Load Packages

library(tidyverse)
library(codebookr)
library(summarytools)
library(broom) 
library(performance)
library(gt)
library(gtsummary)
library(janitor)
library(forcats)
library(margins)
library(ggplot2)
library(expss)
library(glmtoolbox)
library(DescTools)

Import Data

load("~/Desktop/R-Code/SDOH_Vax/flu_2019_later_1.8.22.rda")
View(flu_2019_later_1.8.22)

Include only patients from Michigan

flu_2019_MI <- flu_2019_later_1.8.22[ which(flu_2019_later_1.8.22$PATIENT_STATE_CD=='MI'), ]

codebook


flu_2019_MI %>% 
dplyr::select(ibd_3, age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, max_ch, PATIENT_STATE_CD, r_pct, IC, insurance, pop_dens, RPL_THEMES, RPL_4, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, act_tob, flu_2019, , prevnar, pvax, any_pneum, any_pneum, total_cov_vax, total_shingrix) -> flu_clean1
print(dfSummary(flu_clean1), method = 'render')

Data Frame Summary

flu_clean1

Dimensions: 11050 x 27
Duplicates: 0
No Variable Label Stats / Values Freqs (% of Valid) Graph Valid Missing
1 ibd_3 [labelled, factor] IBD Diagnosis
1. CD
2. UC
3. IC
4. Unknown
5508(49.8%)
5468(49.5%)
2(0.0%)
72(0.7%)
11050 (100.0%) 0 (0.0%)
2 age_yrs [labelled, numeric] Age
Mean (sd) : 48.8 (19.4)
min ≤ med ≤ max:
1 ≤ 49.2 ≤ 99.9
IQR (CV) : 31.5 (0.4)
8992 distinct values 11050 (100.0%) 0 (0.0%)
3 gender [labelled, factor] Gender
1. Male
2. Female
5029(45.5%)
6021(54.5%)
11050 (100.0%) 0 (0.0%)
4 race_5 [labelled, factor] Race
1. White
2. Black
3. Asian or Pacific Islander
4. American Indian or Alaska
5. Other
9554(86.5%)
724(6.6%)
277(2.5%)
42(0.4%)
453(4.1%)
11050 (100.0%) 0 (0.0%)
5 ethnic_3 [labelled, factor] Ethnicity
1. Hispanic
2. Non-Hispanic
231(2.2%)
10489(97.8%)
10720 (97.0%) 330 (3.0%)
6 lang_3 [labelled, factor] Preferred Language
1. English
2. Other
10933(98.9%)
117(1.1%)
11050 (100.0%) 0 (0.0%)
7 relig_affil [labelled, factor] Any Religious Affiliation
1. Yes
2. No
6071(57.7%)
4451(42.3%)
10522 (95.2%) 528 (4.8%)
8 mstat_5 [labelled, factor] Marital Status
1. Married
2. Single
3. Divorced/Separated
4. Widowed
4347(52.6%)
3383(40.9%)
338(4.1%)
194(2.3%)
8262 (74.8%) 2788 (25.2%)
9 max_ch [labelled, numeric] Charlson Comorbidity Index
Mean (sd) : 3.5 (5)
min ≤ med ≤ max:
0 ≤ 1 ≤ 27
IQR (CV) : 5 (1.4)
28 distinct values 11050 (100.0%) 0 (0.0%)
10 PATIENT_STATE_CD [labelled, character] State 1. MI
11050(100.0%)
11050 (100.0%) 0 (0.0%)
11 r_pct [labelled, numeric] Percentage Republican Voters in Census Tract
Mean (sd) : 44.5 (17.9)
min ≤ med ≤ max:
1.8 ≤ 47.6 ≤ 81.2
IQR (CV) : 24.7 (0.4)
1922 distinct values 9469 (85.7%) 1581 (14.3%)
12 IC [labelled, numeric] Immunocompromised
Min : 0
Mean : 0.6
Max : 1
0:3602(38.0%)
1:5872(62.0%)
9474 (85.7%) 1576 (14.3%)
13 insurance [labelled, factor] Insurance Type
1. Private Insurance
2. Medicaid
3. Medicare
4. Other Governmental
5. Other
7001(63.5%)
1747(15.8%)
2142(19.4%)
95(0.9%)
47(0.4%)
11032 (99.8%) 18 (0.2%)
14 pop_dens [labelled, numeric] Population Density of Census Tract
Mean (sd) : 2137 (2277.7)
min ≤ med ≤ max:
2.5 ≤ 1520.7 ≤ 19280.6
IQR (CV) : 2957.6 (1.1)
2105 distinct values 10799 (97.7%) 251 (2.3%)
15 RPL_THEMES [labelled, numeric] Social Vulnerability Index
Mean (sd) : 0.4 (0.3)
min ≤ med ≤ max:
0 ≤ 0.3 ≤ 1
IQR (CV) : 0.4 (0.7)
2099 distinct values 11014 (99.7%) 36 (0.3%)
16 RPL_4 [labelled, factor] SVI by Quartile
1. First
2. Second
3. Third
4. Fourth
4472(40.6%)
3317(30.1%)
2170(19.7%)
1055(9.6%)
11014 (99.7%) 36 (0.3%)
17 RPL_THEME1 [labelled, numeric] Socioeconomic Status
Mean (sd) : 0.3 (0.3)
min ≤ med ≤ max:
0 ≤ 0.3 ≤ 1
IQR (CV) : 0.4 (0.7)
2062 distinct values 10970 (99.3%) 80 (0.7%)
18 RPL_THEME2 [labelled, numeric] Household Composition
Mean (sd) : 0.4 (0.3)
min ≤ med ≤ max:
0 ≤ 0.3 ≤ 1
IQR (CV) : 0.4 (0.7)
2018 distinct values 11014 (99.7%) 36 (0.3%)
19 RPL_THEME3 [labelled, numeric] Minority and Language Status
Mean (sd) : 0.5 (0.3)
min ≤ med ≤ max:
0 ≤ 0.5 ≤ 1
IQR (CV) : 0.5 (0.6)
1434 distinct values 11020 (99.7%) 30 (0.3%)
20 RPL_THEME4 [labelled, numeric] Housing and Transportation
Mean (sd) : 0.4 (0.3)
min ≤ med ≤ max:
0 ≤ 0.4 ≤ 1
IQR (CV) : 0.5 (0.7)
2034 distinct values 10997 (99.5%) 53 (0.5%)
21 act_tob [labelled, factor] Active Tobacco Use
1. No
2. Yes
9574(88.0%)
1305(12.0%)
10879 (98.5%) 171 (1.5%)
22 flu_2019 [labelled, numeric] 2019 Flu Vaccination
Min : 0
Mean : 0.4
Max : 1
0:6708(60.7%)
1:4342(39.3%)
11050 (100.0%) 0 (0.0%)
23 prevnar [labelled, numeric] Pneumococcal Conjugate Vaccination
Mean (sd) : 0.4 (0.6)
min ≤ med ≤ max:
0 ≤ 0 ≤ 8
IQR (CV) : 1 (1.4)
0:6938(62.8%)
1:3856(34.9%)
2:198(1.8%)
3:27(0.2%)
4:24(0.2%)
5:4(0.0%)
6:1(0.0%)
7:1(0.0%)
8:1(0.0%)
11050 (100.0%) 0 (0.0%)
24 pvax [labelled, numeric] Pneumococcal Polysaccharide Vaccination
Mean (sd) : 0.4 (0.5)
min ≤ med ≤ max:
0 ≤ 0 ≤ 6
IQR (CV) : 1 (1.5)
0:7439(67.3%)
1:3336(30.2%)
2:261(2.4%)
3:11(0.1%)
5:1(0.0%)
6:2(0.0%)
11050 (100.0%) 0 (0.0%)
25 any_pneum [labelled, numeric] Any Pneumonia Vaccine
Mean (sd) : 0.8 (0.9)
min ≤ med ≤ max:
0 ≤ 0 ≤ 9
IQR (CV) : 1 (1.3)
0:5916(53.5%)
1:2397(21.7%)
2:2361(21.4%)
3:289(2.6%)
4:61(0.6%)
5:15(0.1%)
6:7(0.1%)
7:2(0.0%)
8:1(0.0%)
9:1(0.0%)
11050 (100.0%) 0 (0.0%)
26 total_cov_vax [labelled, numeric] Total Number of COVID-19 Vaccines
Mean (sd) : 1.9 (1.6)
min ≤ med ≤ max:
0 ≤ 2 ≤ 7
IQR (CV) : 3 (0.8)
0:3894(35.2%)
1:397(3.6%)
2:2056(18.6%)
3:3045(27.6%)
4:1455(13.2%)
5:157(1.4%)
6:37(0.3%)
7:9(0.1%)
11050 (100.0%) 0 (0.0%)
27 total_shingrix [labelled, numeric] Total Number of Zoster Vaccines
Mean (sd) : 0.3 (0.7)
min ≤ med ≤ max:
0 ≤ 0 ≤ 5
IQR (CV) : 0 (2.6)
0:9529(86.2%)
1:343(3.1%)
2:1081(9.8%)
3:86(0.8%)
4:9(0.1%)
5:2(0.0%)
11050 (100.0%) 0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.2.2)
2023-01-08

