Baseline characteristics
shingrix_clean1 %>%
dplyr::select(ibd_3, age_yrs, gender, race_5, ethnic_3, lang_3, relig_affil, mstat_5, act_tob, max_ch, insurance, IC, insurance, pop_dens,r_pct, RPL_THEMES, RPL_4, RPL_THEME1, RPL_THEME2, RPL_THEME3, RPL_THEME4, full_shingrix) -> shingrix_baseline
shingrix_baseline %>% tbl_summary(
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing_text = "(Missing)")
| Characteristic |
N = 5,861 |
| IBD Diagnosis |
|
| Â Â Â Â CD |
2,591 (44%) |
| Â Â Â Â UC |
3,221 (55%) |
| Â Â Â Â IC |
8 (0.1%) |
| Â Â Â Â Unknown |
41 (0.7%) |
| Age |
66 (10) |
| Gender |
|
| Â Â Â Â Male |
2,555 (44%) |
| Â Â Â Â Female |
3,306 (56%) |
| Race |
|
| Â Â Â Â White |
5,263 (90%) |
| Â Â Â Â Black |
286 (4.9%) |
| Â Â Â Â Asian or Pacific Islander |
100 (1.7%) |
| Â Â Â Â American Indian or Alaska Native |
22 (0.4%) |
| Â Â Â Â Other |
190 (3.2%) |
| Ethnicity |
|
| Â Â Â Â Hispanic |
76 (1.3%) |
| Â Â Â Â Non-Hispanic |
5,575 (99%) |
| Â Â Â Â (Missing) |
210 |
| Preferred Language |
|
| Â Â Â Â English |
5,798 (99%) |
| Â Â Â Â Other |
63 (1.1%) |
| Any Religious Affiliation |
3,816 (68%) |
| Â Â Â Â (Missing) |
261 |
| Marital Status |
|
| Â Â Â Â Married |
3,403 (70%) |
| Â Â Â Â Single |
956 (20%) |
| Â Â Â Â Divorced/Separated |
296 (6.1%) |
| Â Â Â Â Widowed |
237 (4.8%) |
| Â Â Â Â (Missing) |
969 |
| Active Tobacco Use |
671 (12%) |
| Â Â Â Â (Missing) |
56 |
| Charlson Comorbidity Index |
5.6 (5.8) |
| Insurance Type |
|
| Â Â Â Â Private Insurance |
3,082 (53%) |
| Â Â Â Â Medicaid |
538 (9.2%) |
| Â Â Â Â Medicare |
2,164 (37%) |
| Â Â Â Â Other Governmental |
46 (0.8%) |
| Â Â Â Â Other |
23 (0.4%) |
| Â Â Â Â (Missing) |
8 |
| Immunocompromised |
2,272 (49%) |
| Â Â Â Â (Missing) |
1,235 |
| Population Density of Census Tract |
1,933 (2,093) |
| Â Â Â Â (Missing) |
125 |
| Percentage Republican Voters in Census Tract |
46 (17) |
| Â Â Â Â (Missing) |
842 |
| Social Vulnerability Index |
0.35 (0.25) |
| Â Â Â Â (Missing) |
12 |
| SVI by Quartile |
|
| Â Â Â Â First |
2,419 (41%) |
| Â Â Â Â Second |
1,777 (30%) |
| Â Â Â Â Third |
1,150 (20%) |
| Â Â Â Â Fourth |
503 (8.6%) |
| Â Â Â Â (Missing) |
12 |
| Socioeconomic Status |
0.33 (0.25) |
| Â Â Â Â (Missing) |
35 |
| Household Composition |
0.39 (0.26) |
| Â Â Â Â (Missing) |
12 |
| Minority and Language Status |
0.46 (0.29) |
| Â Â Â Â (Missing) |
10 |
| Housing and Transportation |
0.42 (0.28) |
| Â Â Â Â (Missing) |
23 |
| full_shingrix |
1,124 (19%) |
Bivariate Analysis
tbl_zoster_biv <-
tbl_uvregression(
shingrix_baseline[c("full_shingrix", "ibd_3", "age_yrs", "gender", "race_5", "ethnic_3", "lang_3", "mstat_5", "relig_affil", "act_tob", "max_ch", "IC", "insurance", "pop_dens", "RPL_THEMES", "RPL_THEME1", "RPL_THEME2", "RPL_THEME3", "RPL_THEME4")],
method = glm,
y = full_shingrix,
method.args = list(family = binomial),
exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
print(tbl_zoster_biv, method = render)
`...` must be empty.
