
##  Max.   : NA   Max.   :7.000   Max.   :8.000   Max.   :12.000   Max.   :8.000  
##  NA's   :101                                                                   
##  income.household    exercise        ssb.day      sugars.amount 
##  Min.   :1.000    Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:4.000    1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :5.000    Median :3.000   Median :1.000   Median :2.00  
##  Mean   :5.139    Mean   :3.168   Mean   :1.772   Mean   :1.96  
##  3rd Qu.:7.000    3rd Qu.:5.000   3rd Qu.:2.000   3rd Qu.:2.00  
##  Max.   :8.000    Max.   :8.000   Max.   :7.000   Max.   :3.00  
##                                                                 
##       BMI         sweet.liking     sugar.intake       sugarHEI     
##  Min.   :16.16   Min.   :-62.11   Min.   : 130.0   Min.   : 0.000  
##  1st Qu.:21.03   1st Qu.: 16.44   1st Qu.: 260.0   1st Qu.: 5.000  
##  Median :24.36   Median : 36.89   Median : 286.0   Median : 5.000  
##  Mean   :25.07   Mean   : 31.80   Mean   : 392.1   Mean   : 4.356  
##  3rd Qu.:27.92   3rd Qu.: 51.11   3rd Qu.: 442.0   3rd Qu.: 5.000  
##  Max.   :55.06   Max.   : 85.00   Max.   :1196.0   Max.   :10.000  
##                                                                    
##      fatHEI         SuFatHEI          sHEI            BAS       
##  Min.   :1.820   Min.   : 1.82   Min.   :29.55   Min.   :10.00  
##  1st Qu.:3.200   1st Qu.: 6.82   1st Qu.:42.23   1st Qu.:30.00  
##  Median :4.640   Median : 8.20   Median :49.71   Median :35.00  
##  Mean   :4.024   Mean   : 8.38   Mean   :48.90   Mean   :35.07  
##  3rd Qu.:4.640   3rd Qu.: 9.64   3rd Qu.:55.63   3rd Qu.:42.00  
##  Max.   :6.560   Max.   :16.56   Max.   :68.00   Max.   :50.00  
##                                                                 
##   uncontrolled     restraint       emotional           EF            EOE       
##  Min.   : 9.00   Min.   : 6.00   Min.   : 6.00   Min.   : 3.0   Min.   : 4.00  
##  1st Qu.:15.00   1st Qu.:11.00   1st Qu.: 9.00   1st Qu.:11.0   1st Qu.: 7.00  
##  Median :18.00   Median :14.00   Median :13.00   Median :13.0   Median :11.00  
##  Mean   :18.15   Mean   :13.93   Mean   :12.68   Mean   :12.5   Mean   :10.41  
##  3rd Qu.:21.00   3rd Qu.:17.00   3rd Qu.:16.00   3rd Qu.:15.0   3rd Qu.:13.00  
##  Max.   :32.00   Max.   :22.00   Max.   :24.00   Max.   :15.0   Max.   :19.00  
##                                                                                
##       EUE              FF              FR               SE      
##  Min.   : 4.00   Min.   : 5.00   Min.   : 4.000   Min.   : 4.0  
##  1st Qu.:10.00   1st Qu.: 8.00   1st Qu.: 8.000   1st Qu.: 9.0  
##  Median :13.00   Median :10.00   Median :10.000   Median :12.0  
##  Mean   :12.97   Mean   :10.56   Mean   : 9.762   Mean   :12.1  
##  3rd Qu.:16.00   3rd Qu.:13.00   3rd Qu.:11.000   3rd Qu.:16.0  
##  Max.   :20.00   Max.   :21.00   Max.   :15.000   Max.   :20.0  
##                                                                 
##        H               SR          instagram          emo       
##  Min.   : 5.00   Min.   : 4.00   Min.   :1.000   Min.   :10.00  
##  1st Qu.:14.00   1st Qu.: 9.00   1st Qu.:5.000   1st Qu.:16.00  
##  Median :16.00   Median :12.00   Median :6.000   Median :23.00  
##  Mean   :15.72   Mean   :11.59   Mean   :5.663   Mean   :23.09  
##  3rd Qu.:18.00   3rd Qu.:14.00   3rd Qu.:7.000   3rd Qu.:29.00  
##  Max.   :23.00   Max.   :19.00   Max.   :7.000   Max.   :42.00  
##                                                                 
##   EOE.level        
##  Length:101        
##  Class :character  
##  Mode  :character  
##                    
##                    
##                    
## 
EB.fem.df <- EB.fem.df %>% 
  mutate(emo.level = case_when(
    emotional <= 12 ~ "Low",
    emotional > 12 ~ "High"))
    