Patient Characteristics

Baseline Characteristics


flu_clean1 %>% 
  dplyr::select(ibd_3, age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, act_tob, max_ch, insurance, IC, pop_dens,r_pct, RPL_THEMES, RPL_4, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, flu_2019) -> baseline
baseline %>% tbl_summary(
        statistic = list(all_continuous() ~ "{mean} ({sd})"),
        missing_text = "(Missing)")
Characteristic N = 11,0501
IBD Diagnosis
    CD 5,508 (50%)
    UC 5,468 (49%)
    IC 2 (<0.1%)
    Unknown 72 (0.7%)
Age 49 (19)
Gender
    Male 5,029 (46%)
    Female 6,021 (54%)
Race
    White 9,554 (86%)
    Black 724 (6.6%)
    Asian or Pacific Islander 277 (2.5%)
    American Indian or Alaska Native 42 (0.4%)
    Other 453 (4.1%)
Ethnicity
    Hispanic 231 (2.2%)
    Non-Hispanic 10,489 (98%)
    (Missing) 330
Preferred Language
    English 10,933 (99%)
    Other 117 (1.1%)
Any Religious Affiliation 6,071 (58%)
    (Missing) 528
Marital Status
    Married 4,347 (53%)
    Single 3,383 (41%)
    Divorced/Separated 338 (4.1%)
    Widowed 194 (2.3%)
    (Missing) 2,788
Active Tobacco Use 1,305 (12%)
    (Missing) 171
Charlson Comorbidity Index 3.5 (5.0)
Insurance Type
    Private Insurance 7,001 (63%)
    Medicaid 1,747 (16%)
    Medicare 2,142 (19%)
    Other Governmental 95 (0.9%)
    Other 47 (0.4%)
    (Missing) 18
Immunocompromised 5,872 (62%)
    (Missing) 1,576
Population Density of Census Tract 2,137 (2,278)
    (Missing) 251
Percentage Republican Voters in Census Tract 45 (18)
    (Missing) 1,581
Social Vulnerability Index 0.36 (0.26)
    (Missing) 36
SVI by Quartile
    First 4,472 (41%)
    Second 3,317 (30%)
    Third 2,170 (20%)
    Fourth 1,055 (9.6%)
    (Missing) 36
Socioeconomic Status 0.34 (0.25)
    (Missing) 80
Household Composition 0.39 (0.26)
    (Missing) 36
Minority and Language Status 0.48 (0.29)
    (Missing) 30
Housing and Transportation 0.43 (0.29)
    (Missing) 53
2019 Flu Vaccination 4,342 (39%)
1 n (%); Mean (SD)

Baseline characteristics by SVI Quartile

flu_clean1 %>% tbl_summary(by = RPL_4,
        statistic = list(all_continuous() ~ "{mean} ({sd})"),
        missing_text = "(Missing)") %>% add_p()
36 observations missing `RPL_4` have been removed. To include these observations, use `forcats::fct_explicit_na()` on `RPL_4` column before passing to `tbl_summary()`.
There was an error in 'add_p()/add_difference()' for variable 'ibd_3', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, : FEXACT error 501.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'race_5', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'PATIENT_STATE_CD', p-value omitted:
Error in stats::chisq.test(x = structure(c("MI", "MI", "MI", "MI", "MI", : 'x' and 'y' must have at least 2 levels
There was an error in 'add_p()/add_difference()' for variable 'insurance', p-value omitted:
Error in stats::fisher.test(structure(c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'prevnar', p-value omitted:
Error in stats::fisher.test(structure(c(1, 1, 2, 0, 1, 0, 0, 0, 0, 1, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'pvax', p-value omitted:
Error in stats::fisher.test(structure(c(1, 0, 2, 0, 0, 1, 0, 0, 0, 0, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_cov_vax', p-value omitted:
Error in stats::fisher.test(structure(c(2, 1, 3, 1, 3, 2, 0, 0, 4, 3, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
There was an error in 'add_p()/add_difference()' for variable 'total_shingrix', p-value omitted:
Error in stats::fisher.test(structure(c(0, 0, 2, 0, 0, 0, 0, 0, 2, 0, : FEXACT error 5.
The hash table key cannot be computed because the largest key
is larger than the largest representable int.
The algorithm cannot proceed.
Reduce the workspace, consider using 'simulate.p.value=TRUE' or another algorithm.
Characteristic First, N = 4,4721 Second, N = 3,3171 Third, N = 2,1701 Fourth, N = 1,0551 p-value2
IBD Diagnosis
    CD 2,097 (47%) 1,621 (49%) 1,147 (53%) 625 (59%)
    UC 2,346 (52%) 1,673 (50%) 1,009 (46%) 424 (40%)
    IC 0 (0%) 0 (0%) 1 (<0.1%) 1 (<0.1%)
    Unknown 29 (0.6%) 23 (0.7%) 13 (0.6%) 5 (0.5%)
Age 49 (20) 49 (19) 49 (19) 47 (19) 0.003
Gender 0.025
    Male 2,091 (47%) 1,519 (46%) 933 (43%) 465 (44%)
    Female 2,381 (53%) 1,798 (54%) 1,237 (57%) 590 (56%)
Race
    White 4,043 (90%) 2,900 (87%) 1,852 (85%) 729 (69%)
    Black 112 (2.5%) 168 (5.1%) 188 (8.7%) 252 (24%)
    Asian or Pacific Islander 121 (2.7%) 102 (3.1%) 48 (2.2%) 6 (0.6%)
    American Indian or Alaska Native 12 (0.3%) 20 (0.6%) 7 (0.3%) 3 (0.3%)
    Other 184 (4.1%) 127 (3.8%) 75 (3.5%) 65 (6.2%)
Ethnicity 0.003
    Hispanic 80 (1.8%) 68 (2.1%) 45 (2.1%) 38 (3.7%)
    Non-Hispanic 4,251 (98%) 3,157 (98%) 2,064 (98%) 983 (96%)
    (Missing) 141 92 61 34
Preferred Language <0.001
    English 4,444 (99%) 3,285 (99%) 2,136 (98%) 1,032 (98%)
    Other 28 (0.6%) 32 (1.0%) 34 (1.6%) 23 (2.2%)
Any Religious Affiliation 2,509 (58%) 1,812 (57%) 1,194 (58%) 538 (55%) 0.2
    (Missing) 179 163 114 70
Marital Status <0.001
    Married 2,020 (58%) 1,286 (52%) 752 (48%) 280 (39%)
    Single 1,294 (37%) 1,002 (41%) 683 (44%) 392 (54%)
    Divorced/Separated 91 (2.6%) 118 (4.8%) 89 (5.7%) 40 (5.5%)
    Widowed 82 (2.4%) 60 (2.4%) 40 (2.6%) 12 (1.7%)
    (Missing) 985 851 606 331
Charlson Comorbidity Index 3.4 (5.0) 3.6 (5.1) 3.5 (5.0) 3.5 (5.0) 0.010
State
    MI 4,472 (100%) 3,317 (100%) 2,170 (100%) 1,055 (100%)
Percentage Republican Voters in Census Tract 45 (16) 46 (18) 45 (18) 36 (21) <0.001
    (Missing) 459 601 350 168
Immunocompromised 2,373 (61%) 1,737 (61%) 1,140 (62%) 601 (66%) 0.036
    (Missing) 603 479 341 148
Insurance Type
    Private Insurance 3,251 (73%) 2,142 (65%) 1,170 (54%) 415 (39%)
    Medicaid 391 (8.8%) 482 (15%) 489 (23%) 378 (36%)
    Medicare 776 (17%) 638 (19%) 475 (22%) 248 (24%)
    Other Governmental 28 (0.6%) 27 (0.8%) 28 (1.3%) 12 (1.1%)
    Other 17 (0.4%) 21 (0.6%) 8 (0.4%) 1 (<0.1%)
    (Missing) 9 7 0 1
Population Density of Census Tract 1,880 (1,862) 2,086 (2,404) 2,325 (2,522) 3,034 (2,694) <0.001
    (Missing) 34 63 73 50
Social Vulnerability Index 0.12 (0.07) 0.37 (0.07) 0.61 (0.07) 0.86 (0.07) <0.001
Socioeconomic Status 0.13 (0.11) 0.33 (0.16) 0.57 (0.15) 0.78 (0.11) <0.001
    (Missing) 44 0 0 0
Household Composition 0.21 (0.14) 0.37 (0.21) 0.59 (0.24) 0.76 (0.19) <0.001
Minority and Language Status 0.41 (0.27) 0.48 (0.29) 0.52 (0.29) 0.66 (0.25) <0.001
Housing and Transportation 0.19 (0.16) 0.49 (0.20) 0.63 (0.21) 0.81 (0.17) <0.001
    (Missing) 17 0 0 0
Active Tobacco Use 361 (8.2%) 406 (12%) 325 (15%) 207 (20%) <0.001
    (Missing) 49 60 36 25
2019 Flu Vaccination 1,990 (44%) 1,291 (39%) 731 (34%) 317 (30%) <0.001
Pneumococcal Conjugate Vaccination
    0 2,649 (59%) 2,129 (64%) 1,418 (65%) 717 (68%)
    1 1,724 (39%) 1,107 (33%) 698 (32%) 317 (30%)
    2 80 (1.8%) 63 (1.9%) 37 (1.7%) 17 (1.6%)
    3 7 (0.2%) 10 (0.3%) 7 (0.3%) 3 (0.3%)
    4 10 (0.2%) 6 (0.2%) 7 (0.3%) 1 (<0.1%)
    5 1 (<0.1%) 2 (<0.1%) 1 (<0.1%) 0 (0%)
    6 0 (0%) 0 (0%) 1 (<0.1%) 0 (0%)
    7 1 (<0.1%) 0 (0%) 0 (0%) 0 (0%)
    8 0 (0%) 0 (0%) 1 (<0.1%) 0 (0%)
Pneumococcal Polysaccharide Vaccination
    0 2,903 (65%) 2,266 (68%) 1,497 (69%) 744 (71%)
    1 1,467 (33%) 952 (29%) 625 (29%) 286 (27%)
    2 96 (2.1%) 95 (2.9%) 46 (2.1%) 23 (2.2%)
    3 5 (0.1%) 2 (<0.1%) 2 (<0.1%) 2 (0.2%)
    5 0 (0%) 1 (<0.1%) 0 (0%) 0 (0%)
    6 1 (<0.1%) 1 (<0.1%) 0 (0%) 0 (0%)
Any Pneumonia Vaccine 0.81 (0.95) 0.74 (0.96) 0.72 (0.95) 0.67 (0.91) <0.001
Total Number of COVID-19 Vaccines
    0 1,286 (29%) 1,205 (36%) 872 (40%) 515 (49%)
    1 162 (3.6%) 103 (3.1%) 89 (4.1%) 42 (4.0%)
    2 815 (18%) 615 (19%) 410 (19%) 211 (20%)
    3 1,401 (31%) 871 (26%) 558 (26%) 204 (19%)
    4 704 (16%) 464 (14%) 212 (9.8%) 72 (6.8%)
    5 84 (1.9%) 44 (1.3%) 21 (1.0%) 8 (0.8%)
    6 16 (0.4%) 13 (0.4%) 5 (0.2%) 3 (0.3%)
    7 4 (<0.1%) 2 (<0.1%) 3 (0.1%) 0 (0%)
Total Number of Zoster Vaccines
    0 3,699 (83%) 2,879 (87%) 1,933 (89%) 985 (93%)
    1 163 (3.6%) 86 (2.6%) 72 (3.3%) 22 (2.1%)
    2 560 (13%) 324 (9.8%) 154 (7.1%) 40 (3.8%)
    3 46 (1.0%) 25 (0.8%) 9 (0.4%) 6 (0.6%)
    4 4 (<0.1%) 3 (<0.1%) 1 (<0.1%) 1 (<0.1%)
    5 0 (0%) 0 (0%) 1 (<0.1%) 1 (<0.1%)
1 n (%); Mean (SD)
2 Kruskal-Wallis rank sum test; Pearson's Chi-squared test