✖ Problematic argument:
• method = render
| Characteristic |
N |
OR |
95% CI |
p-value |
| IBD Diagnosis |
5,861 |
|
|
|
| Â Â Â Â CD |
|
— |
— |
|
| Â Â Â Â UC |
|
1.24 |
1.08, 1.41 |
0.002 |
| Â Â Â Â IC |
|
0.00 |
|
>0.9 |
| Â Â Â Â Unknown |
|
0.66 |
0.22, 1.54 |
0.4 |
| Age |
5,861 |
1.01 |
1.00, 1.01 |
0.007 |
| Gender |
5,861 |
|
|
|
| Â Â Â Â Male |
|
— |
— |
|
| Â Â Â Â Female |
|
1.05 |
0.92, 1.20 |
0.5 |
| Race |
5,861 |
|
|
|
| Â Â Â Â White |
|
— |
— |
|
| Â Â Â Â Black |
|
0.55 |
0.37, 0.78 |
0.001 |
| Â Â Â Â Asian or Pacific Islander |
|
2.25 |
1.47, 3.39 |
<0.001 |
| Â Â Â Â American Indian or Alaska Native |
|
0.93 |
0.27, 2.50 |
0.9 |
| Â Â Â Â Other |
|
1.01 |
0.69, 1.44 |
>0.9 |
| Ethnicity |
5,651 |
|
|
|
| Â Â Â Â Hispanic |
|
— |
— |
|
| Â Â Â Â Non-Hispanic |
|
0.88 |
0.52, 1.58 |
0.7 |
| Preferred Language |
5,861 |
|
|
|
| Â Â Â Â English |
|
— |
— |
|
| Â Â Â Â Other |
|
0.61 |
0.27, 1.21 |
0.2 |
| Marital Status |
4,892 |
|
|
|
| Â Â Â Â Married |
|
— |
— |
|
| Â Â Â Â Single |
|
0.83 |
0.69, 1.00 |
0.056 |
| Â Â Â Â Divorced/Separated |
|
0.74 |
0.53, 1.01 |
0.065 |
| Â Â Â Â Widowed |
|
0.99 |
0.71, 1.37 |
>0.9 |
| Any Religious Affiliation |
5,600 |
|
|
|
| Â Â Â Â Yes |
|
— |
— |
|
| Â Â Â Â No |
|
1.03 |
0.89, 1.18 |
0.7 |
| Active Tobacco Use |
5,805 |
|
|
|
| Â Â Â Â No |
|
— |
— |
|
| Â Â Â Â Yes |
|
0.41 |
0.31, 0.52 |
<0.001 |
| Charlson Comorbidity Index |
5,861 |
1.02 |
1.01, 1.03 |
<0.001 |
| Immunocompromised |
4,626 |
1.07 |
0.93, 1.23 |
0.3 |
| Insurance Type |
5,853 |
|
|
|
| Â Â Â Â Private Insurance |
|
— |
— |
|
| Â Â Â Â Medicaid |
|
0.36 |
0.26, 0.48 |
<0.001 |
| Â Â Â Â Medicare |
|
0.69 |
0.60, 0.79 |
<0.001 |
| Â Â Â Â Other Governmental |
|
0.42 |
0.14, 0.96 |
0.066 |
| Â Â Â Â Other |
|
1.21 |
0.43, 2.91 |
0.7 |
| Population Density of Census Tract |
5,736 |
1.00 |
1.00, 1.00 |
0.006 |
| Social Vulnerability Index |
5,849 |
0.22 |
0.16, 0.29 |
<0.001 |
| Socioeconomic Status |
5,826 |
0.16 |
0.12, 0.21 |
<0.001 |
| Household Composition |
5,849 |
0.18 |
0.14, 0.24 |
<0.001 |
| Minority and Language Status |
5,851 |
1.65 |
1.31, 2.07 |
<0.001 |
| Housing and Transportation |
5,838 |
0.47 |
0.37, 0.60 |
<0.001 |
NULL
Multivariable Models
Zoster + SVI Continuous
zoster_SVI <- glm(full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil
+ lang_3 + act_tob + max_ch + IC + insurance
+ pop_dens + RPL_THEMES,
family = "binomial",
data = shingrix_clean1)
summary(zoster_SVI )
Call:
glm(formula = full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch +
IC + insurance + pop_dens + RPL_THEMES, family = "binomial",
data = shingrix_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2564 -0.7564 -0.6145 -0.3633 2.3525
Coefficients:
Estimate Std. Error z value
(Intercept) -1.855e+00 5.198e-01 -3.569
ibd_3UC 9.908e-02 8.942e-02 1.108
ibd_3IC -9.704e+00 1.970e+02 -0.049
ibd_3Unknown -7.853e-01 7.692e-01 -1.021
age_yrs 2.105e-02 5.392e-03 3.905
genderFemale 1.094e-01 8.663e-02 1.262
race_5Black -5.430e-01 2.518e-01 -2.157
race_5Asian or Pacific Islander 7.187e-01 2.804e-01 2.563
race_5American Indian or Alaska Native 7.056e-01 6.293e-01 1.121
race_5Other -7.128e-02 2.937e-01 -0.243
ethnic_3Non-Hispanic -6.285e-01 3.732e-01 -1.684
mstat_5Single 4.507e-02 1.188e-01 0.380
mstat_5Divorced/Separated 6.587e-02 1.945e-01 0.339
mstat_5Widowed -9.118e-02 2.026e-01 -0.450
relig_affilNo 5.444e-02 9.189e-02 0.592
lang_3Other -2.488e-01 5.030e-01 -0.495
act_tobYes -6.125e-01 1.730e-01 -3.540
max_ch 1.792e-02 7.335e-03 2.443
IC 2.484e-01 8.892e-02 2.794
insuranceMedicaid -5.101e-01 2.008e-01 -2.540
insuranceMedicare -5.631e-01 1.112e-01 -5.064
insuranceOther Governmental -4.594e-01 5.552e-01 -0.827
insuranceOther 5.371e-01 5.636e-01 0.953
pop_dens 8.206e-05 1.982e-05 4.141
RPL_THEMES -1.341e+00 1.948e-01 -6.887
Pr(>|z|)
(Intercept) 0.000359 ***
ibd_3UC 0.267830
ibd_3IC 0.960709
ibd_3Unknown 0.307324
age_yrs 9.43e-05 ***
genderFemale 0.206826
race_5Black 0.031020 *
race_5Asian or Pacific Islander 0.010381 *
race_5American Indian or Alaska Native 0.262151
race_5Other 0.808248
ethnic_3Non-Hispanic 0.092139 .