EB.fem.df %>%
  group_by(emo.level) %>%
  count()
## # A tibble: 2 × 2
## # Groups:   emo.level [2]
##   emo.level     n
##   <chr>     <int>
## 1 High         54
## 2 Low          47
EB.fem.df %>% ggplot(aes(sweet.liking, sugar.intake, color = emo.level)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

TFEQ restraint analysis

## TFEQ Emotional 
EB.df %>%
  summary()
##       ID                 age            height          weight   
##  Length:145         Min.   :18.00   Min.   :53.00   Min.   : 80  
##  Class :character   1st Qu.:21.00   1st Qu.:63.00   1st Qu.:126  
##  Mode  :character   Median :24.00   Median :65.00   Median :145  
##                     Mean   :27.23   Mean   :65.32   Mean   :154  
##                     3rd Qu.:28.00   3rd Qu.:68.00   3rd Qu.:175  
##                     Max.   :68.00   Max.   :76.00   Max.   :320  
##                                                                  
##       sex          sex.other        race         race.other    ethnicity    
##  Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   : NA   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.: NA   1st Qu.:3.000   1st Qu.: NA   1st Qu.:2.000  
##  Median :2.000   Median : NA   Median :4.000   Median : NA   Median :2.000  
##  Mean   :1.697   Mean   :NaN   Mean   :4.248   Mean   :NaN   Mean   :1.752  
##  3rd Qu.:2.000   3rd Qu.: NA   3rd Qu.:5.000   3rd Qu.: NA   3rd Qu.:2.000  
##  Max.   :2.000   Max.   : NA   Max.   :7.000   Max.   : NA   Max.   :2.000  
##                  NA's   :145   NA's   :4       NA's   :145                  
##     us.born        birthplace     agetous         timeinus       education     
##  Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   :1.000   Min.   : 5.000  
##  1st Qu.:1.000   1st Qu.: NA   1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 6.000  
##  Median :1.000   Median : NA   Median :1.000   Median :1.000   Median : 9.000  
##  Mean   :1.345   Mean   :NaN   Mean   :2.441   Mean   :2.324   Mean   : 7.959  
##  3rd Qu.:2.000   3rd Qu.: NA   3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.: 9.000  
##  Max.   :2.000   Max.   : NA   Max.   :7.000   Max.   :8.000   Max.   :12.000  
##                  NA's   :145                                                   
##  income.personal income.household    exercise        ssb.day     
##  Min.   :1.000   Min.   :1.000    Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:4.000    1st Qu.:1.000   1st Qu.:1.000  
##  Median :3.000   Median :5.000    Median :3.000   Median :1.000  
##  Mean   :3.545   Mean   :5.269    Mean   :3.352   Mean   :1.876  
##  3rd Qu.:5.000   3rd Qu.:7.000    3rd Qu.:5.000   3rd Qu.:2.000  
##  Max.   :8.000   Max.   :8.000    Max.   :8.000   Max.   :7.000  
##                                                                  
##  sugars.amount        BMI         sweet.liking     sugar.intake   
##  Min.   :1.000   Min.   :16.16   Min.   :-62.11   Min.   : 130.0  
##  1st Qu.:2.000   1st Qu.:21.13   1st Qu.: 18.50   1st Qu.: 260.0  
##  Median :2.000   Median :24.54   Median : 36.44   Median : 286.0  
##  Mean   :1.931   Mean   :25.39   Mean   : 33.17   Mean   : 405.6  
##  3rd Qu.:2.000   3rd Qu.:28.32   3rd Qu.: 51.22   3rd Qu.: 520.0  
##  Max.   :3.000   Max.   :55.78   Max.   : 92.00   Max.   :1300.0  
##                                                                   
##     sugarHEI          fatHEI         SuFatHEI           sHEI      
##  Min.   : 0.000   Min.   :1.820   Min.   : 1.820   Min.   :21.45  
##  1st Qu.: 0.000   1st Qu.:3.200   1st Qu.: 4.640   1st Qu.:41.42  
##  Median : 5.000   Median :4.640   Median : 8.200   Median :47.62  
##  Mean   : 4.379   Mean   :3.932   Mean   : 8.311   Mean   :47.12  
##  3rd Qu.: 5.000   3rd Qu.:4.640   3rd Qu.: 9.640   3rd Qu.:54.13  
##  Max.   :10.000   Max.   :6.560   Max.   :16.560   Max.   :68.00  
##                                                                   
##       BAS         uncontrolled    restraint       emotional           EF       
##  Min.   :10.00   Min.   : 9.0   Min.   : 6.00   Min.   : 6.00   Min.   : 3.00  
##  1st Qu.:31.00   1st Qu.:16.0   1st Qu.:12.00   1st Qu.: 9.00   1st Qu.:12.00  
##  Median :36.00   Median :19.0   Median :14.00   Median :12.00   Median :13.00  
##  Mean   :35.79   Mean   :18.7   Mean   :14.08   Mean   :12.29   Mean   :12.63  
##  3rd Qu.:42.00   3rd Qu.:22.0   3rd Qu.:17.00   3rd Qu.:15.00   3rd Qu.:15.00  
##  Max.   :50.00   Max.   :34.0   Max.   :24.00   Max.   :24.00   Max.   :15.00  
##                                                                                
##       EOE              EUE             FF              FR        
##  Min.   : 4.000   Min.   : 4.0   Min.   : 5.00   Min.   : 3.000  
##  1st Qu.: 7.000   1st Qu.:10.0   1st Qu.: 7.00   1st Qu.: 8.000  
##  Median : 9.000   Median :12.0   Median :10.00   Median :10.000  
##  Mean   : 9.855   Mean   :12.4   Mean   :10.23   Mean   : 9.786  
##  3rd Qu.:13.000   3rd Qu.:16.0   3rd Qu.:13.00   3rd Qu.:11.000  
##  Max.   :20.000   Max.   :20.0   Max.   :21.00   Max.   :15.000  
##                                                                  
##        SE              H               SR          instagram    
##  Min.   : 4.00   Min.   : 5.00   Min.   : 4.00   Min.   :1.000  
##  1st Qu.: 8.00   1st Qu.:13.00   1st Qu.: 9.00   1st Qu.:5.000  
##  Median :11.00   Median :15.00   Median :11.00   Median :6.000  
##  Mean   :11.26   Mean   :15.43   Mean   :10.92   Mean   :5.428  
##  3rd Qu.:15.00   3rd Qu.:18.00   3rd Qu.:13.00   3rd Qu.:7.000  
##  Max.   :20.00   Max.   :24.00   Max.   :19.00   Max.   :7.000  
##                                                                 
##       emo         EOE.level          emo.level        
##  Min.   :10.00   Length:145         Length:145        
##  1st Qu.:16.00   Class :character   Class :character  
##  Median :22.00   Mode  :character   Mode  :character  
##  Mean   :22.14                                        
##  3rd Qu.:28.00                                        
##  Max.   :42.00                                        
## 
EB.df <- EB.df %>% 
  mutate(res.level = case_when(
    restraint <= 14 ~ "Low",
    restraint > 14 ~ "High"))
    