Bivariate Analysis

tbl_uv_ex1 <-
  tbl_uvregression(
    flu_clean1[c("flu_2019", "ibd_3", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "mstat_5", "relig_affil", "act_tob", "max_ch", "IC", "insurance", "pop_dens", "r_pct", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
    method = glm,
    method.args = list(family = binomial),
    y = flu_2019,
  exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
print(tbl_uv_ex1, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
Characteristic N OR1 95% CI1 p-value
IBD Diagnosis 11,050
    CD — —
    UC 0.98 0.91, 1.06 0.6
    IC 0.00 >0.9
    Unknown 0.47 0.26, 0.79 0.007
Age 11,050 0.99 0.99, 0.99 <0.001
Gender 11,050
    Male — —
    Female 1.10 1.02, 1.19 0.017
Race 11,050
    White — —
    Black 0.74 0.63, 0.86 <0.001
    Asian or Pacific Islander 1.72 1.36, 2.19 <0.001
    American Indian or Alaska Native 1.26 0.68, 2.31 0.5
    Other 0.78 0.64, 0.96 0.017
Ethnicity 10,720
    Hispanic — —
    Non-Hispanic 0.78 0.60, 1.01 0.059
Preferred Language 11,050
    English — —
    Other 0.63 0.42, 0.93 0.024
Marital Status 8,262
    Married — —
    Single 0.96 0.87, 1.05 0.4
    Divorced/Separated 0.89 0.71, 1.12 0.3
    Widowed 0.58 0.42, 0.79 <0.001
Any Religious Affiliation 10,522
    Yes — —
    No 0.92 0.85, 1.00 0.047
Active Tobacco Use 10,879
    No — —
    Yes 0.70 0.62, 0.79 <0.001
Charlson Comorbidity Index 11,050 1.00 0.99, 1.01 0.9
Immunocompromised 9,474 1.61 1.47, 1.75 <0.001
Insurance Type 11,032
    Private Insurance — —
    Medicaid 0.53 0.47, 0.59 <0.001
    Medicare 0.47 0.43, 0.53 <0.001
    Other Governmental 0.28 0.16, 0.46 <0.001
    Other 1.26 0.71, 2.25 0.4
Population Density of Census Tract 10,799 1.00 1.00, 1.00 <0.001
Percentage Republican Voters in Census Tract 9,469 0.99 0.99, 0.99 <0.001
Social Vulnerability Index 11,014 0.42 0.36, 0.49 <0.001
Socioeconomic Status 10,970 0.39 0.33, 0.45 <0.001
Household Composition 11,014 0.39 0.34, 0.45 <0.001
Minority and Language Status 11,020 1.34 1.17, 1.53 <0.001
Housing and Transportation 10,997 0.62 0.54, 0.71 <0.001
1 OR = Odds Ratio, CI = Confidence Interval
NULL

Flu 2019 with SVI as Continuous Variable


Flu2019_SVI <- glm(flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + mstat_5 + relig_affil
                      + lang_3 + act_tob + max_ch + IC + insurance
                      + pop_dens + RPL_THEMES,
              family = "binomial", 
              data = flu_clean1)
summary(Flu2019_SVI )

Call:
glm(formula = flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + 
    ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch + 
    IC + insurance + pop_dens + RPL_THEMES, family = "binomial", 
    data = flu_clean1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.8556  -1.0881  -0.7645   1.1471   2.1871  

Coefficients:
                                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)                             7.124e-01  2.398e-01   2.971 0.002968 ** 
ibd_3UC                                 1.531e-02  5.508e-02   0.278 0.781014    
ibd_3Unknown                           -9.009e-03  4.847e-01  -0.019 0.985171    
age_yrs                                -8.070e-03  2.095e-03  -3.852 0.000117 ***
genderFemale                            1.598e-01  5.251e-02   3.043 0.002343 ** 
race_5Black                            -3.344e-01  1.128e-01  -2.965 0.003026 ** 
race_5Asian or Pacific Islander         6.545e-01  1.792e-01   3.652 0.000261 ***
race_5American Indian or Alaska Native  6.103e-02  4.298e-01   0.142 0.887080    
race_5Other                            -1.441e-01  1.613e-01  -0.893 0.371937    
ethnic_3Non-Hispanic                   -5.060e-01  1.978e-01  -2.558 0.010533 *  
mstat_5Single                          -1.776e-01  6.720e-02  -2.642 0.008235 ** 
mstat_5Divorced/Separated               1.249e-01  1.385e-01   0.902 0.367280    
mstat_5Widowed                         -3.099e-01  1.871e-01  -1.656 0.097638 .  
relig_affilNo                          -1.317e-01  5.377e-02  -2.449 0.014321 *  
lang_3Other                             3.723e-02  3.158e-01   0.118 0.906152    
act_tobYes                             -2.142e-01  8.557e-02  -2.503 0.012319 *  
max_ch                                  2.736e-02  5.732e-03   4.774 1.81e-06 ***
IC                                      4.450e-01  5.914e-02   7.525 5.27e-14 ***
insuranceMedicaid                      -4.876e-01  8.135e-02  -5.994 2.05e-09 ***
insuranceMedicare                      -5.956e-01  8.226e-02  -7.240 4.50e-13 ***
insuranceOther Governmental            -1.302e+00  3.789e-01  -3.436 0.000591 ***
insuranceOther                          3.923e-01  3.790e-01   1.035 0.300556    
pop_dens                                5.417e-05  1.195e-05   4.532 5.83e-06 ***
RPL_THEMES                             -7.006e-01  1.109e-01  -6.319 2.63e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 8886.3  on 6443  degrees of freedom
Residual deviance: 8490.5  on 6420  degrees of freedom
  (4606 observations deleted due to missingness)
AIC: 8538.5