mstat_5Single 0.704289
mstat_5Divorced/Separated 0.734896
mstat_5Widowed 0.652631
relig_affilNo 0.553528
lang_3Other 0.620828
act_tobYes 0.000400 ***
max_ch 0.014577 *
IC 0.005213 **
insuranceMedicaid 0.011091 *
insuranceMedicare 4.11e-07 ***
insuranceOther Governmental 0.407982
insuranceOther 0.340552
pop_dens 3.46e-05 ***
RPL_THEMES 5.71e-12 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3687.4 on 3487 degrees of freedom
Residual deviance: 3508.0 on 3463 degrees of freedom
(2373 observations deleted due to missingness)
AIC: 3558
Number of Fisher Scoring iterations: 10
broom::glance(zoster_SVI )
broom::tidy(zoster_SVI , exponentiate = TRUE)
tbl_regression(zoster_SVI, exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: collapsing to unique 'x' values
| Characteristic |
OR |
95% CI |
p-value |
| IBD Diagnosis |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.10 |
0.93, 1.32 |
0.3 |
| Â Â Â Â IC |
0.00 |
|
>0.9 |
| Â Â Â Â Unknown |
0.46 |
0.07, 1.68 |
0.3 |
| Age |
1.02 |
1.01, 1.03 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.12 |
0.94, 1.32 |
0.2 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.58 |
0.35, 0.93 |
0.031 |
| Â Â Â Â Asian or Pacific Islander |
2.05 |
1.17, 3.54 |
0.010 |
| Â Â Â Â American Indian or Alaska Native |
2.03 |
0.53, 6.67 |
0.3 |
| Â Â Â Â Other |
0.93 |
0.51, 1.62 |
0.8 |
| Ethnicity |
|
|
|
| Â Â Â Â Hispanic |
— |
— |
|
| Â Â Â Â Non-Hispanic |
0.53 |
0.26, 1.14 |
0.092 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Single |
1.05 |
0.83, 1.32 |
0.7 |
| Â Â Â Â Divorced/Separated |
1.07 |
0.72, 1.55 |
0.7 |
| Â Â Â Â Widowed |
0.91 |
0.61, 1.35 |
0.7 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.06 |
0.88, 1.26 |
0.6 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.78 |
0.27, 1.98 |
0.6 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.54 |
0.38, 0.75 |
<0.001 |
| Charlson Comorbidity Index |
1.02 |
1.00, 1.03 |
0.015 |
| Immunocompromised |
1.28 |
1.08, 1.53 |
0.005 |
| Insurance Type |
|
|
|
| Â Â Â Â Private Insurance |
— |
— |
|
| Â Â Â Â Medicaid |
0.60 |
0.40, 0.88 |
0.011 |
| Â Â Â Â Medicare |
0.57 |
0.46, 0.71 |
<0.001 |
| Â Â Â Â Other Governmental |
0.63 |
0.18, 1.70 |
0.4 |
| Â Â Â Â Other |
1.71 |
0.52, 4.98 |
0.3 |
| Population Density of Census Tract |
1.00 |
1.00, 1.00 |
<0.001 |
| Social Vulnerability Index |
0.26 |
0.18, 0.38 |
<0.001 |
# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(zoster_SVI)
The Hosmer-Lemeshow goodness-of-fit test
Statistic = 12.48954
degrees of freedom = 8
p-value = 0.13066
# C-Statistic/AUROC
Cstat(zoster_SVI)
[1] 0.6489151
# Model performance
model_performance(zoster_SVI)
# Indices of model performance
AIC | AICc | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
-----------------------------------------------------------------------------------------------------------
3558.026 | 3558.402 | 3711.953 | 0.049 | 0.405 | 1.006 | 0.503 | -197.690 | 2.867e-04 | 0.672
performance::check_model(zoster_SVI)
Variable `Component` is not in your data frame :/

# Margins
cplot(zoster_SVI, "RPL_THEMES", what = "prediction", main = "Predicted Likelihood of Zoster Vaccine Given SVI")

Full Shingrix + SVI by Quartile
zoster_SVI4 <- glm(full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil
+ lang_3 + act_tob + max_ch + IC + insurance
+ pop_dens + RPL_4,
family = "binomial",
data = shingrix_clean1)
summary(zoster_SVI4 )
Call:
glm(formula = full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch +
IC + insurance + pop_dens + RPL_4, family = "binomial", data = shingrix_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2686 -0.7603 -0.6210 -0.3633 2.3721
Coefficients:
Estimate Std. Error z value
(Intercept) -2.046e+00 5.183e-01 -3.949
ibd_3UC 1.037e-01 8.930e-02 1.162
ibd_3IC -9.881e+00 1.970e+02 -0.050
ibd_3Unknown -7.552e-01 7.682e-01 -0.983
age_yrs 2.126e-02 5.388e-03 3.945
genderFemale 1.091e-01 8.654e-02 1.260
race_5Black -5.825e-01 2.522e-01 -2.309
race_5Asian or Pacific Islander 7.557e-01 2.801e-01 2.698
race_5American Indian or Alaska Native 6.401e-01 6.284e-01 1.019
race_5Other -8.421e-02 2.938e-01 -0.287
ethnic_3Non-Hispanic -6.362e-01 3.727e-01 -1.707
mstat_5Single 3.379e-02 1.185e-01 0.285
mstat_5Divorced/Separated 4.716e-02 1.943e-01 0.243
mstat_5Widowed -9.487e-02 2.024e-01 -0.469
relig_affilNo 5.748e-02 9.176e-02 0.626
lang_3Other -2.532e-01 5.022e-01 -0.504
act_tobYes -6.222e-01 1.729e-01 -3.598
max_ch 1.779e-02 7.324e-03 2.429
IC 2.456e-01 8.885e-02 2.765
insuranceMedicaid -5.229e-01 2.007e-01 -2.605
insuranceMedicare -5.784e-01 1.109e-01 -5.218
insuranceOther Governmental -4.656e-01 5.559e-01 -0.838
insuranceOther 5.188e-01 5.625e-01 0.922
pop_dens 7.870e-05 1.977e-05 3.981
RPL_4Second -1.894e-01 9.622e-02 -1.969
RPL_4Third -6.672e-01 1.278e-01 -5.220
RPL_4Fourth -8.868e-01 2.164e-01 -4.098
Pr(>|z|)
(Intercept) 7.86e-05 ***
ibd_3UC 0.245351
ibd_3IC 0.959989
ibd_3Unknown 0.325531
age_yrs 7.97e-05 ***
genderFemale 0.207515
race_5Black 0.020919 *
race_5Asian or Pacific Islander 0.006983 **
race_5American Indian or Alaska Native 0.308352
race_5Other 0.774379
ethnic_3Non-Hispanic 0.087846 .