EB.df %>%
  group_by(res.level) %>%
  count()
## # A tibble: 2 × 2
## # Groups:   res.level [2]
##   res.level     n
##   <chr>     <int>
## 1 High         64
## 2 Low          81
EB.df %>% ggplot(aes(sweet.liking, sugar.intake, color = res.level)) +
  geom_point() +
  geom_smooth(method = lm, se = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## TFEQ Emotional: females only
EB.fem.df %>%
  summary()
##       ID                 age            height          weight           sex   
##  Length:101         Min.   :18.00   Min.   :53.00   Min.   : 80.0   Min.   :2  
##  Class :character   1st Qu.:21.00   1st Qu.:62.00   1st Qu.:124.0   1st Qu.:2  
##  Mode  :character   Median :24.00   Median :64.00   Median :138.0   Median :2  
##                     Mean   :26.57   Mean   :63.81   Mean   :144.6   Mean   :2  
##                     3rd Qu.:28.00   3rd Qu.:66.00   3rd Qu.:160.0   3rd Qu.:2  
##                     Max.   :63.00   Max.   :71.00   Max.   :320.0   Max.   :2  
##                                                                                
##    sex.other        race         race.other    ethnicity        us.born     
##  Min.   : NA   Min.   :1.000   Min.   : NA   Min.   :1.000   Min.   :1.000  
##  1st Qu.: NA   1st Qu.:3.000   1st Qu.: NA   1st Qu.:2.000   1st Qu.:1.000  
##  Median : NA   Median :4.000   Median : NA   Median :2.000   Median :1.000  
##  Mean   :NaN   Mean   :4.306   Mean   :NaN   Mean   :1.752   Mean   :1.327  
##  3rd Qu.: NA   3rd Qu.:5.000   3rd Qu.: NA   3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   : NA   Max.   :7.000   Max.   : NA   Max.   :2.000   Max.   :2.000  
##  NA's   :101   NA's   :3       NA's   :101                                  
##    birthplace     agetous         timeinus       education      income.personal
##  Min.   : NA   Min.   :1.000   Min.   :1.000   Min.   : 5.000   Min.   :1.000  
##  1st Qu.: NA   1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 6.000   1st Qu.:2.000  
##  Median : NA   Median :1.000   Median :1.000   Median : 8.000   Median :3.000  
##  Mean   :NaN   Mean   :2.307   Mean   :2.396   Mean   : 7.782   Mean   :3.248  
##  3rd Qu.: NA   3rd Qu.:4.000   3rd Qu.:4.000   3rd Qu.: 9.000   3rd Qu.:4.000  
##  Max.   : NA   Max.   :7.000   Max.   :8.000   Max.   :12.000   Max.   :8.000  
##  NA's   :101                                                                   
##  income.household    exercise        ssb.day      sugars.amount 
##  Min.   :1.000    Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:4.000    1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :5.000    Median :3.000   Median :1.000   Median :2.00  
##  Mean   :5.139    Mean   :3.168   Mean   :1.772   Mean   :1.96  
##  3rd Qu.:7.000    3rd Qu.:5.000   3rd Qu.:2.000   3rd Qu.:2.00  
##  Max.   :8.000    Max.   :8.000   Max.   :7.000   Max.   :3.00  
##                                                                 
##       BMI         sweet.liking     sugar.intake       sugarHEI     
##  Min.   :16.16   Min.   :-62.11   Min.   : 130.0   Min.   : 0.000  
##  1st Qu.:21.03   1st Qu.: 16.44   1st Qu.: 260.0   1st Qu.: 5.000  
##  Median :24.36   Median : 36.89   Median : 286.0   Median : 5.000  
##  Mean   :25.07   Mean   : 31.80   Mean   : 392.1   Mean   : 4.356  
##  3rd Qu.:27.92   3rd Qu.: 51.11   3rd Qu.: 442.0   3rd Qu.: 5.000  
##  Max.   :55.06   Max.   : 85.00   Max.   :1196.0   Max.   :10.000  
##                                                                    
##      fatHEI         SuFatHEI          sHEI            BAS       
##  Min.   :1.820   Min.   : 1.82   Min.   :29.55   Min.   :10.00  
##  1st Qu.:3.200   1st Qu.: 6.82   1st Qu.:42.23   1st Qu.:30.00  
##  Median :4.640   Median : 8.20   Median :49.71   Median :35.00  
##  Mean   :4.024   Mean   : 8.38   Mean   :48.90   Mean   :35.07  
##  3rd Qu.:4.640   3rd Qu.: 9.64   3rd Qu.:55.63   3rd Qu.:42.00  
##  Max.   :6.560   Max.   :16.56   Max.   :68.00   Max.   :50.00  
##                                                                 
##   uncontrolled     restraint       emotional           EF            EOE       
##  Min.   : 9.00   Min.   : 6.00   Min.   : 6.00   Min.   : 3.0   Min.   : 4.00  
##  1st Qu.:15.00   1st Qu.:11.00   1st Qu.: 9.00   1st Qu.:11.0   1st Qu.: 7.00  
##  Median :18.00   Median :14.00   Median :13.00   Median :13.0   Median :11.00  
##  Mean   :18.15   Mean   :13.93   Mean   :12.68   Mean   :12.5   Mean   :10.41  
##  3rd Qu.:21.00   3rd Qu.:17.00   3rd Qu.:16.00   3rd Qu.:15.0   3rd Qu.:13.00  
##  Max.   :32.00   Max.   :22.00   Max.   :24.00   Max.   :15.0   Max.   :19.00  
##                                                                                
##       EUE              FF              FR               SE      
##  Min.   : 4.00   Min.   : 5.00   Min.   : 4.000   Min.   : 4.0  
##  1st Qu.:10.00   1st Qu.: 8.00   1st Qu.: 8.000   1st Qu.: 9.0  
##  Median :13.00   Median :10.00   Median :10.000   Median :12.0  
##  Mean   :12.97   Mean   :10.56   Mean   : 9.762   Mean   :12.1  
##  3rd Qu.:16.00   3rd Qu.:13.00   3rd Qu.:11.000   3rd Qu.:16.0  
##  Max.   :20.00   Max.   :21.00   Max.   :15.000   Max.   :20.0  
##                                                                 
##        H               SR          instagram          emo       
##  Min.   : 5.00   Min.   : 4.00   Min.   :1.000   Min.   :10.00  
##  1st Qu.:14.00   1st Qu.: 9.00   1st Qu.:5.000   1st Qu.:16.00  
##  Median :16.00   Median :12.00   Median :6.000   Median :23.00  
##  Mean   :15.72   Mean   :11.59   Mean   :5.663   Mean   :23.09  
##  3rd Qu.:18.00   3rd Qu.:14.00   3rd Qu.:7.000   3rd Qu.:29.00  
##  Max.   :23.00   Max.   :19.00   Max.   :7.000   Max.   :42.00  
##                                                                 
##   EOE.level          emo.level        
##  Length:101         Length:101        
##  Class :character   Class :character  
##  Mode  :character   Mode  :character  
##                                       
##                                       
##                                       
## 
EB.fem.df <- EB.fem.df %>% 
  mutate(res.level = case_when(
    restraint < 14 ~ "Low",
    restraint >= 14 ~ "High"))
    