Number of Fisher Scoring iterations: 4
broom::glance(Flu2019_SVI )
broom::tidy(Flu2019_SVI , exponentiate = TRUE)
tbl_regression(Flu2019_SVI, exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
IBD Diagnosis
    CD — —
    UC 1.02 0.91, 1.13 0.8
    Unknown 0.99 0.37, 2.54 >0.9
Age 0.99 0.99, 1.00 <0.001
Gender
    Male — —
    Female 1.17 1.06, 1.30 0.002
Race
    White — —
    Black 0.72 0.57, 0.89 0.003
    Asian or Pacific Islander 1.92 1.36, 2.75 <0.001
    American Indian or Alaska Native 1.06 0.45, 2.48 0.9
    Other 0.87 0.63, 1.19 0.4
Ethnicity
    Hispanic — —
    Non-Hispanic 0.60 0.41, 0.89 0.011
Marital Status
    Married — —
    Single 0.84 0.73, 0.96 0.008
    Divorced/Separated 1.13 0.86, 1.49 0.4
    Widowed 0.73 0.50, 1.05 0.10
Any Religious Affiliation
    Yes — —
    No 0.88 0.79, 0.97 0.014
Preferred Language
    English — —
    Other 1.04 0.55, 1.92 >0.9
Active Tobacco Use
    No — —
    Yes 0.81 0.68, 0.95 0.012
Charlson Comorbidity Index 1.03 1.02, 1.04 <0.001
Immunocompromised 1.56 1.39, 1.75 <0.001
Insurance Type
    Private Insurance — —
    Medicaid 0.61 0.52, 0.72 <0.001
    Medicare 0.55 0.47, 0.65 <0.001
    Other Governmental 0.27 0.12, 0.55 <0.001
    Other 1.48 0.71, 3.19 0.3
Population Density of Census Tract 1.00 1.00, 1.00 <0.001
Social Vulnerability Index 0.50 0.40, 0.62 <0.001
1 OR = Odds Ratio, CI = Confidence Interval

# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(Flu2019_SVI)

   The Hosmer-Lemeshow goodness-of-fit test

         Statistic =  12.83896 
degrees of freedom =  9 
           p-value =  0.17003 
# C-Statistic/AUROC 
Cstat(Flu2019_SVI)
[1] 0.6413064
# Model performance 
model_performance(Flu2019_SVI)
# Indices of model performance

AIC      |     AICc |      BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log | Score_spherical |   PCP
-----------------------------------------------------------------------------------------------------------
8538.492 | 8538.679 | 8700.994 |     0.060 | 0.483 | 1.150 |    0.659 |      -Inf |       1.552e-04 | 0.533
performance::check_model(Flu2019_SVI)
Variable `Component` is not in your data frame :/

# Margins 

cplot(Flu2019_SVI, "RPL_THEMES", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given SVI")

Flu 2019 with log(SVI)

Flu2019_SVI_log <- glm(flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + 
                         mstat_5 + relig_affil + lang_3 + act_tob + max_ch + IC + insurance
                      + pop_dens + log(RPL_THEMES),
              family = "binomial", 
              data = flu_clean1)
summary(Flu2019_SVI_log )

Call:
glm(formula = flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + 
    ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch + 
    IC + insurance + pop_dens + log(RPL_THEMES), family = "binomial", 
    data = flu_clean1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.8243  -1.0884  -0.7733   1.1494   2.2051  

Coefficients:
                                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)                             2.746e-01  2.399e-01   1.145 0.252341    
ibd_3UC                                 2.287e-02  5.498e-02   0.416 0.677399    
ibd_3Unknown                            3.166e-02  4.844e-01   0.065 0.947883    
age_yrs                                -7.929e-03  2.092e-03  -3.791 0.000150 ***
genderFemale                            1.573e-01  5.245e-02   2.998 0.002715 ** 
race_5Black                            -3.956e-01  1.114e-01  -3.550 0.000385 ***
race_5Asian or Pacific Islander         6.710e-01  1.791e-01   3.747 0.000179 ***
race_5American Indian or Alaska Native  8.687e-02  4.294e-01   0.202 0.839670    
race_5Other                            -1.404e-01  1.612e-01  -0.871 0.383552    
ethnic_3Non-Hispanic                   -4.810e-01  1.972e-01  -2.439 0.014718 *  
mstat_5Single                          -1.766e-01  6.710e-02  -2.633 0.008468 ** 
mstat_5Divorced/Separated               1.160e-01  1.383e-01   0.838 0.401812    
mstat_5Widowed                         -3.067e-01  1.871e-01  -1.639 0.101127    
relig_affilNo                          -1.336e-01  5.372e-02  -2.487 0.012872 *  
lang_3Other                             2.627e-03  3.144e-01   0.008 0.993333    
act_tobYes                             -2.213e-01  8.541e-02  -2.591 0.009581 ** 
max_ch                                  2.691e-02  5.725e-03   4.701 2.59e-06 ***
IC                                      4.457e-01  5.911e-02   7.540 4.70e-14 ***
insuranceMedicaid                      -5.162e-01  8.089e-02  -6.381 1.76e-10 ***
insuranceMedicare                      -6.107e-01  8.204e-02  -7.444 9.78e-14 ***
insuranceOther Governmental            -1.324e+00  3.781e-01  -3.502 0.000462 ***
insuranceOther                          3.967e-01  3.791e-01   1.046 0.295422    
pop_dens                                5.047e-05  1.188e-05   4.250 2.14e-05 ***
log(RPL_THEMES)                        -1.243e-01  2.396e-02  -5.187 2.14e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 8886.3  on 6443  degrees of freedom
Residual deviance: 8503.7  on 6420  degrees of freedom
  (4606 observations deleted due to missingness)
AIC: 8551.7

Number of Fisher Scoring iterations: 4
broom::glance(Flu2019_SVI_log )
broom::tidy(Flu2019_SVI_log , exponentiate = TRUE)
tbl_regression(Flu2019_SVI_log, exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
IBD Diagnosis
    CD — —
    UC 1.02 0.92, 1.14 0.7
    Unknown 1.03 0.39, 2.65 >0.9
Age 0.99 0.99, 1.00 <0.001
Gender
    Male — —
    Female 1.17 1.06, 1.30 0.003
Race
    White — —
    Black 0.67 0.54, 0.84 <0.001
    Asian or Pacific Islander 1.96 1.38, 2.80 <0.001
    American Indian or Alaska Native 1.09 0.46, 2.54 0.8
    Other 0.87 0.63, 1.19 0.4
Ethnicity
    Hispanic — —
    Non-Hispanic 0.62 0.42, 0.91 0.015
Marital Status
    Married — —
    Single 0.84 0.73, 0.96 0.008
    Divorced/Separated 1.12 0.86, 1.47 0.4
    Widowed 0.74 0.51, 1.06 0.10
Any Religious Affiliation
    Yes — —
    No 0.87 0.79, 0.97 0.013
Preferred Language
    English — —
    Other 1.00 0.54, 1.85 >0.9
Active Tobacco Use
    No — —
    Yes 0.80 0.68, 0.95 0.010
Charlson Comorbidity Index 1.03 1.02, 1.04 <0.001
Immunocompromised 1.56 1.39, 1.75 <0.001
Insurance Type
    Private Insurance — —
    Medicaid 0.60 0.51, 0.70 <0.001
    Medicare 0.54 0.46, 0.64 <0.001
    Other Governmental 0.27 0.12, 0.53 <0.001
    Other 1.49 0.71, 3.21 0.3
Population Density of Census Tract 1.00 1.00, 1.00 <0.001
Social Vulnerability Index 0.88 0.84, 0.93 <0.001
1 OR = Odds Ratio, CI = Confidence Interval

# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(Flu2019_SVI_log)

   The Hosmer-Lemeshow goodness-of-fit test

         Statistic =  12.99612 
degrees of freedom =  9 
           p-value =  0.16278 
# C-Statistic/AUROC 
Cstat(Flu2019_SVI_log)
[1] 0.6400605
# Model performance 
model_performance(Flu2019_SVI_log)
# Indices of model performance

AIC      |     AICc |      BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log | Score_spherical |   PCP
-----------------------------------------------------------------------------------------------------------
8551.703 | 8551.890 | 8714.205 |     0.058 | 0.483 | 1.151 |    0.660 |      -Inf |       1.552e-04 | 0.532
performance::check_model(Flu2019_SVI_log, panel = TRUE)
Variable `Component` is not in your data frame :/