mstat_5Single 0.775484
mstat_5Divorced/Separated 0.808243
mstat_5Widowed 0.639313
relig_affilNo 0.531020
lang_3Other 0.614158
act_tobYes 0.000321 ***
max_ch 0.015134 *
IC 0.005699 **
insuranceMedicaid 0.009191 **
insuranceMedicare 1.81e-07 ***
insuranceOther Governmental 0.402294
insuranceOther 0.356338
pop_dens 6.87e-05 ***
RPL_4Second 0.048998 *
RPL_4Third 1.79e-07 ***
RPL_4Fourth 4.16e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3687.4 on 3487 degrees of freedom
Residual deviance: 3517.2 on 3461 degrees of freedom
(2373 observations deleted due to missingness)
AIC: 3571.2
Number of Fisher Scoring iterations: 10
broom::glance(zoster_SVI4 )
broom::tidy(zoster_SVI4 , exponentiate = TRUE)
tbl_regression(zoster_SVI4, exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
| Characteristic |
OR |
95% CI |
p-value |
| IBD Diagnosis |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.11 |
0.93, 1.32 |
0.2 |
| Â Â Â Â IC |
0.00 |
|
>0.9 |
| Â Â Â Â Unknown |
0.47 |
0.07, 1.72 |
0.3 |
| Age |
1.02 |
1.01, 1.03 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.12 |
0.94, 1.32 |
0.2 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.56 |
0.33, 0.90 |
0.021 |
| Â Â Â Â Asian or Pacific Islander |
2.13 |
1.22, 3.67 |
0.007 |
| Â Â Â Â American Indian or Alaska Native |
1.90 |
0.49, 6.23 |
0.3 |
| Â Â Â Â Other |
0.92 |
0.50, 1.60 |
0.8 |
| Ethnicity |
|
|
|
| Â Â Â Â Hispanic |
— |
— |
|
| Â Â Â Â Non-Hispanic |
0.53 |
0.26, 1.13 |
0.088 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Single |
1.03 |
0.82, 1.30 |
0.8 |
| Â Â Â Â Divorced/Separated |
1.05 |
0.71, 1.52 |
0.8 |
| Â Â Â Â Widowed |
0.91 |
0.61, 1.34 |
0.6 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.06 |
0.88, 1.27 |
0.5 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.78 |
0.27, 1.97 |
0.6 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.54 |
0.38, 0.75 |
<0.001 |
| Charlson Comorbidity Index |
1.02 |
1.00, 1.03 |
0.015 |
| Immunocompromised |
1.28 |
1.07, 1.52 |
0.006 |
| Insurance Type |
|
|
|
| Â Â Â Â Private Insurance |
— |
— |
|
| Â Â Â Â Medicaid |
0.59 |
0.39, 0.87 |
0.009 |
| Â Â Â Â Medicare |
0.56 |
0.45, 0.70 |
<0.001 |
| Â Â Â Â Other Governmental |
0.63 |
0.18, 1.69 |
0.4 |
| Â Â Â Â Other |
1.68 |
0.51, 4.88 |
0.4 |
| Population Density of Census Tract |
1.00 |
1.00, 1.00 |
<0.001 |
| SVI by Quartile |
|
|
|
| Â Â Â Â First |
— |
— |
|
| Â Â Â Â Second |
0.83 |
0.68, 1.00 |
0.049 |
| Â Â Â Â Third |
0.51 |
0.40, 0.66 |
<0.001 |
| Â Â Â Â Fourth |
0.41 |
0.26, 0.62 |
<0.001 |
# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(zoster_SVI4)
The Hosmer-Lemeshow goodness-of-fit test
Statistic = 9.36475
degrees of freedom = 8
p-value = 0.31247
# C-Statistic/AUROC
Cstat(zoster_SVI4)
[1] 0.6439193
# Model performance
model_performance(zoster_SVI4)
# Indices of model performance
AIC | AICc | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
-----------------------------------------------------------------------------------------------------------
3571.153 | 3571.590 | 3737.394 | 0.046 | 0.406 | 1.008 | 0.504 | -197.317 | 2.867e-04 | 0.671
performance::check_model(zoster_SVI4)
Variable `Component` is not in your data frame :/

# Margins
cplot(zoster_SVI4, "RPL_4", what = "prediction", main = "Predicted Likelihood of Zoster Vaccine Given SVI Quartile")