EB.fem.df %>%
  group_by(res.level) %>%
  count()
## # A tibble: 2 × 2
## # Groups:   res.level [2]
##   res.level     n
##   <chr>     <int>
## 1 High         54
## 2 Low          47
EB.fem.df %>% ggplot(aes(sweet.liking, sugar.intake, color = res.level)) +
  geom_point() +
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

Liking hierarchial clustering

liking.df[is.na(liking.df)] <- 0 ## replace "NA"s with 0s

res.dist <- dist(x = liking.df, method = "euclidean") ## calculate distance
Likingclust <- hclust(res.dist, method = "ward.D") ## create clusters
plot(Likingclust) ## create dendrogram to visualize clusters

fviz_nbclust(liking.df, FUNcluster = hcut, method = "wss") ## identify number of clusters

Likinggroup <- cutree(Likingclust, k = 3) ## break clusters into desirable number of groups
km.res <- kmeans(liking.df, 3, nstart = 25)
fviz_cluster(km.res, data = liking.df, ggtheme = theme_light())

## calculate mean score for each cluster
tapply(liking.df$sweet.liking, Likinggroup, mean)
##        1        2        3 
## 43.91852 30.84661 15.17101
tapply(liking.df$unhealthyfat.liking, Likinggroup, mean)
##        1        2        3 
## 37.69778 28.98214 -2.38750
tapply(liking.df$alcohol.liking, Likinggroup, mean)
##          1          2          3 
##  22.736667   5.669048 -13.178125
tapply(liking.df$saltyfat.liking, Likinggroup, mean)
##        1        2        3 
## 55.54984 43.93727 -0.78125
## identify individuals within each cluster
Likeclust1 <- subset(liking.df, Likinggroup == 1)
Likeclust2 <- subset(liking.df, Likinggroup == 2)
Likeclust3 <- subset(liking.df, Likinggroup == 3)
Likeclust4 <- subset(liking.df, Likinggroup == 4)

sHEI hierarchial clustering

HEI.clust.df <- select(HEI.df, -c("ID", "sugar.intake"))
HEI.clust.df[is.na(HEI.clust.df)] <- 0 ## replace "NA"s with 0s

res.dist <- dist(x = HEI.clust.df[1:13], method = "euclidean") ## calculate distance
HEIclust <- hclust(res.dist, method = "ward.D") ## create clusters
plot(HEIclust) ## create dendrogram to visualize clusters

fviz_nbclust(HEI.clust.df, FUNcluster = hcut, method = "wss") ## identify number of clusters