# Margins 
cplot(Flu2019_SVI_log, "RPL_THEMES", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given SVI")

Flu 2019 with SVI as Quadratic

Flu2019_SVI_quad <- glm(flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + 
                      relig_affil + mstat_5 + lang_3 + act_tob + max_ch + IC + insurance
                      + pop_dens + I(RPL_THEMES^2),
              family = "binomial", 
              data = flu_clean1)
summary(Flu2019_SVI_quad )

Call:
glm(formula = flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + 
    ethnic_3 + relig_affil + mstat_5 + lang_3 + act_tob + max_ch + 
    IC + insurance + pop_dens + I(RPL_THEMES^2), family = "binomial", 
    data = flu_clean1)

Deviance Residuals: 
   Min      1Q  Median      3Q     Max  
-1.873  -1.091  -0.764   1.145   2.171  

Coefficients:
                                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)                             6.285e-01  2.383e-01   2.637 0.008365 ** 
ibd_3UC                                 1.412e-02  5.508e-02   0.256 0.797672    
ibd_3Unknown                           -1.118e-02  4.838e-01  -0.023 0.981559    
age_yrs                                -8.146e-03  2.095e-03  -3.888 0.000101 ***
genderFemale                            1.588e-01  5.249e-02   3.025 0.002486 ** 
race_5Black                            -3.193e-01  1.136e-01  -2.811 0.004933 ** 
race_5Asian or Pacific Islander         6.497e-01  1.792e-01   3.626 0.000288 ***
race_5American Indian or Alaska Native  4.100e-02  4.295e-01   0.095 0.923946    
race_5Other                            -1.416e-01  1.613e-01  -0.878 0.380182    
ethnic_3Non-Hispanic                   -5.137e-01  1.981e-01  -2.593 0.009502 ** 
relig_affilNo                          -1.309e-01  5.376e-02  -2.435 0.014895 *  
mstat_5Single                          -1.809e-01  6.718e-02  -2.692 0.007097 ** 
mstat_5Divorced/Separated               1.168e-01  1.385e-01   0.843 0.399101    
mstat_5Widowed                         -3.105e-01  1.871e-01  -1.659 0.097049 .  
lang_3Other                             4.946e-02  3.159e-01   0.157 0.875592    
act_tobYes                             -2.172e-01  8.557e-02  -2.538 0.011156 *  
max_ch                                  2.734e-02  5.732e-03   4.769 1.85e-06 ***
IC                                      4.431e-01  5.911e-02   7.495 6.61e-14 ***
insuranceMedicaid                      -4.906e-01  8.134e-02  -6.032 1.62e-09 ***
insuranceMedicare                      -5.971e-01  8.226e-02  -7.258 3.92e-13 ***
insuranceOther Governmental            -1.312e+00  3.793e-01  -3.458 0.000543 ***
insuranceOther                          3.818e-01  3.788e-01   1.008 0.313447    
pop_dens                                5.407e-05  1.197e-05   4.517 6.28e-06 ***
I(RPL_THEMES^2)                        -7.836e-01  1.292e-01  -6.064 1.33e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 8886.3  on 6443  degrees of freedom
Residual deviance: 8493.3  on 6420  degrees of freedom
  (4606 observations deleted due to missingness)
AIC: 8541.3

Number of Fisher Scoring iterations: 4
broom::glance(Flu2019_SVI_quad )
broom::tidy(Flu2019_SVI_quad , exponentiate = TRUE)
tbl_regression(Flu2019_SVI_quad, exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
IBD Diagnosis
    CD — —
    UC 1.01 0.91, 1.13 0.8
    Unknown 0.99 0.37, 2.53 >0.9
Age 0.99 0.99, 1.00 <0.001
Gender
    Male — —
    Female 1.17 1.06, 1.30 0.002
Race
    White — —
    Black 0.73 0.58, 0.91 0.005
    Asian or Pacific Islander 1.91 1.35, 2.74 <0.001
    American Indian or Alaska Native 1.04 0.44, 2.43 >0.9
    Other 0.87 0.63, 1.19 0.4
Ethnicity
    Hispanic — —
    Non-Hispanic 0.60 0.40, 0.88 0.010
Any Religious Affiliation
    Yes — —
    No 0.88 0.79, 0.97 0.015
Marital Status
    Married — —
    Single 0.83 0.73, 0.95 0.007
    Divorced/Separated 1.12 0.86, 1.47 0.4
    Widowed 0.73 0.50, 1.05 0.10
Preferred Language
    English — —
    Other 1.05 0.56, 1.95 0.9
Active Tobacco Use
    No — —
    Yes 0.80 0.68, 0.95 0.011
Charlson Comorbidity Index 1.03 1.02, 1.04 <0.001
Immunocompromised 1.56 1.39, 1.75 <0.001
Insurance Type
    Private Insurance — —
    Medicaid 0.61 0.52, 0.72 <0.001
    Medicare 0.55 0.47, 0.65 <0.001
    Other Governmental 0.27 0.12, 0.54 <0.001
    Other 1.46 0.70, 3.16 0.3
Population Density of Census Tract 1.00 1.00, 1.00 <0.001
Social Vulnerability Index 0.46 0.35, 0.59 <0.001
1 OR = Odds Ratio, CI = Confidence Interval

# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(Flu2019_SVI_quad)

   The Hosmer-Lemeshow goodness-of-fit test

         Statistic =  8.25476 
degrees of freedom =  9 
           p-value =  0.50869 
# C-Statistic/AUROC 
Cstat(Flu2019_SVI_quad)
[1] 0.6408574
# Model performance 
model_performance(Flu2019_SVI_quad)
# Indices of model performance

AIC      |     AICc |      BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log | Score_spherical |   PCP
-----------------------------------------------------------------------------------------------------------
8561.720 | 8561.907 | 8724.221 |     0.059 | 0.483 | 1.150 |    0.659 |      -Inf |       1.552e-04 | 0.533
performance::check_model(Flu2019_SVI_quad, panel = TRUE)
Variable `Component` is not in your data frame :/

# Margins 
cplot(Flu2019_SVI_quad, "RPL_THEMES", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given SVI")

Flu 2019 with SVI as Quartile

Flu2019_SVI_quart <- glm(flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + 
                      relig_affil + mstat_5 + lang_3 + act_tob + max_ch + IC + insurance
                      + pop_dens + RPL_4,
              family = "binomial", 
              data = flu_clean1)
summary(Flu2019_SVI_quart )

Call:
glm(formula = flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + 
    ethnic_3 + relig_affil + mstat_5 + lang_3 + act_tob + max_ch + 
    IC + insurance + pop_dens + RPL_4, family = "binomial", data = flu_clean1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.8519  -1.0878  -0.7654   1.1467   2.1766  

Coefficients:
                                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)                             6.315e-01  2.387e-01   2.646 0.008156 ** 
ibd_3UC                                 1.421e-02  5.509e-02   0.258 0.796382    
ibd_3Unknown                           -2.033e-02  4.842e-01  -0.042 0.966511    
age_yrs                                -8.117e-03  2.095e-03  -3.874 0.000107 ***
genderFemale                            1.605e-01  5.250e-02   3.057 0.002239 ** 
race_5Black                            -3.479e-01  1.131e-01  -3.075 0.002103 ** 
race_5Asian or Pacific Islander         6.614e-01  1.794e-01   3.687 0.000227 ***
race_5American Indian or Alaska Native  3.377e-02  4.299e-01   0.079 0.937396    
race_5Other                            -1.480e-01  1.613e-01  -0.918 0.358854    
ethnic_3Non-Hispanic                   -5.011e-01  1.978e-01  -2.534 0.011289 *  
relig_affilNo                          -1.304e-01  5.377e-02  -2.426 0.015266 *  
mstat_5Single                          -1.808e-01  6.720e-02  -2.690 0.007153 ** 
mstat_5Divorced/Separated               1.181e-01  1.386e-01   0.852 0.394109    
mstat_5Widowed                         -3.132e-01  1.871e-01  -1.674 0.094046 .  
lang_3Other                             3.797e-02  3.163e-01   0.120 0.904446    
act_tobYes                             -2.169e-01  8.557e-02  -2.535 0.011242 *  
max_ch                                  2.750e-02  5.733e-03   4.796 1.62e-06 ***
IC                                      4.399e-01  5.910e-02   7.443 9.84e-14 ***
insuranceMedicaid                      -4.914e-01  8.133e-02  -6.042 1.52e-09 ***
insuranceMedicare                      -6.000e-01  8.220e-02  -7.299 2.90e-13 ***
insuranceOther Governmental            -1.301e+00  3.790e-01  -3.434 0.000595 ***
insuranceOther                          3.970e-01  3.786e-01   1.049 0.294383    
pop_dens                                5.304e-05  1.194e-05   4.441 8.95e-06 ***
RPL_4Second                            -1.492e-01  6.126e-02  -2.436 0.014854 *  
RPL_4Third                             -3.617e-01  7.391e-02  -4.894 9.89e-07 ***
RPL_4Fourth                            -5.104e-01  1.054e-01  -4.843 1.28e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 8886.3  on 6443  degrees of freedom
Residual deviance: 8492.7  on 6418  degrees of freedom
  (4606 observations deleted due to missingness)
AIC: 8544.7