Fully vaccinated + All themes
zoster_SVI_themes <- glm(full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil
+ lang_3 + act_tob + max_ch + IC + insurance
+ pop_dens + RPL_THEME1 + RPL_THEME2 +
RPL_THEME3 + RPL_THEME4,
family = "binomial",
data = shingrix_clean1)
summary(zoster_SVI_themes )
Call:
glm(formula = full_shingrix ~ ibd_3 + age_yrs + gender + race_5 +
ethnic_3 + mstat_5 + relig_affil + lang_3 + act_tob + max_ch +
IC + insurance + pop_dens + RPL_THEME1 + RPL_THEME2 + RPL_THEME3 +
RPL_THEME4, family = "binomial", data = shingrix_clean1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2408 -0.7618 -0.5816 -0.3324 2.6161
Coefficients:
Estimate Std. Error z value
(Intercept) -1.623e+00 5.339e-01 -3.039
ibd_3UC 8.084e-02 9.055e-02 0.893
ibd_3IC -9.886e+00 1.970e+02 -0.050
ibd_3Unknown -7.231e-01 7.702e-01 -0.939
age_yrs 1.814e-02 5.469e-03 3.316
genderFemale 8.503e-02 8.788e-02 0.968
race_5Black -6.329e-01 2.550e-01 -2.482
race_5Asian or Pacific Islander 4.240e-01 2.850e-01 1.488
race_5American Indian or Alaska Native 6.437e-01 6.426e-01 1.002
race_5Other -1.004e-01 2.973e-01 -0.338
ethnic_3Non-Hispanic -6.230e-01 3.785e-01 -1.646
mstat_5Single 1.712e-02 1.202e-01 0.142
mstat_5Divorced/Separated 5.664e-02 1.985e-01 0.285
mstat_5Widowed -5.102e-02 2.040e-01 -0.250
relig_affilNo 4.352e-02 9.339e-02 0.466
lang_3Other -2.631e-01 5.073e-01 -0.519
act_tobYes -5.747e-01 1.743e-01 -3.298
max_ch 1.704e-02 7.460e-03 2.284
IC 2.798e-01 9.028e-02 3.099
insuranceMedicaid -4.352e-01 2.023e-01 -2.151
insuranceMedicare -5.100e-01 1.131e-01 -4.509
insuranceOther Governmental -3.680e-01 5.596e-01 -0.658
insuranceOther 6.303e-01 5.717e-01 1.102
pop_dens 4.226e-05 2.243e-05 1.884
RPL_THEME1 -1.041e+00 2.765e-01 -3.763
RPL_THEME2 -1.125e+00 2.402e-01 -4.682
RPL_THEME3 4.156e-01 1.637e-01 2.539
RPL_THEME4 2.567e-01 1.884e-01 1.363
Pr(>|z|)
(Intercept) 0.002371 **
ibd_3UC 0.372031
ibd_3IC 0.959971
ibd_3Unknown 0.347819
age_yrs 0.000913 ***
genderFemale 0.333261
race_5Black 0.013074 *
race_5Asian or Pacific Islander 0.136768
race_5American Indian or Alaska Native 0.316461
race_5Other 0.735681
ethnic_3Non-Hispanic 0.099794 .
mstat_5Single 0.886760
mstat_5Divorced/Separated 0.775452
mstat_5Widowed 0.802563
relig_affilNo 0.641188
lang_3Other 0.604069
act_tobYes 0.000975 ***
max_ch 0.022352 *
IC 0.001943 **
insuranceMedicaid 0.031443 *
insuranceMedicare 6.51e-06 ***
insuranceOther Governmental 0.510726
insuranceOther 0.270275
pop_dens 0.059594 .
RPL_THEME1 0.000168 ***
RPL_THEME2 2.84e-06 ***
RPL_THEME3 0.011102 *
RPL_THEME4 0.173024
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3647.2 on 3462 degrees of freedom
Residual deviance: 3418.7 on 3435 degrees of freedom
(2398 observations deleted due to missingness)
AIC: 3474.7
Number of Fisher Scoring iterations: 10
broom::glance(zoster_SVI_themes )
broom::tidy(zoster_SVI_themes , exponentiate = TRUE)
tbl_regression(zoster_SVI_themes, exponentiate = TRUE)
Warning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurredWarning: glm.fit: fitted probabilities numerically 0 or 1 occurred
| Characteristic |
OR |
95% CI |
p-value |
| IBD Diagnosis |
|
|
|
| Â Â Â Â CD |
— |
— |
|
| Â Â Â Â UC |
1.08 |
0.91, 1.30 |
0.4 |