HEIgroup <- cutree(HEIclust, k = 4) ## break clusters into desirable number of groups
km.res <- kmeans(HEI.clust.df[1:13], 4, nstart = 25)
fviz_cluster(km.res, data = HEI.clust.df[1:13], ggtheme = theme_light())

## calculate mean score for each cluster
tapply(HEI.clust.df$sugarHEI, HEIgroup, mean)
##         1         2         3         4 
## 6.1538462 4.5555556 3.8888889 0.2380952
tapply(HEI.clust.df$fatHEI, HEIgroup, mean)
##        1        2        3        4 
## 4.844231 3.297333 4.144444 2.757143
tapply(HEI.clust.df$SuFatHEI, HEIgroup, mean)
##         1         2         3         4 
## 10.998077  7.852889  8.033333  2.995238
tapply(HEI.clust.df$sHEI, HEIgroup, mean)
##        1        2        3        4 
## 44.99000 54.02244 50.70519 33.01524
## identify individuals within each cluster
HEIclust1 <- subset(HEI.clust.df, HEIgroup == 1)
HEIclust2 <- subset(HEI.clust.df, HEIgroup == 2)
HEIclust3 <- subset(HEI.clust.df, HEIgroup == 3)
HEIclust4 <- subset(HEI.clust.df, HEIgroup == 4)

Behavior hierarchial clustering

AEBQ.df <- AEBQ.df %>% select(EF:SR) #select relevant columns

res.dist <- dist(x = AEBQ.df, method = "euclidean") ## calculate distance
AEBQclust <- hclust(res.dist, method = "ward.D") ## create clusters
plot(AEBQclust) ## create dendrogram to visualize clusters

fviz_nbclust(AEBQ.df, FUNcluster = hcut, method = "wss") ## identify number of clusters

AEBQgroup <- cutree(AEBQclust, k = 4) ## break clusters into desirable number of groups
km.res <- kmeans(AEBQ.df, 4, nstart = 25)
fviz_cluster(km.res, data = AEBQ.df, ggtheme = theme_light())

## calculate mean score for each cluster
tapply(liking.df$sweet.liking, Likinggroup, mean)
##        1        2        3 
## 43.91852 30.84661 15.17101
tapply(liking.df$unhealthyfat.liking, Likinggroup, mean)
##        1        2        3 
## 37.69778 28.98214 -2.38750
tapply(liking.df$alcohol.liking, Likinggroup, mean)
##          1          2          3 
##  22.736667   5.669048 -13.178125
tapply(liking.df$saltyfat.liking, Likinggroup, mean)
##        1        2        3 
## 55.54984 43.93727 -0.78125
## identify individuals within each cluster
Likeclust1 <- subset(liking.df, Likinggroup == 1)
Likeclust2 <- subset(liking.df, Likinggroup == 2)
Likeclust3 <- subset(liking.df, Likinggroup == 3)
Likeclust4 <- subset(liking.df, Likinggroup == 4)

AChemS poster graphs

summary(aov(sugar.intake ~ sex, data = EB.df))
##              Df  Sum Sq Mean Sq F value Pr(>F)
## sex           1   61026   61026   0.964  0.328
## Residuals   143 9050643   63291
summary(aov(sweet.liking ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)
## sex           1    630   629.8   0.975  0.325
## Residuals   143  92409   646.2
summary(aov(restraint ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)
## sex           1      7   7.014   0.496  0.482
## Residuals   143   2021  14.134
summary(aov(emotional ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)
## sex           1   51.5   51.54   2.447   0.12
## Residuals   143 3012.3   21.06
summary(aov(uncontrolled ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)  
## sex           1  102.5  102.50   4.719 0.0315 *
## Residuals   143 3105.7   21.72                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Age X sweet liking
EB.df %>%
  ggplot(aes(age, sweet.liking)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() +
  ylim(-100, 100)
## `geom_smooth()` using formula = 'y ~ x'

## BMI X sweet liking
EB.df %>%
  ggplot(aes(BMI, sweet.liking)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() +
  ylim(-100, 100)
## `geom_smooth()` using formula = 'y ~ x'