Number of Fisher Scoring iterations: 4
broom::glance(Flu2019_SVI_quart )
broom::tidy(Flu2019_SVI_quart , exponentiate = TRUE)
tbl_regression(Flu2019_SVI_quart, exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
IBD Diagnosis
    CD — —
    UC 1.01 0.91, 1.13 0.8
    Unknown 0.98 0.37, 2.51 >0.9
Age 0.99 0.99, 1.00 <0.001
Gender
    Male — —
    Female 1.17 1.06, 1.30 0.002
Race
    White — —
    Black 0.71 0.56, 0.88 0.002
    Asian or Pacific Islander 1.94 1.37, 2.77 <0.001
    American Indian or Alaska Native 1.03 0.44, 2.41 >0.9
    Other 0.86 0.63, 1.18 0.4
Ethnicity
    Hispanic — —
    Non-Hispanic 0.61 0.41, 0.89 0.011
Any Religious Affiliation
    Yes — —
    No 0.88 0.79, 0.98 0.015
Marital Status
    Married — —
    Single 0.83 0.73, 0.95 0.007
    Divorced/Separated 1.13 0.86, 1.48 0.4
    Widowed 0.73 0.50, 1.05 0.094
Preferred Language
    English — —
    Other 1.04 0.55, 1.93 >0.9
Active Tobacco Use
    No — —
    Yes 0.80 0.68, 0.95 0.011
Charlson Comorbidity Index 1.03 1.02, 1.04 <0.001
Immunocompromised 1.55 1.38, 1.74 <0.001
Insurance Type
    Private Insurance — —
    Medicaid 0.61 0.52, 0.72 <0.001
    Medicare 0.55 0.47, 0.64 <0.001
    Other Governmental 0.27 0.12, 0.55 <0.001
    Other 1.49 0.72, 3.20 0.3
Population Density of Census Tract 1.00 1.00, 1.00 <0.001
SVI by Quartile
    First — —
    Second 0.86 0.76, 0.97 0.015
    Third 0.70 0.60, 0.80 <0.001
    Fourth 0.60 0.49, 0.74 <0.001
1 OR = Odds Ratio, CI = Confidence Interval

# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(Flu2019_SVI_quart)

   The Hosmer-Lemeshow goodness-of-fit test

         Statistic =  9.34888 
degrees of freedom =  9 
           p-value =  0.40571 
# C-Statistic/AUROC 
Cstat(Flu2019_SVI_quart)
[1] 0.6410718
# Model performance 
model_performance(Flu2019_SVI_quart)
# Indices of model performance

AIC      |     AICc |      BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log | Score_spherical |   PCP
-----------------------------------------------------------------------------------------------------------
8544.655 | 8544.873 | 8720.698 |     0.059 | 0.483 | 1.150 |    0.659 |      -Inf |       1.552e-04 | 0.533
performance::check_model(Flu2019_SVI_quart, panel = TRUE)
Variable `Component` is not in your data frame :/

# Margins 
cplot(Flu2019_SVI_quart, "RPL_4", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given SVI")

NA
NA

Flu 2019 + All SVI Themes

Flu2019_all_themes <- glm(flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + ethnic_3 + 
                      lang_3 + mstat_5 + relig_affil + act_tob + max_ch + IC
                      + pop_dens + RPL_THEME1 + RPL_THEME2 + RPL_THEME3
                      + RPL_THEME4,
              family = "binomial",
              data = flu_clean1)
summary(Flu2019_all_themes )

Call:
glm(formula = flu_2019 ~ ibd_3 + age_yrs + gender + race_5 + 
    ethnic_3 + lang_3 + mstat_5 + relig_affil + act_tob + max_ch + 
    IC + pop_dens + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 + RPL_THEME4, 
    family = "binomial", data = flu_clean1)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.8416  -1.0867  -0.8063   1.1709   2.0183  

Coefficients:
                                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)                             9.257e-01  2.434e-01   3.803 0.000143 ***
ibd_3UC                                 3.209e-02  5.498e-02   0.584 0.559448    
ibd_3Unknown                           -3.204e-04  4.769e-01  -0.001 0.999464    
age_yrs                                -1.324e-02  1.906e-03  -6.944 3.81e-12 ***
genderFemale                            1.558e-01  5.242e-02   2.972 0.002956 ** 
race_5Black                            -3.849e-01  1.139e-01  -3.380 0.000725 ***
race_5Asian or Pacific Islander         6.068e-01  1.821e-01   3.333 0.000860 ***
race_5American Indian or Alaska Native -2.720e-02  4.286e-01  -0.063 0.949400    
race_5Other                            -2.225e-01  1.612e-01  -1.381 0.167343    
ethnic_3Non-Hispanic                   -5.010e-01  1.977e-01  -2.534 0.011284 *  
lang_3Other                            -2.145e-01  3.113e-01  -0.689 0.490704    
mstat_5Single                          -3.076e-01  6.581e-02  -4.674 2.95e-06 ***
mstat_5Divorced/Separated               1.052e-02  1.370e-01   0.077 0.938835    
mstat_5Widowed                         -4.264e-01  1.858e-01  -2.295 0.021710 *  
relig_affilNo                          -1.293e-01  5.380e-02  -2.403 0.016243 *  
act_tobYes                             -2.542e-01  8.483e-02  -2.996 0.002732 ** 
max_ch                                  2.188e-02  5.676e-03   3.855 0.000116 ***
IC                                      4.728e-01  5.918e-02   7.989 1.36e-15 ***
pop_dens                                4.564e-05  1.319e-05   3.459 0.000543 ***
RPL_THEME1                             -6.516e-01  1.598e-01  -4.079 4.52e-05 ***
RPL_THEME2                             -5.544e-01  1.382e-01  -4.013 6.00e-05 ***
RPL_THEME3                              1.050e-01  9.959e-02   1.054 0.291726    
RPL_THEME4                              1.331e-01  1.102e-01   1.208 0.226863    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 8818.9  on 6396  degrees of freedom
Residual deviance: 8483.0  on 6374  degrees of freedom
  (4653 observations deleted due to missingness)
AIC: 8529

Number of Fisher Scoring iterations: 4
broom::glance(Flu2019_all_themes )
broom::tidy(Flu2019_all_themes , exponentiate = TRUE)
tbl_regression(Flu2019_all_themes, exponentiate = TRUE)
Characteristic OR1 95% CI1 p-value
IBD Diagnosis
    CD — —
    UC 1.03 0.93, 1.15 0.6
    Unknown 1.00 0.38, 2.53 >0.9
Age 0.99 0.98, 0.99 <0.001
Gender
    Male — —
    Female 1.17 1.05, 1.30 0.003
Race
    White — —
    Black 0.68 0.54, 0.85 <0.001
    Asian or Pacific Islander 1.83 1.29, 2.64 <0.001
    American Indian or Alaska Native 0.97 0.41, 2.27 >0.9
    Other 0.80 0.58, 1.10 0.2
Ethnicity
    Hispanic — —
    Non-Hispanic 0.61 0.41, 0.89 0.011
Preferred Language
    English — —
    Other 0.81 0.43, 1.48 0.5
Marital Status
    Married — —
    Single 0.74 0.65, 0.84 <0.001
    Divorced/Separated 1.01 0.77, 1.32 >0.9
    Widowed 0.65 0.45, 0.93 0.022
Any Religious Affiliation
    Yes — —
    No 0.88 0.79, 0.98 0.016
Active Tobacco Use
    No — —
    Yes 0.78 0.66, 0.92 0.003
Charlson Comorbidity Index 1.02 1.01, 1.03 <0.001
Immunocompromised 1.60 1.43, 1.80 <0.001
Population Density of Census Tract 1.00 1.00, 1.00 <0.001
Socioeconomic Status 0.52 0.38, 0.71 <0.001
Household Composition 0.57 0.44, 0.75 <0.001
Minority and Language Status 1.11 0.91, 1.35 0.3
Housing and Transportation 1.14 0.92, 1.42 0.2
1 OR = Odds Ratio, CI = Confidence Interval

# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(Flu2019_all_themes)

   The Hosmer-Lemeshow goodness-of-fit test

         Statistic =  8.31806 
degrees of freedom =  8 
           p-value =  0.40303 
# C-Statistic/AUROC 
Cstat(Flu2019_all_themes)
[1] 0.6315944
# Model performance 
model_performance(Flu2019_all_themes)
# Indices of model performance