| Â Â Â Â IC |
0.00 |
|
>0.9 |
| Â Â Â Â Unknown |
0.49 |
0.07, 1.79 |
0.3 |
| Age |
1.02 |
1.01, 1.03 |
<0.001 |
| Gender |
|
|
|
| Â Â Â Â Male |
— |
— |
|
| Â Â Â Â Female |
1.09 |
0.92, 1.29 |
0.3 |
| Race |
|
|
|
| Â Â Â Â White |
— |
— |
|
| Â Â Â Â Black |
0.53 |
0.31, 0.86 |
0.013 |
| Â Â Â Â Asian or Pacific Islander |
1.53 |
0.87, 2.66 |
0.14 |
| Â Â Â Â American Indian or Alaska Native |
1.90 |
0.48, 6.44 |
0.3 |
| Â Â Â Â Other |
0.90 |
0.49, 1.59 |
0.7 |
| Ethnicity |
|
|
|
| Â Â Â Â Hispanic |
— |
— |
|
| Â Â Â Â Non-Hispanic |
0.54 |
0.26, 1.15 |
0.10 |
| Marital Status |
|
|
|
| Â Â Â Â Married |
— |
— |
|
| Â Â Â Â Single |
1.02 |
0.80, 1.28 |
0.9 |
| Â Â Â Â Divorced/Separated |
1.06 |
0.71, 1.55 |
0.8 |
| Â Â Â Â Widowed |
0.95 |
0.63, 1.41 |
0.8 |
| Any Religious Affiliation |
|
|
|
| Â Â Â Â Yes |
— |
— |
|
| Â Â Â Â No |
1.04 |
0.87, 1.25 |
0.6 |
| Preferred Language |
|
|
|
| Â Â Â Â English |
— |
— |
|
| Â Â Â Â Other |
0.77 |
0.26, 1.97 |
0.6 |
| Active Tobacco Use |
|
|
|
| Â Â Â Â No |
— |
— |
|
| Â Â Â Â Yes |
0.56 |
0.40, 0.78 |
<0.001 |
| Charlson Comorbidity Index |
1.02 |
1.00, 1.03 |
0.022 |
| Immunocompromised |
1.32 |
1.11, 1.58 |
0.002 |
| Insurance Type |
|
|
|
| Â Â Â Â Private Insurance |
— |
— |
|
| Â Â Â Â Medicaid |
0.65 |
0.43, 0.95 |
0.031 |
| Â Â Â Â Medicare |
0.60 |
0.48, 0.75 |
<0.001 |
| Â Â Â Â Other Governmental |
0.69 |
0.20, 1.88 |
0.5 |
| Â Â Â Â Other |
1.88 |
0.56, 5.57 |
0.3 |
| Population Density of Census Tract |
1.00 |
1.00, 1.00 |
0.060 |
| Socioeconomic Status |
0.35 |
0.20, 0.61 |
<0.001 |
| Household Composition |
0.32 |
0.20, 0.52 |
<0.001 |
| Minority and Language Status |
1.52 |
1.10, 2.09 |
0.011 |
| Housing and Transportation |
1.29 |
0.89, 1.87 |
0.2 |
# Hosmer-Lemeshow Goodness-of-Fit Test
hltest(zoster_SVI_themes)
The Hosmer-Lemeshow goodness-of-fit test
Statistic = 12.77206
degrees of freedom = 9
p-value = 0.17319
# C-Statistic/AUROC
Cstat(zoster_SVI_themes)
[1] 0.6731749
# Model performance
model_performance(zoster_SVI_themes)
# Indices of model performance
AIC | AICc | BIC | Tjur's R2 | RMSE | Sigma | Log_loss | Score_log | Score_spherical | PCP
-----------------------------------------------------------------------------------------------------------
3474.724 | 3475.197 | 3646.921 | 0.064 | 0.401 | 0.998 | 0.494 | -194.897 | 2.888e-04 | 0.679
performance::check_model(zoster_SVI_themes)
Variable `Component` is not in your data frame :/

# Margins
cplot(zoster_SVI_themes, "RPL_THEME1", what = "prediction", main = "Predicted Likelihood of Zoster Vaccine Given Theme1")

cplot(zoster_SVI_themes, "RPL_THEME2", what = "prediction", main = "Predicted Likelihood of Zoster Vaccine Given Theme2")

cplot(zoster_SVI_themes, "RPL_THEME3", what = "prediction", main = "Predicted Likelihood of Zoster Vaccine Given Theme3")

cplot(zoster_SVI_themes, "RPL_THEME4", what = "prediction", main = "Predicted Likelihood of Zoster Vaccine Given Theme4")