## Differents in eating behavior
EB.df %>% 
  select(sex, restraint, uncontrolled, emotional) %>%
  pivot_longer(cols = c("restraint", "uncontrolled", "emotional"), names_to = "TFEQ", values_to = "score") %>%
  group_by(sex, TFEQ) %>%
  summarize(mean = mean (score), sd = sd(score)) %>%
  ggplot(aes(x = TFEQ, y = mean, fill = as.factor(sex))) +
  geom_bar(stat = "identity", color = "black", position = position_dodge()) +
  geom_errorbar(aes(ymin = mean - sd/sqrt(5), ymax = mean + sd/sqrt(5), width = 0.3), position = position_dodge(1)) +
  scale_fill_manual(values = c("#00897B", "#FBC02D","#00897B", "#FBC02D", "#00897B", "#FBC02D" ))+
  theme_bw() +
  ylim(0, 24)
## `summarise()` has grouped output by 'sex'. You can override using the `.groups`
## argument.

## Sweet liking and sugar intake 
EB.df %>%
  ggplot(aes(sweet.liking, sugar.intake/4)) +
  geom_point()+
  geom_smooth(method = lm, fullrange = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() +
  ylim(-10, 330)
## `geom_smooth()` using formula = 'y ~ x'

## Uncontrolled eating
EB.df %>%
  ggplot(aes(uncontrolled, sweet.liking)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() +
  ylim(-100, 100)
## `geom_smooth()` using formula = 'y ~ x'

Social media poster graphs

summary(aov(sugar.intake ~ sex, data = EB.df))
##              Df  Sum Sq Mean Sq F value Pr(>F)
## sex           1   61026   61026   0.964  0.328
## Residuals   143 9050643   63291
summary(aov(sweet.liking ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)
## sex           1    630   629.8   0.975  0.325
## Residuals   143  92409   646.2
summary(aov(restraint ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)
## sex           1      7   7.014   0.496  0.482
## Residuals   143   2021  14.134
summary(aov(emotional ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)
## sex           1   51.5   51.54   2.447   0.12
## Residuals   143 3012.3   21.06
summary(aov(uncontrolled ~ sex, data = EB.df))
##              Df Sum Sq Mean Sq F value Pr(>F)  
## sex           1  102.5  102.50   4.719 0.0315 *
## Residuals   143 3105.7   21.72                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Age X BAS
EB.df %>%
  ggplot(aes(age, BAS)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## BMI X BAS
EB.df %>%
  ggplot(aes(BMI, BAS)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## Differents in eating behavior
EB.df %>% 
  select(sex, restraint, uncontrolled, emotional) %>%
  pivot_longer(cols = c("restraint", "uncontrolled", "emotional"), names_to = "TFEQ", values_to = "score") %>%
  group_by(sex, TFEQ) %>%
  summarize(mean = mean (score), sd = sd(score)) %>%
  ggplot(aes(x = TFEQ, y = mean, fill = as.factor(sex))) +
  geom_bar(stat = "identity", color = "black", position = position_dodge()) +
  geom_errorbar(aes(ymin = mean - sd/sqrt(5), ymax = mean + sd/sqrt(5), width = 0.3), position = position_dodge(1)) +
  scale_fill_manual(values = c("#00897B", "#FBC02D","#00897B", "#FBC02D", "#00897B", "#FBC02D" ))+
  theme_bw() +
  ylim(0, 24)
## `summarise()` has grouped output by 'sex'. You can override using the `.groups`
## argument.

## Social media and body appreciation
EB.df %>%
  ggplot(aes(instagram, BAS)) +
  geom_point()+
  geom_smooth(method = lm, fullrange = FALSE)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## Instagram and emotional 
EB.df %>%
  ggplot(aes(instagram, emotional)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## Instagram and restraint
EB.df %>%
  ggplot(aes(instagram, restraint)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## Instagram and uncontrolled
EB.df %>%
  ggplot(aes(instagram, uncontrolled)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## BAS and emotional 
EB.df %>%
  ggplot(aes(BAS, emotional)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## BAS and restraint
EB.df %>%
  ggplot(aes(BAS, restraint)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'

## BAS and uncontrolled
EB.df %>%
  ggplot(aes(BAS, uncontrolled)) +
  geom_point()+
  geom_smooth(method = lm)+
  stat_cor(method = "pearson") +
  theme_light() 
## `geom_smooth()` using formula = 'y ~ x'