AIC      |     AICc |      BIC | Tjur's R2 |  RMSE | Sigma | Log_loss | Score_log |   PCP
-----------------------------------------------------------------------------------------
8528.954 | 8529.127 | 8684.516 |     0.051 | 0.485 | 1.154 |    0.663 |      -Inf | 0.529
performance::check_model(Flu2019_all_themes, panel = TRUE)
Variable `Component` is not in your data frame :/

# Margins 
cplot(Flu2019_all_themes, "RPL_THEME1", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given THEME1")

cplot(Flu2019_all_themes, "RPL_THEME2", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given THEME2")

cplot(Flu2019_all_themes, "RPL_THEME3", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given THEME3")

cplot(Flu2019_all_themes, "RPL_THEME4", what = "prediction", main = "Predicted Likelihood of Flu Vaccine Given THEME4")

LS0tCnRpdGxlOiAiRmx1IDIwMTkgTW9kZWxzIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIHRoZW1lczogcGFwZXIKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwplZGl0b3Jfb3B0aW9uczoKICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lCmRhdGU6ICIyMDIzLTAxLTA2IgotLS0KIyBMb2FkIFBhY2thZ2VzIApgYGB7cn0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoY29kZWJvb2tyKQpsaWJyYXJ5KHN1bW1hcnl0b29scykKbGlicmFyeShicm9vbSkgCmxpYnJhcnkocGVyZm9ybWFuY2UpCmxpYnJhcnkoZ3QpCmxpYnJhcnkoZ3RzdW1tYXJ5KQpsaWJyYXJ5KGphbml0b3IpCmxpYnJhcnkoZm9yY2F0cykKbGlicmFyeShtYXJnaW5zKQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkoZXhwc3MpCmxpYnJhcnkoZ2xtdG9vbGJveCkKbGlicmFyeShEZXNjVG9vbHMpCmBgYAoKIyBJbXBvcnQgRGF0YSAKYGBge3J9CmxvYWQoIn4vRGVza3RvcC9SLUNvZGUvU0RPSF9WYXgvZmx1XzIwMTlfbGF0ZXJfMS44LjIyLnJkYSIpClZpZXcoZmx1XzIwMTlfbGF0ZXJfMS44LjIyKQpgYGAKCiMgSW5jbHVkZSBvbmx5IHBhdGllbnRzIGZyb20gTWljaGlnYW4KYGBge3J9CmZsdV8yMDE5X01JIDwtIGZsdV8yMDE5X2xhdGVyXzEuOC4yMlsgd2hpY2goZmx1XzIwMTlfbGF0ZXJfMS44LjIyJFBBVElFTlRfU1RBVEVfQ0Q9PSdNSScpLCBdCmBgYAoKCiMgY29kZWJvb2sKYGBge3J9CgpmbHVfMjAxOV9NSSAlPiUgCmRwbHlyOjpzZWxlY3QoaWJkXzMsIGFnZV95cnMsIGdlbmRlciwgcmFjZV81LCBldGhuaWNfMywgbGFuZ18zLCByZWxpZ19hZmZpbCwgbXN0YXRfNSwgbWF4X2NoLCBQQVRJRU5UX1NUQVRFX0NELCByX3BjdCwgSUMsIGluc3VyYW5jZSwgcG9wX2RlbnMsIFJQTF9USEVNRVMsIFJQTF80LCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0LCBhY3RfdG9iLCBmbHVfMjAxOSwgLCBwcmV2bmFyLCBwdmF4LCBhbnlfcG5ldW0sIGFueV9wbmV1bSwgdG90YWxfY292X3ZheCwgdG90YWxfc2hpbmdyaXgpIC0+IGZsdV9jbGVhbjEKcHJpbnQoZGZTdW1tYXJ5KGZsdV9jbGVhbjEpLCBtZXRob2QgPSAncmVuZGVyJykKYGBgCgoKIyBQYXRpZW50IENoYXJhY3RlcmlzdGljcyB7LnRhYnNldH0KCiMjIEJhc2VsaW5lIENoYXJhY3RlcmlzdGljcyAKYGBge3J9CgpmbHVfY2xlYW4xICU+JSAKICBkcGx5cjo6c2VsZWN0KGliZF8zLCBhZ2VfeXJzLCBnZW5kZXIsIHJhY2VfNSwgZXRobmljXzMsIGxhbmdfMywgcmVsaWdfYWZmaWwsIG1zdGF0XzUsIGFjdF90b2IsIG1heF9jaCwgaW5zdXJhbmNlLCBJQywgcG9wX2RlbnMscl9wY3QsIFJQTF9USEVNRVMsIFJQTF80LCBSUExfVEhFTUUxLCBSUExfVEhFTUUyLCBSUExfVEhFTUUzLCBSUExfVEhFTUU0LCBmbHVfMjAxOSkgLT4gYmFzZWxpbmUKYmFzZWxpbmUgJT4lIHRibF9zdW1tYXJ5KAogICAgICAgIHN0YXRpc3RpYyA9IGxpc3QoYWxsX2NvbnRpbnVvdXMoKSB+ICJ7bWVhbn0gKHtzZH0pIiksCiAgICAgICAgbWlzc2luZ190ZXh0ID0gIihNaXNzaW5nKSIpCmBgYAoKIyMgQmFzZWxpbmUgY2hhcmFjdGVyaXN0aWNzIGJ5IFNWSSBRdWFydGlsZQpgYGB7cn0KZmx1X2NsZWFuMSAlPiUgdGJsX3N1bW1hcnkoYnkgPSBSUExfNCwKICAgICAgICBzdGF0aXN0aWMgPSBsaXN0KGFsbF9jb250aW51b3VzKCkgfiAie21lYW59ICh7c2R9KSIpLAogICAgICAgIG1pc3NpbmdfdGV4dCA9ICIoTWlzc2luZykiKSAlPiUgYWRkX3AoKQpgYGAKCgojIEJpdmFyaWF0ZSBBbmFseXNpcyAKYGBge3J9CnRibF91dl9leDEgPC0KICB0YmxfdXZyZWdyZXNzaW9uKAogICAgZmx1X2NsZWFuMVtjKCJmbHVfMjAxOSIsICJpYmRfMyIsICJhZ2VfeXJzIiwgImdlbmRlciIsICJyYWNlXzUiLCAiZXRobmljXzMiLCAibGFuZ18zIiwgIm1zdGF0XzUiLCAicmVsaWdfYWZmaWwiLCAiYWN0X3RvYiIsICJtYXhfY2giLCAiSUMiLCAiaW5zdXJhbmNlIiwgInBvcF9kZW5zIiwgInJfcGN0IiwgIlJQTF9USEVNRVMiLCAiUlBMX1RIRU1FMSIsICJSUExfVEhFTUUyIiwgIlJQTF9USEVNRTMiLCAiUlBMX1RIRU1FNCIpXSwKICAgIG1ldGhvZCA9IGdsbSwKICAgIG1ldGhvZC5hcmdzID0gbGlzdChmYW1pbHkgPSBiaW5vbWlhbCksCiAgICB5ID0gZmx1XzIwMTksCiAgZXhwb25lbnRpYXRlID0gVFJVRSkKcHJpbnQodGJsX3V2X2V4MSwgbWV0aG9kID0gcmVuZGVyKQpgYGAKCgojIEZsdSAyMDE5IHdpdGggU1ZJIGFzIENvbnRpbnVvdXMgVmFyaWFibGUgCmBgYHtyfQoKRmx1MjAxOV9TVkkgPC0gZ2xtKGZsdV8yMDE5IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyBtc3RhdF81ICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgICAgICAgICsgbGFuZ18zICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgaW5zdXJhbmNlCiAgICAgICAgICAgICAgICAgICAgICArIHBvcF9kZW5zICsgUlBMX1RIRU1FUywKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLCAKICAgICAgICAgICAgICBkYXRhID0gZmx1X2NsZWFuMSkKc3VtbWFyeShGbHUyMDE5X1NWSSApCmJyb29tOjpnbGFuY2UoRmx1MjAxOV9TVkkgKQpicm9vbTo6dGlkeShGbHUyMDE5X1NWSSAsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKEZsdTIwMTlfU1ZJLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyBIb3NtZXItTGVtZXNob3cgR29vZG5lc3Mtb2YtRml0IFRlc3QKaGx0ZXN0KEZsdTIwMTlfU1ZJKQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQoRmx1MjAxOV9TVkkpCgojIE1vZGVsIHBlcmZvcm1hbmNlIAptb2RlbF9wZXJmb3JtYW5jZShGbHUyMDE5X1NWSSkKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKEZsdTIwMTlfU1ZJKQoKIyBNYXJnaW5zIAoKY3Bsb3QoRmx1MjAxOV9TVkksICJSUExfVEhFTUVTIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBGbHUgVmFjY2luZSBHaXZlbiBTVkkiKQpgYGAKCgoKIyBGbHUgMjAxOSB3aXRoIGxvZyhTVkkpCmBgYHtyfQpGbHUyMDE5X1NWSV9sb2cgPC0gZ2xtKGZsdV8yMDE5IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgZXRobmljXzMgKyAKICAgICAgICAgICAgICAgICAgICAgICAgIG1zdGF0