LS0tCnRpdGxlOiAiWm9zdGVyIE1vZGVscyIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0aGVtZXM6IHBhcGVyCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKZWRpdG9yX29wdGlvbnM6CiAgY2h1bmtfb3V0cHV0X3R5cGU6IGlubGluZQpkYXRlOiAiMjAyMy0wMS0wOSIKLS0tCgojIExvYWQgUGFja2FnZXMgCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShjb2RlYm9va3IpCmxpYnJhcnkoc3VtbWFyeXRvb2xzKQpsaWJyYXJ5KGJyb29tKSAKbGlicmFyeShwZXJmb3JtYW5jZSkKbGlicmFyeShndCkKbGlicmFyeShndHN1bW1hcnkpCmxpYnJhcnkoamFuaXRvcikKbGlicmFyeShmb3JjYXRzKQpsaWJyYXJ5KG1hcmdpbnMpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShleHBzcykKbGlicmFyeShnbG10b29sYm94KQpsaWJyYXJ5KERlc2NUb29scykKYGBgCgojIEltcG9ydCBkYXRhIApgYGB7cn0KbG9hZCgifi9EZXNrdG9wL1ItQ29kZS9TRE9IX0FMTC9TRE9IX2RhdGFfMDEuMDguMjAyMy5yZGEiKQpgYGAKCiMgRGF0YSBDbGVhbmluZyB7LnRhYnNldH0KCiMjIEluY2x1ZGUgb25seSBwYXRpZW50cyBmcm9tIE1pY2hpZ2FuLCA+IDUwIHllYXJzLCB3aXRoIGF0IGxlYXN0IDYgbW9udGhzIG9mIGRhdGEgCmBgYHtyfQp6b3N0ZXJfTUkgPC0gU0RPSF9kYXRhXzAxLjA4LjIwMjNbIHdoaWNoKFNET0hfZGF0YV8wMS4wOC4yMDIzJFBBVElFTlRfU1RBVEVfQ0Q9PSdNSScpLCBdCgp6b3N0ZXJfTUlfNTAgPC0gem9zdGVyX01JWyB3aGljaCh6b3N0ZXJfTUkkYWdlX3lycz41MCksIF0KCnpvc3Rlcl9NSV81MF9kYXRhIDwtIHpvc3Rlcl9NSV81MFsgd2hpY2goem9zdGVyX01JXzUwJHB5ZWFycz4wLjUpLCBdCgpgYGAKCiMjIE1ha2UgdmFyaWFibGUgZm9yIGZ1bGx5IHZhY2NpbmF0ZWQgCmBgYHtyfQp6b3N0ZXJfTUlfNTBfZGF0YSAlPiUgCm11dGF0ZShmdWxsX3NoaW5ncml4ID0gY2FzZV93aGVuKHRvdGFsX3NoaW5ncml4Pj0gMiB+ICcxJyxUUlVFIH4gIjAiKSkgLT4gc2hpbmdyaXhfY2xlYW4xCgpzaGluZ3JpeF9jbGVhbjEkZnVsbF9zaGluZ3JpeCA9IGFzLm51bWVyaWMoc2hpbmdyaXhfY2xlYW4xJGZ1bGxfc2hpbmdyaXgpCmBgYAoKIyBCYXNlbGluZSBjaGFyYWN0ZXJpc3RpY3MgCmBgYHtyfQpzaGluZ3JpeF9jbGVhbjEgJT4lIAogIGRwbHlyOjpzZWxlY3QoaWJkXzMsIGFnZV95cnMsIGdlbmRlciwgcmFjZV81LCBldGhuaWNfMywgbGFuZ18zLCByZWxpZ19hZmZpbCwgbXN0YXRfNSwgYWN0X3RvYiwgbWF4X2NoLCBpbnN1cmFuY2UsIElDLCBpbnN1cmFuY2UsIHBvcF9kZW5zLHJfcGN0LCBSUExfVEhFTUVTLCBSUExfNCwgUlBMX1RIRU1FMSwgUlBMX1RIRU1FMiwgUlBMX1RIRU1FMywgUlBMX1RIRU1FNCwgZnVsbF9zaGluZ3JpeCkgLT4gc2hpbmdyaXhfYmFzZWxpbmUKc2hpbmdyaXhfYmFzZWxpbmUgJT4lIHRibF9zdW1tYXJ5KAogICAgICAgIHN0YXRpc3RpYyA9IGxpc3QoYWxsX2NvbnRpbnVvdXMoKSB+ICJ7bWVhbn0gKHtzZH0pIiksCiAgICAgICAgbWlzc2luZ190ZXh0ID0gIihNaXNzaW5nKSIpCmBgYAoKIyBCaXZhcmlhdGUgQW5hbHlzaXMgCmBgYHtyfQp0Ymxfem9zdGVyX2JpdiA8LQogIHRibF91dnJlZ3Jlc3Npb24oCiAgICBzaGluZ3JpeF9iYXNlbGluZVtjKCJmdWxsX3NoaW5ncml4IiwgImliZF8zIiwgImFnZV95cnMiLCAiZ2VuZGVyIiwgInJhY2VfNSIsICJldGhuaWNfMyIsICJsYW5nXzMiLCAibXN0YXRfNSIsICJyZWxpZ19hZmZpbCIsICJhY3RfdG9iIiwgIm1heF9jaCIsICJJQyIsICJpbnN1cmFuY2UiLCAicG9wX2RlbnMiLCAiUlBMX1RIRU1FUyIsICJSUExfVEhFTUUxIiwgIlJQTF9USEVNRTIiLCAiUlBMX1RIRU1FMyIsICJSUExfVEhFTUU0IildLAogICAgbWV0aG9kID0gZ2xtLAogICAgeSA9IGZ1bGxfc2hpbmdyaXgsCiAgICBtZXRob2QuYXJncyA9IGxpc3QoZmFtaWx5ID0gYmlub21pYWwpLAogICAgZXhwb25lbnRpYXRlID0gVFJVRSkKcHJpbnQodGJsX3pvc3Rlcl9iaXYsIG1ldGhvZCA9IHJlbmRlcikKYGBgCgojIE11bHRpdmFyaWFibGUgTW9kZWxzIHsudGFic2V0fQoKIyMgWm9zdGVyICsgU1ZJIENvbnRpbnVvdXMgCmBgYHtyfQp6b3N0ZXJfU1ZJIDwtIGdsbShmdWxsX3NoaW5ncml4IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgCiAgICAgICAgICAgICAgICAgICAgZXRobmljXzMgKyBtc3RhdF81ICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgICAgICAgICsgbGFuZ18zICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgaW5zdXJhbmNlCiAgICAgICAgICAgICAgICAgICAgICArIHBvcF9kZW5zICsgUlBMX1RIRU1FUywKICAgICAgICAgICAgICBmYW1pbHkgPSAiYmlub21pYWwiLCAKICAgICAgICAgICAgICBkYXRhID0gc2hpbmdyaXhfY2xlYW4xKQpzdW1tYXJ5KHpvc3Rlcl9TVkkgKQpicm9vbTo6Z2xhbmNlKHpvc3Rlcl9TVkkgKQpicm9vbTo6dGlkeSh6b3N0ZXJfU1ZJICwgZXhwb25lbnRpYXRlID0gVFJVRSkKdGJsX3JlZ3Jlc3Npb24oem9zdGVyX1NWSSwgZXhwb25lbnRpYXRlID0gVFJVRSkKCiMgSG9zbWVyLUxlbWVzaG93IEdvb2RuZXNzLW9mLUZpdCBUZXN0CmhsdGVzdCh6b3N0ZXJfU1ZJKQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQoem9zdGVyX1NWSSkKCiMgTW9kZWwgcGVyZm9ybWFuY2UgCm1vZGVsX3BlcmZvcm1hbmNlKHpvc3Rlcl9TVkkpCnBlcmZvcm1hbmNlOjpjaGVja19tb2RlbCh6b3N0ZXJfU1ZJKQoKIyBNYXJnaW5zIAoKY3Bsb3Qoem9zdGVyX1NWSSwgIlJQTF9USEVNRVMiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlByZWRpY3RlZCBMaWtlbGlob29kIG9mIFpvc3RlciBWYWNjaW5lIEdpdmVuIFNWSSIpCmBgYAoKIyMgRnVsbCBTaGluZ3JpeCArIFNWSSBieSBRdWFydGlsZSAKYGBge3J9Cnpvc3Rlcl9TVkk0IDwtIGdsbShmdWxsX3NoaW5ncml4IH4gaWJkXzMgKyBhZ2VfeXJzICsgZ2VuZGVyICsgcmFjZV81ICsgCiAgICAgICAgICAgICAgICAgICAgZXRobmljXzMgKyBtc3RhdF81ICsgcmVsaWdfYWZmaWwKICAgICAgICAgICAgICAgICAgICAgICsgbGFuZ18zICsgYWN0X3RvYiArIG1heF9jaCArIElDICsgaW5zdXJhbmNlCiAgICAgICAgICAgICAgICAgICAgICArIHBvcF9kZW5zICsgUlBMXzQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwgCiAgICAgICAgICAgICAgZGF0YSA9IHNoaW5ncml4X2NsZWFuMSkKc3VtbWFyeSh6b3N0ZXJfU1ZJNCApCmJyb29tOjpnbGFuY2Uoem9zdGVyX1NWSTQgKQpicm9vbTo6dGlkeSh6b3N0ZXJfU1ZJNCAsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKHpvc3Rlcl9TVkk0LCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyBIb3NtZXItTGVtZXNob3cgR29vZG5lc3Mtb2YtRml0IFRlc3QKaGx0ZXN0KHpvc3Rlcl9TVkk0KQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQoem9zdGVyX1NWSTQpCgojIE1vZGVsIHBlcmZvcm1hbmNlIAptb2RlbF9wZXJmb3JtYW5jZSh6b3N0ZXJfU1ZJNCkKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKHpvc3Rlcl9TVkk0KQoKIyBNYXJnaW5zIApjcGxvdCh6b3N0ZXJfU1ZJNCwgIlJQTF80Iiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBab3N0ZXIgVmFjY2luZSBHaXZlbiBTVkkgUXVhcnRpbGUiKQpgYGAKCiMjIEZ1bGx5IHZhY2NpbmF0ZWQgKyBBbGwgdGhlbWVzIApgYGB7cn0Kem9zdGVyX1NWSV90aGVtZXMgPC0gZ2xtKGZ1bGxfc2hpbmdyaXggfiBpYmRfMyArIGFnZV95cnMgKyBnZW5kZXIgKyByYWNlXzUgKyAKICAgICAgICAgICAgICAgICAgICBldGhuaWNfMyArIG1zdGF0XzUgKyByZWxpZ19hZmZpbAogICAgICAgICAgICAgICAgICAgICAgKyBsYW5nXzMgKyBhY3RfdG9iICsgbWF4X2NoICsgSUMgKyBpbnN1cmFuY2UKICAgICAgICAgICAgICAgICAgICAgICsgcG9wX2RlbnMgKyBSUExfVEhFTUUxICsgUlBMX1RIRU1FMiArCiAgICAgICAgICAgICAgICAgICAgUlBMX1RIRU1FMyArIFJQTF9USEVNRTQsCiAgICAgICAgICAgICAgZmFtaWx5ID0gImJpbm9taWFsIiwgCiAgICAgICAgICAgICAgZGF0YSA9IHNoaW5ncml4X2NsZWFuMSkKc3VtbWFyeSh6b3N0ZXJfU1ZJX3RoZW1lcyApCmJyb29tOjpnbGFuY2Uoem9zdGVyX1NWSV90aGVtZXMgKQpicm9vbTo6dGlkeSh6b3N0ZXJfU1ZJX3RoZW1lcyAsIGV4cG9uZW50aWF0ZSA9IFRSVUUpCnRibF9yZWdyZXNzaW9uKHpvc3Rlcl9TVklfdGhlbWVzLCBleHBvbmVudGlhdGUgPSBUUlVFKQoKIyBIb3NtZXItTGVtZXNob3cgR29vZG5lc3Mtb2YtRml0IFRlc3QKaGx0ZXN0KHpvc3Rlcl9TVklfdGhlbWVzKQoKIyBDLVN0YXRpc3RpYy9BVVJPQyAKQ3N0YXQoem9zdGVyX1NWSV90aGVtZXMpCgojIE1vZGVsIHBlcmZvcm1hbmNlIAptb2RlbF9wZXJmb3JtYW5jZSh6b3N0ZXJfU1ZJX3RoZW1lcykKcGVyZm9ybWFuY2U6OmNoZWNrX21vZGVsKHpvc3Rlcl9TVklfdGhlbWVzKQoKIyBNYXJnaW5zIAoKY3Bsb3Qoem9zdGVyX1NWSV90aGVtZXMsICJSUExfVEhFTUUxIiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBab3N0ZXIgVmFjY2luZSBHaXZlbiBUaGVtZTEiKQpjcGxvdCh6b3N0ZXJfU1ZJX3RoZW1lcywgIlJQTF9USEVNRTIiLCB3aGF0ID0gInByZWRpY3Rpb24iLCBtYWluID0gIlByZWRpY3RlZCBMaWtlbGlob29kIG9mIFpvc3RlciBWYWNjaW5lIEdpdmVuIFRoZW1lMiIpCmNwbG90KHpvc3Rlcl9TVklfdGhlbWVzLCAiUlBMX1RIRU1FMyIsIHdoYXQgPSAicHJlZGljdGlvbiIsIG1haW4gPSAiUHJlZGljdGVkIExpa2VsaWhvb2Qgb2YgWm9zdGVyIFZhY2NpbmUgR2l2ZW4gVGhlbWUzIikKY3Bsb3Qoem9zdGVyX1NWSV90aGVtZXMsICJSUExfVEhFTUU0Iiwgd2hhdCA9ICJwcmVkaWN0aW9uIiwgbWFpbiA9ICJQcmVkaWN0ZWQgTGlrZWxpaG9vZCBvZiBab3N0ZXIgVmFjY2luZSBHaXZlbiBUaGVtZTQiKQpgYGAKCgo=