XzUgKyByZWxpZ19hZmZpbCArIGxhbmdfMyArIGFjdF90b2IgKyBtYXhfY2ggKyBJQyArIGluc3VyYW5jZQogICAgICAgICAgICAgICAgICAgICAgKyBwb3BfZGVucyArIGxvZyhSUExfVEhFTUVTKSwKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLCAKICAgICAgICAgICAgICBkYXRhID0gZmx1X2NsZWFuMSkKc3VtbWFyeShGbHUyMDE5X1NWSV9sb2cgKQpicm9vbTo6Z2xhbmNlKEZsdTIwMTlfU1ZJX2xvZyApCmJyb29tOjp0aWR5KEZsdTIwMTlfU1ZJX2xvZyAsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKEZsdTIwMTlfU1ZJX2xvZywgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMgSG9zbWVyLUxlbWVzaG93IEdvb2RuZXNzLW9mLUZpdCBUZXN0CmhsdGVzdChGbHUyMDE5X1NWSV9sb2cpCgoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQoRmx1MjAxOV9TVklfbG9nKQoKIyBNb2RlbCBwZXJmb3JtYW5jZSAKbW9kZWxfcGVyZm9ybWFuY2UoRmx1MjAxOV9TVklfbG9nKQpwZXJmb3JtYW5jZTo6Y2hlY2tfbW9kZWwoRmx1MjAxOV9TVklfbG9nLCBwYW5lbCA9IFRSVUUpCgojIE1hcmdpbnMgCmNwbG90KEZsdTIwMTlfU1ZJX2xvZywgIlJQTF9USEVNRVMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlByZWRpY3RlZCBMaWtlbGlob29kIG9mIEZsdSBWYWNjaW5lIEdpdmVuIFNWSSIpCmBgYAoKCiMgRmx1IDIwMTkgd2l0aCBTVkkgYXMgUXVhZHJhdGljIApgYGB7cn0KRmx1MjAxOV9TVklfcXVhZCA8LSBnbG0oZmx1XzIwMTkgfiBpYmRfMyArIGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyBldGhuaWNfMyArIAogICAgICAgICAgICAgICAgICAgICAgcmVsaWdfYWZmaWwgKyBtc3RhdF81ICsgbGFuZ18zICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgaW5zdXJhbmNlCiAgICAgICAgICAgICAgICAgICAgICArIHBvcF9kZW5zICsgSShSUExfVEhFTUVTXjIpLAogICAgICAgICAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIsIAogICAgICAgICAgICAgIGRhdGEgPSBmbHVfY2xlYW4xKQpzdW1tYXJ5KEZsdTIwMTlfU1ZJX3F1YWQgKQpicm9vbTo6Z2xhbmNlKEZsdTIwMTlfU1ZJX3F1YWQgKQpicm9vbTo6dGlkeShGbHUyMDE5X1NWSV9xdWFkICwgZXhwb25lbnRpYXRlID0gVFJVRSkKdGJsX3JlZ3Jlc3Npb24oRmx1MjAxOV9TVklfcXVhZCwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMgSG9zbWVyLUxlbWVzaG93IEdvb2RuZXNzLW9mLUZpdCBUZXN0CmhsdGVzdChGbHUyMDE5X1NWSV9xdWFkKQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQoRmx1MjAxOV9TVklfcXVhZCkKCiMgTW9kZWwgcGVyZm9ybWFuY2UgCm1vZGVsX3BlcmZvcm1hbmNlKEZsdTIwMTlfU1ZJX3F1YWQpCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbChGbHUyMDE5X1NWSV9xdWFkLCBwYW5lbCA9IFRSVUUpCgojIE1hcmdpbnMgCmNwbG90KEZsdTIwMTlfU1ZJX3F1YWQsICJSUExfVEhFTUVTIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBGbHUgVmFjY2luZSBHaXZlbiBTVkkiKQpgYGAKCiMgRmx1IDIwMTkgd2l0aCBTVkkgYXMgUXVhcnRpbGUKYGBge3J9CkZsdTIwMTlfU1ZJX3F1YXJ0IDwtIGdsbShmbHVfMjAxOSB+IGliZF8zICsgYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgCiAgICAgICAgICAgICAgICAgICAgICByZWxpZ19hZmZpbCArIG1zdGF0XzUgKyBsYW5nXzMgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBpbnN1cmFuY2UKICAgICAgICAgICAgICAgICAgICAgICsgcG9wX2RlbnMgKyBSUExfNCwKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLCAKICAgICAgICAgICAgICBkYXRhID0gZmx1X2NsZWFuMSkKc3VtbWFyeShGbHUyMDE5X1NWSV9xdWFydCApCmJyb29tOjpnbGFuY2UoRmx1MjAxOV9TVklfcXVhcnQgKQpicm9vbTo6dGlkeShGbHUyMDE5X1NWSV9xdWFydCAsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKEZsdTIwMTlfU1ZJX3F1YXJ0LCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyBIb3NtZXItTGVtZXNob3cgR29vZG5lc3Mtb2YtRml0IFRlc3QKaGx0ZXN0KEZsdTIwMTlfU1ZJX3F1YXJ0KQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQoRmx1MjAxOV9TVklfcXVhcnQpCgojIE1vZGVsIHBlcmZvcm1hbmNlIAptb2RlbF9wZXJmb3JtYW5jZShGbHUyMDE5X1NWSV9xdWFydCkKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKEZsdTIwMTlfU1ZJX3F1YXJ0LCBwYW5lbCA9IFRSVUUpCgojIE1hcmdpbnMgCmNwbG90KEZsdTIwMTlfU1ZJX3F1YXJ0LCAiUlBMXzQiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlByZWRpY3RlZCBMaWtlbGlob29kIG9mIEZsdSBWYWNjaW5lIEdpdmVuIFNWSSIpCgoKYGBgCgoKIyBGbHUgMjAxOSArIEFsbCBTVkkgVGhlbWVzIApgYGB7cn0KRmx1MjAxOV9hbGxfdGhlbWVzIDwtIGdsbShmbHVfMjAxOSB+IGliZF8zICsgYWdlX3lycyArIGdlbmRlciArIHJhY2VfNSArIGV0aG5pY18zICsgCiAgICAgICAgICAgICAgICAgICAgICBsYW5nXzMgKyBtc3RhdF81ICsgcmVsaWdfYWZmaWwgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMKICAgICAgICAgICAgICAgICAgICAgICsgcG9wX2RlbnMgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArIFJQTF9USEVNRTMKICAgICAgICAgICAgICAgICAgICAgICsgUlBMX1RIRU1FNCwKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLAogICAgICAgICAgICAgIGRhdGEgPSBmbHVfY2xlYW4xKQpzdW1tYXJ5KEZsdTIwMTlfYWxsX3RoZW1lcyApCmJyb29tOjpnbGFuY2UoRmx1MjAxOV9hbGxfdGhlbWVzICkKYnJvb206OnRpZHkoRmx1MjAxOV9hbGxfdGhlbWVzICwgZXhwb25lbnRpYXRlID0gVFJVRSkKdGJsX3JlZ3Jlc3Npb24oRmx1MjAxOV9hbGxfdGhlbWVzLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyBIb3NtZXItTGVtZXNob3cgR29vZG5lc3Mtb2YtRml0IFRlc3QKaGx0ZXN0KEZsdTIwMTlfYWxsX3RoZW1lcykKCiMgQy1TdGF0aXN0aWMvQVVST0MgCkNzdGF0KEZsdTIwMTlfYWxsX3RoZW1lcykKCiMgTW9kZWwgcGVyZm9ybWFuY2UgCm1vZGVsX3BlcmZvcm1hbmNlKEZsdTIwMTlfYWxsX3RoZW1lcykKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKEZsdTIwMTlfYWxsX3RoZW1lcywgcGFuZWwgPSBUUlVFKQoKIyBNYXJnaW5zIApjcGxvdChGbHUyMDE5X2FsbF90aGVtZXMsICJSUExfVEhFTUUxIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBGbHUgVmFjY2luZSBHaXZlbiBUSEVNRTEiKQpjcGxvdChGbHUyMDE5X2FsbF90aGVtZXMsICJSUExfVEhFTUUyIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBGbHUgVmFjY2luZSBHaXZlbiBUSEVNRTIiKQpjcGxvdChGbHUyMDE5X2FsbF90aGVtZXMsICJSUExfVEhFTUUzIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBGbHUgVmFjY2luZSBHaXZlbiBUSEVNRTMiKQpjcGxvdChGbHUyMDE5X2FsbF90aGVtZXMsICJSUExfVEhFTUU0Iiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBGbHUgVmFjY2luZSBHaXZlbiBUSEVNRTQiKQpgYGAKCg==